JP3203694B2 - Manufacturing method of quartz glass - Google Patents

Manufacturing method of quartz glass

Info

Publication number
JP3203694B2
JP3203694B2 JP20370291A JP20370291A JP3203694B2 JP 3203694 B2 JP3203694 B2 JP 3203694B2 JP 20370291 A JP20370291 A JP 20370291A JP 20370291 A JP20370291 A JP 20370291A JP 3203694 B2 JP3203694 B2 JP 3203694B2
Authority
JP
Japan
Prior art keywords
quartz glass
powder
suspension
silica
specific gravity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20370291A
Other languages
Japanese (ja)
Other versions
JPH0524853A (en
Inventor
修輔 山田
孝次 津久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP20370291A priority Critical patent/JP3203694B2/en
Publication of JPH0524853A publication Critical patent/JPH0524853A/en
Application granted granted Critical
Publication of JP3203694B2 publication Critical patent/JP3203694B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は石英ガラスの製造方法に
関し、特に気泡や脈理等の光学的不均質部分が存在しな
い石英ガラスの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing quartz glass, and more particularly to a method for producing quartz glass free from optically inhomogeneous portions such as bubbles and striae.

【0002】[0002]

【従来の技術】マスク用基板、ディスプレイ等に使用さ
れる石英ガラス薄板は従来 イ.溶融及び合成石英ガラスインゴットより切り出し・
研削・研磨を行い石英ガラス薄板とする方法 ロ.珪素のアルコキシド、シリカ微粉末又はそれらの混
合物を出発原料とし、加水分解・脱水重合反応をおこさ
せ得られたゲルを乾燥・焼結し石英ガラス薄板とする方
法 等の方法により作製されている。現在は、イの方法が主
流である。
2. Description of the Related Art Thin quartz glass plates used for mask substrates, displays and the like have been conventionally used. Cut out from fused and synthetic quartz glass ingots
Method of grinding and polishing to make a thin quartz glass plate b. It is manufactured by a method such as a method of drying and sintering a gel obtained by subjecting a alkoxide of silicon, a fine powder of silica or a mixture thereof as a starting material to a hydrolysis and dehydration polymerization reaction to obtain a thin quartz glass plate. At present, method A is the mainstream.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、これら
の方法には以下のような問題がある。 イの方法 気泡や脈理等の光学的不均質部分が存在 歩留りが悪い 高価である 大面積の薄板を得ることが困難である ロの方法 気泡の存在 反りの発生 また従来の濾過成型法は濾過に長時間を要する場合があ
る。
However, these methods have the following problems. Method (a) Optically inhomogeneous parts such as air bubbles and striae are present. Yield is poor. It is difficult to obtain a large-area thin plate. (B) Air bubbles exist. Warpage occurs. May take a long time.

【0004】本発明はこれらの問題点を解決するため
に、気泡や脈理等の光学的不均質部分が存在せず、反り
のない石英ガラス薄板を歩留りよく、安価に製造する方
法を提供するものである。
In order to solve these problems, the present invention provides a method of manufacturing a quartz glass thin plate having no optically inhomogeneous portions such as bubbles and striae and having no warp with a good yield and at a low cost. Things.

【0005】[0005]

【課題を解決するための手段】上記問題点に鑑み鋭意研
究の結果、本発明者らはシリカ粉末を原料とし、この粉
末を分散媒中に分散させた懸濁液を比重が2.2g/c
以上の液体に浮かせ、遠心力を用いてシリカ粉末を
沈降、堆積させ湿潤成型体を得、その湿潤成型体を内部
を高湿度に保った恒温恒湿器内で徐々に乾燥させ乾燥成
型体とし、それを焼結する事により、30μm以上の気
泡や脈理等の光学的不均質部分が存在しない石英ガラス
を歩留まり良く、安価に製造できることを発見し、本発
明に到達した。
Means for Solving the Problems As a result of intensive studies in view of the above problems, the present inventors have found that a silica powder is used as a raw material and a suspension obtained by dispersing the powder in a dispersion medium has a specific gravity of 2.2 g / g. c
m 3 or more, and the silica powder is sedimented and deposited using centrifugal force to obtain a wet molded body, and the wet molded body is gradually dried in a thermo-hygrostat in which the inside is kept at a high humidity to dry mold. The present inventors have found that a quartz glass having no optically inhomogeneous portions such as bubbles or striae having a size of 30 μm or more can be produced at a good yield and at low cost by sintering it, and the present invention has been achieved.

【0006】すなわち本発明は、シリカ粉末を湿式成型
し焼結して石英ガラスを得る方法において、湿式成型が
シリカ粉末を液体の分散媒に分散させた後、予め容器に
入れてある比重2.2g/cm3以上の比重を持ち、分
散媒とは互いに溶解度をほとんど持たない液体(以下、
この液体を「重液」という)の上にスラリーを流し込
み、容器全体を毎分1000回転以上で回転する遠心分
離器にかけ、シリカ粉末を遠心力で重液上に沈降、堆積
させ成型することを特徴とする石英ガラス製造方法であ
る。本発明を以下詳細に説明する。
That is, the present invention relates to a method for obtaining silica glass by wet molding and sintering silica powder. In the wet molding, the silica powder is dispersed in a liquid dispersion medium and then placed in a container in advance.
A liquid having a specific gravity of 2.2 g / cm 3 or more and having almost no solubility with respect to the dispersion medium (hereinafter, referred to as “ dispersion medium”) .
The slurry is poured onto this liquid ("heavy liquid") , the whole container is centrifuged at 1000 rpm or more, and the silica powder is settled and deposited on the heavy liquid by centrifugal force to form. This is a method for producing quartz glass. The present invention will be described in detail below.

【0007】原料となるシリカ粉末は、好ましくは比表
面積40m/g以下さらに好ましくは10〜20m
/gの粉末を使用する。シリカ粉末の製法には特に限定
はないが、例えばSiClを火炎加水分解し、堆積さ
せたた多孔質体を粉砕したもの、または珪素のアルコキ
シドをアルコールで加水分解して得た粉末などを用いる
ことができる。この粉末を、分散媒に対して粉末の重量
百分率で好ましくは30パーセント以下、さらに好まし
くは10から25パーセントになるように、超音波を照
射しながら分散媒に分散させ均質な懸濁液の調製を行
う。超音波を照射する時間は60分間以上、好ましくは
120分間以上が良い。なお超音波照射中に懸濁液の温
度が上昇しないように、超音波伝搬媒体を一定割合でフ
ローするか冷却する等の工夫をするとよい。
[0007] Silica powder as a raw material, preferably less more preferably a specific surface area of 40m 2 / g 10~20m 2
/ G of powder. The method for producing the silica powder is not particularly limited. For example, a powder obtained by flame-hydrolyzing SiCl 4 and pulverizing the deposited porous material or a powder obtained by hydrolyzing silicon alkoxide with alcohol is used. be able to. This powder is dispersed in the dispersion medium while irradiating ultrasonic waves such that the weight percentage of the powder to the dispersion medium is preferably 30% or less, more preferably 10 to 25%, to prepare a homogeneous suspension. I do. The time for irradiating the ultrasonic wave is preferably 60 minutes or more, and more preferably 120 minutes or more. In order to prevent the temperature of the suspension from rising during the ultrasonic irradiation, it is advisable that the ultrasonic wave propagation medium be flowed or cooled at a constant rate.

【0008】上記のように調製された均質な懸濁液を、
孔径5〜20μmのナイロン製のフルイもしくはテフロ
ン製のフィルタ−等を通過させ異物や大きな粉末凝集体
等の除去を行なう。このようにして得た懸濁液をさらに
遠心分離機にかけ直径1μmより大きい二次粒子を取り
除くとよい。直径1μm以下の粒子のみを含む懸濁液に
再び超音波を照射し均質化を図る。
[0008] The homogeneous suspension prepared as described above,
Foreign matter and large powder aggregates are removed by passing through a nylon filter or Teflon filter having a pore size of 5 to 20 μm. The suspension thus obtained may be further centrifuged to remove secondary particles larger than 1 μm in diameter. The suspension containing only particles having a diameter of 1 μm or less is again irradiated with ultrasonic waves to achieve homogenization.

【0009】このようにして得た懸濁液を比重がシリカ
粉末より大きい2.2g/cm以上で、互いに溶解度
をほとんど持たない液体を予め入れてある容器の中に靜
かに流し込む。この容器を遠心分離機にセットし、毎分
1000回転以上、好ましくは毎分2000回転以上で
90分間以上、好ましくは120分間以上回転させる。
溶媒とシリカ粉末の遠心分離が終わった後、上澄み液を
捨て、比重が2.2g/cm以上の液体上に浮いてい
る粉末成型体を静かに取り出す。この時成型体を変形さ
せないことが大切である。以上の遠心力を利用した成型
法をここでは遠心成型法と呼ぶ。遠心成型法による粉末
成型体を温度30〜60℃、湿度80〜90%の恒温恒
湿器内へ移し、粉末成型体中に残った分散媒を蒸発させ
る。
The suspension thus obtained is gently poured into a container in which liquids having a specific gravity of 2.2 g / cm 3 or more larger than that of silica powder and having little solubility with respect to each other are previously placed. This container is set in a centrifuge, and rotated at 1000 rpm or more, preferably 2000 rpm or more, for 90 minutes or more, preferably 120 minutes or more.
After the solvent and the silica powder are centrifuged, the supernatant liquid is discarded, and a powder molded body floating on a liquid having a specific gravity of 2.2 g / cm 3 or more is gently taken out. At this time, it is important not to deform the molded body. The molding method utilizing the above centrifugal force is herein referred to as a centrifugal molding method. The powder compact obtained by centrifugal molding is transferred into a thermo-hygrostat at a temperature of 30 to 60 ° C. and a humidity of 80 to 90%, and the dispersion medium remaining in the powder compact is evaporated.

【0010】得られた乾燥成型体を加熱時にシリカと反
応しない物、たとえばクリストバライトの微粉末を敷い
た無水溶融石英ガラス板上に置き、それを石英ガラスを
炉心管とする管状炉内にセットして透明ガラス化処理を
例えば以下のように行う。まず初めに成型体中に残った
有機分の除去を目的とし室温より800℃まで酸素雰囲
気中において加熱し、次に成型体表面および内部の水酸
基の除去を目的として、800〜1200℃まで10%
塩素ガスを含むヘリウムガス雰囲気中において試料を処
理した後、温度1600℃以下、好ましくは1400〜
1550℃、80%以上のヘリウムガスを含む雰囲気中
において、保持時間30分以上の条件において透明化処
理を行なう。
The obtained dried molded article is placed on a substance which does not react with silica at the time of heating, for example, an anhydrous fused silica glass sheet on which fine powder of cristobalite is spread, and it is set in a tubular furnace using quartz glass as a furnace tube. The transparent vitrification treatment is performed, for example, as follows. First, the molded body is heated from room temperature to 800 ° C. in an oxygen atmosphere for the purpose of removing organic components remaining in the molded body, and then 10% from 800 to 1200 ° C. for the purpose of removing hydroxyl groups on the surface and inside of the molded body.
After processing the sample in a helium gas atmosphere containing chlorine gas, the temperature is 1600 ° C. or less, preferably 1400 ° C.
The clearing process is performed at 1550 ° C. in an atmosphere containing 80% or more helium gas under the condition of a holding time of 30 minutes or more.

【0011】以上のようにして反りがなく、かつ30μ
m以上の気泡が存在しない石英ガラスを得ることができ
る。
As described above, there is no warpage and 30 μm.
It is possible to obtain quartz glass having no bubbles of m or more.

【0012】本発明では、分散媒及びそれと互いに溶解
度をほとんど持たない比重2.2g/cm以上の液体
の組み合わせには特に限定はないが、例えば親水性の分
散媒と疎水性の液体、疎水性の分散媒と親水性の液体、
さらに具体的には蒸留水とヨードメタン、蒸留水とジヨ
ードメタン、親水性または疎水性の溶媒と水銀のなどの
組み合わせがあげられる。
In the present invention, there is no particular limitation on the combination of a dispersion medium and a liquid having a specific gravity of 2.2 g / cm 3 or more which has little solubility with respect to each other. Dispersion medium and hydrophilic liquid,
More specifically, a combination of distilled water and iodomethane, distilled water and diiodomethane, a hydrophilic or hydrophobic solvent and mercury, and the like can be given.

【0013】[0013]

【作用】本発明のように比表面積が好ましくは40m
/g以下のシリカ粉末を原料とし、液体を分散媒とする
この粉末の懸濁液を比重が2.2g/cm以上の、分
散媒とは互いにほとんど溶解度を持たない液体に浮か
べ、遠心力によってシリカ粉末を沈降、堆積させ湿潤成
型体を得る方法においては、湿潤成型体の構造に次に挙
げるような、焼結法で良質なガラスを作製するのに都合
の良い点が有る。
The specific surface area is preferably 40 m 2 as in the present invention.
/ G of silica powder having a specific gravity of 2.2 g / cm 3 or more and having little or no solubility with respect to the dispersion medium, and centrifugal force In this method, the silica powder is settled and deposited to obtain a wet molded product, which has advantages in producing a high quality glass by a sintering method as described below in the structure of the wet molded product.

【0014】泡の原因となるスラリー中に混入した固く
凝集した二次粒子は、粒径が他より大きいために遠心力
で底の表面部分に押し出されてしまう。また遠心成型に
利用されるスラリーはあらかじめ遠心分離により分級さ
れており、直径1μmより大きな粒子はスラリー中から
除かれている。かつ遠心成型では、スラリー中の非常に
細かい粒子は上澄み液中に含まれ多くが取り除かれるの
で、結局湿潤ゲル体を形成している粒子は粒径の比較的
揃ったものとなる。
The hardly agglomerated secondary particles mixed in the slurry causing the bubbles are extruded to the bottom surface portion by centrifugal force due to the larger particle size. The slurry used for centrifugal molding is classified in advance by centrifugation, and particles larger than 1 μm in diameter are removed from the slurry. In addition, in the centrifugal molding, very fine particles in the slurry are contained in the supernatant liquid and removed in a large amount, so that the particles forming the wet gel body have relatively uniform particle diameters.

【0015】成型体の受ける歪の点から見ると、湿潤成
型体は液体上で作られるため、成型体は接している界面
からの摩擦抵抗をほとんど受けず、そのため湿潤成型体
中には気泡の原因となる歪が生じない。含水率について
も遠心分離機から取り出した時には、成型体の表と裏の
含水率はほぼ等しい。よって乾燥時に生じる歪も小さ
い。
[0015] From the point of view of the strain on the molded body, since the wet molded body is made of a liquid, the molded body is hardly subjected to frictional resistance from the interface with which it is in contact. No causal distortion occurs. As for the moisture content, when the molded article is taken out of the centrifuge, the moisture content of the front and back of the molded article is almost equal. Therefore, distortion generated during drying is small.

【0016】以上に挙げた利点が複合的に作用し、泡の
ない良質なガラスが作製できたものと推定される。
It is presumed that the above-mentioned advantages act in combination, and that high-quality glass without bubbles can be produced.

【0017】[0017]

【実施例】本発明を以下の実施例により詳細に説明す
る。しかし本発明はこれら実施例のみに限定されるもの
ではない。
The present invention will be described in detail with reference to the following examples. However, the present invention is not limited to only these examples.

【0018】実施例1 四塩化珪素を高温中において火炎加水分解後、堆積させ
た多孔質体の表面層を軽く粉砕することにより、BET
比表面積が25m/g、平均粒径0.3μmのシリカ
粉末を得た。この粉末を重量百分率が17%になるよう
に蒸留水と混合し、超音波を照射しながら2時間分散さ
せ、懸濁液を調製した。
Example 1 After flame hydrolysis of silicon tetrachloride at a high temperature, the surface layer of the deposited porous material was lightly pulverized to obtain a BET.
A silica powder having a specific surface area of 25 m 2 / g and an average particle diameter of 0.3 μm was obtained. This powder was mixed with distilled water so that the weight percentage was 17%, and dispersed for 2 hours while irradiating ultrasonic waves to prepare a suspension.

【0019】この懸濁液を孔径10μmのナイロン製の
フルイを通過させた後、250〜280ml程度を直径
60mmの円筒形の容器に入れ遠心分離機にかけた。遠
心分離機を毎分2000回転で20分間作動させ容器中
の上澄み液を採集した。得られた上澄み液を良く撹はん
した後、さらに超音波を照射しながら1時間分散した。
After passing this suspension through a nylon sieve having a pore diameter of 10 μm, about 250 to 280 ml was placed in a cylindrical vessel having a diameter of 60 mm and centrifuged. The centrifuge was operated at 2000 rpm for 20 minutes, and the supernatant in the container was collected. After the obtained supernatant liquid was stirred well, it was dispersed for 1 hour while further irradiating ultrasonic waves.

【0020】得られた懸濁液をあらかじめ底にジヨード
メタン(CH、比重3.33g/cm、疎水性
の液体)を入れておいた円筒形の容器に静かに流し込ん
だ。それらの容器を遠心分離機にセットし毎分2000
回転で2時間作動させた。遠心分離が終わった後、上澄
み液を取り除きジヨードメタン上に浮いている湿潤成型
体を静かに取り出した。取り出した成型体を内部を温度
30℃湿度90%に保った恒温恒湿器内にいれ徐々に四
日以上かけて乾燥させた。
The obtained suspension was gently poured into a cylindrical container in which diiodomethane (CH 2 I 2 , specific gravity 3.33 g / cm 3 , hydrophobic liquid) was previously placed at the bottom. Place the containers in a centrifuge and 2,000 per minute
Run for 2 hours with rotation. After the centrifugation, the supernatant was removed and the wet molded body floating on diiodomethane was gently removed. The removed molded product was placed in a thermo-hygrostat maintained at a temperature of 30 ° C. and a humidity of 90%, and gradually dried over four days or more.

【0021】得られた直径51mm厚さ6mmの乾燥成
型体を、クリストバライトの微粉末を敷いた無水溶融石
英ガラス板上に置き、それを石英ガラスを炉心管とする
管状炉内にセットして透明ガラス化処理を以下のように
行った。室温より800℃まで酸素雰囲気中において毎
時200℃の速度で加熱し、800〜1000℃まで1
0%塩素ガスを含むヘリウムガス雰囲気中において毎時
200℃の速度で加熱後1000℃で1時間保持した
後、1550℃までヘリウムガス雰囲気中において毎時
200℃の速度で加熱し、1550℃で2時間保持をし
た後、炉内で冷却した。
The obtained dry molded body having a diameter of 51 mm and a thickness of 6 mm is placed on an anhydrous fused silica glass plate on which fine powder of cristobalite is spread, and the transparent molded body is set in a tubular furnace using quartz glass as a furnace tube. The vitrification treatment was performed as follows. Heat from room temperature to 800 ° C in an oxygen atmosphere at a rate of 200 ° C per hour, and
After heating at a rate of 200 ° C./hour in a helium gas atmosphere containing 0% chlorine gas and holding at 1000 ° C. for 1 hour, heating to 1550 ° C. in a helium gas atmosphere at a rate of 200 ° C./hour and 1550 ° C. for 2 hours After holding, it was cooled in a furnace.

【0022】実施例2 四塩化珪素を高温中において火炎加水分解後、堆積させ
た多孔質体の表面層を軽く粉砕することにより、BET
比表面積が25m/g、平均粒径0.3μmのシリカ
粉末を得た。この粉末を重量百分率が17%になるよう
に蒸留水と混合し、超音波を照射しながら2時間分散さ
せ懸濁液を調製した。
Example 2 BET was obtained by flame hydrolysis of silicon tetrachloride at a high temperature and then lightly pulverizing the surface layer of the deposited porous material.
A silica powder having a specific surface area of 25 m 2 / g and an average particle diameter of 0.3 μm was obtained. This powder was mixed with distilled water so that the weight percentage became 17%, and dispersed for 2 hours while irradiating ultrasonic waves to prepare a suspension.

【0023】この懸濁液を孔径10μmのナイロン製の
フルイを通過させた後、250〜280ml程度を直径
60mmの円筒形の容器に入れ遠心分離機にかけた。遠
心分離機を毎分2000回転で20分間作動させ容器中
の上澄み液を採集した。この操作を繰り返すことにより
約1500mlの上澄み液を得た。得られた上澄み液を
良く撹拌した後、さらに超音波を照射しながら1時間分
散させた。
The suspension was passed through a nylon sieve having a pore diameter of 10 μm, and about 250 to 280 ml was placed in a cylindrical vessel having a diameter of 60 mm and centrifuged. The centrifuge was operated at 2000 rpm for 20 minutes, and the supernatant in the container was collected. By repeating this operation, about 1500 ml of a supernatant was obtained. After the obtained supernatant liquid was stirred well, it was dispersed for 1 hour while further irradiating ultrasonic waves.

【0024】得られた懸濁液200mlを、あらかじめ
底にジヨードメタン(CH、比重3.33g/c
、疎水性の液体)を入れておいた円筒形の容器に静
かに流し込んだ。それらの容器を遠心分離機にセットし
毎分2000回転で2時間作動させた。遠心分離が終わ
った後、上澄み液を取り除き、新たに懸濁液を注ぎ足し
た。再び容器を遠心分離機にセットし毎分2000回転
で2時間作動させた。上澄み液を取り除き、懸濁液を遠
心分離機にかけるという操作を5回繰り返した。
200 ml of the obtained suspension was previously added to the bottom with diiodomethane (CH 2 I 2 , specific gravity 3.33 g / c).
(m 3 , hydrophobic liquid) was gently poured into a cylindrical container. The containers were set in a centrifuge and operated at 2000 revolutions per minute for 2 hours. After the centrifugation was completed, the supernatant was removed and a new suspension was added. The container was set again in the centrifuge and operated at 2,000 rpm for 2 hours. The operation of removing the supernatant and centrifuging the suspension was repeated five times.

【0025】遠心分離が終わった後、上澄み液を取り除
きジヨードメタン上に浮いている湿潤成型体を静かに取
り出した。取り出した成型体を内部を温度30℃湿度9
0%に保った恒温恒湿器内に入れ徐々に四日以上かけて
乾燥させた。
After the centrifugation was completed, the supernatant was removed and the wet molded body floating on diiodomethane was gently taken out. The inside of the molded product is taken out at a temperature of 30 ° C and a humidity of 9
The sample was placed in a thermo-hygrostat kept at 0% and gradually dried over 4 days.

【0026】得られた直径51mm厚さ35mmの乾燥
成型体を、クリストバライトの微粉末を敷いた無水溶融
石英ガラス板上に置き、それを石英ガラスを炉心管とす
る管状炉内にセットして透明ガラス化処理を以下のよう
に行った。室温より800℃まで酸素雰囲気中において
毎時200℃の速度で加熱し、800〜1000℃まで
10%塩素ガスを含むヘリウムガス雰囲気中において毎
時200℃の速度で加熱後1000℃で1時間保持した
後、1550℃までヘリウムガス雰囲気中において毎時
200℃の速度で加熱し、1550℃で2時間保持をし
た後、炉内で冷却した。
The obtained dry molded product having a diameter of 51 mm and a thickness of 35 mm is placed on an anhydrous fused silica glass plate on which fine powder of cristobalite is spread, and is set in a tubular furnace using quartz glass as a furnace tube, and is transparent. The vitrification treatment was performed as follows. After heating from room temperature to 800 ° C. in an oxygen atmosphere at a rate of 200 ° C./hour, from 800 to 1000 ° C. in a helium gas atmosphere containing 10% chlorine gas at a rate of 200 ° C./hour, and then holding at 1000 ° C. for 1 hour , In a helium gas atmosphere at a rate of 200 ° C./hour, kept at 1550 ° C. for 2 hours, and then cooled in a furnace.

【0027】実施例3 エチレンシリケート(Si(CO))1248
gとエタノール17リットルと蒸留水1656gとアン
モニア水(29重量%)1200gを加え合わせ、温度
を50℃に保ちながら24時間撹はんし続けた。すると
平均粒径0.4μmの単分散球状シリカ粒子が得られ
た。エバポレーターを用いて液体分を取り除いた後、こ
の単分散球状シリカ粒子500gを石英ガラスボートに
乗せ酸素雰囲気中で900℃で6時間仮焼した。得られ
た粉末に蒸留水を加え、粉末と蒸留水の重量比が2:5
である懸濁液を作製した。この懸濁液をメノウ製ボール
ミルに入れて4時間粉砕した。粉砕後の懸濁液を孔径1
0μmのナイロン製のフルイに通した。この懸濁液に蒸
留水を加え、比重が1.063g/cmになるように
調製した。
Example 3 1248 Ethylene silicate (Si (C 2 H 5 O) 4 )
g, 17 liters of ethanol, 1656 g of distilled water and 1200 g of aqueous ammonia (29% by weight) were added, and the mixture was continuously stirred for 24 hours while maintaining the temperature at 50 ° C. As a result, monodispersed spherical silica particles having an average particle diameter of 0.4 μm were obtained. After removing the liquid using an evaporator, 500 g of the monodispersed spherical silica particles were placed on a quartz glass boat and calcined at 900 ° C. for 6 hours in an oxygen atmosphere. Distilled water was added to the obtained powder, and the weight ratio of the powder to distilled water was 2: 5.
Was prepared. This suspension was placed in an agate ball mill and ground for 4 hours. Pulverize suspension after grinding
It was passed through a nylon sieve of 0 μm. Distilled water was added to this suspension to adjust the specific gravity to 1.063 g / cm 3 .

【0028】得られた懸濁液200ml程度を、あらか
じめ底にジヨードメタン(CH 、比重3.33g
/cm、疎水性の液体)を入れておいた直径55mmの
円筒形の容器に静かに流し込んだ。それらの容器を遠心
分離機にセットし、毎分2000回転で2時間作動させ
た。遠心分離が終わった後、上澄み液を取り除きジヨー
ドメタン上に浮いている湿潤成型体を静かに取り出し
た。取り出した成型体を内部を温度30℃湿度90%に
保った恒温恒湿器内にいれ徐々に四日以上かけて乾燥さ
せた。
About 200 ml of the obtained suspension is roughly
Diiodomethane (CH2I 2, Specific gravity 3.33g
/ Cm3, Hydrophobic liquid) containing 55mm diameter
Gently poured into a cylindrical container. Centrifuge those containers
Set it on the separator and let it run at 2000 rpm for 2 hours
Was. After centrifugation, remove the supernatant and remove
Gently remove the wet molded body floating on the methane
Was. The inside of the molded product taken out is kept at a temperature of 30 ° C and a humidity of 90%.
Place in a kept constant temperature and humidity chamber and gradually dry it for 4 days or more.
I let you.

【0029】得られた直径51mm厚さ6mmの乾燥成
型体を、クリストバライトの微粉末を敷いた無水溶融石
英ガラス板上に置き、それを石英ガラスを炉心管とする
管状炉内にセットして透明ガラス化処理を以下のように
行った。室温より800℃まで酸素雰囲気中において毎
時200℃の速度で加熱し、800〜1000℃まで1
0%塩素ガスを含むヘリウムガス雰囲気中において毎時
200℃の速度で加熱後1000℃で1時間保持した
後、1550℃までヘリウムガス雰囲気中において毎時
200℃の速度で加熱し、1550℃で2時間保持をし
た後、炉内で冷却した。
The obtained dry molded body having a diameter of 51 mm and a thickness of 6 mm is placed on an anhydrous fused silica plate on which fine powder of cristobalite is laid, and the transparent molded body is set in a tubular furnace using quartz glass as a furnace tube. The vitrification treatment was performed as follows. Heat from room temperature to 800 ° C in an oxygen atmosphere at a rate of 200 ° C per hour, and
After heating at a rate of 200 ° C./hour in a helium gas atmosphere containing 0% chlorine gas and holding at 1000 ° C. for 1 hour, heating to 1550 ° C. in a helium gas atmosphere at a rate of 200 ° C./hour and 1550 ° C. for 2 hours After holding, it was cooled in a furnace.

【0030】実施例1〜3で得られた石英ガラスの表面
は滑らかであり、かつ厚さも均質であった。
The surfaces of the quartz glasses obtained in Examples 1 to 3 were smooth and uniform in thickness.

【0031】比較例 1 四塩化珪素を高温中において火炎加水分解後、堆積させ
た多孔質体を石英ガラス製の乳鉢を使用し粉砕すること
により、比表面積が18m/g、平均粒径0.15μ
mのシリカ粉末を得た。この粉末を蒸留水と重量比が蒸
留水:粉末=3:2になるように混合し、超音波を照射
しながら120分間分散させ懸濁液を調製した。この懸
濁液を孔径10μm のナイロン製のフルイを通過させた
後、懸濁液をSiO2 量が200gになるように分取
し孔径0.2μmのテフロン製のフィルター及び内径1
40mmのテフロン製の型を使用し、減圧濾過を行っ
た。減圧濾過の過程でシリカの懸濁液は充分に溶媒があ
る時は液状であるが、溶媒が少なくなるとゲル化し湿潤
ゲルとなり、さらに溶媒が少なくなると無数の割れが生
じた。よって割れの生じた時点で実験を中止した。
Comparative Example 1 After flame hydrolysis of silicon tetrachloride in a high temperature, the deposited porous material was ground using a mortar made of quartz glass to have a specific surface area of 18 m 2 / g and an average particle size of 0. .15μ
m of silica powder was obtained. This powder was mixed with distilled water in a weight ratio of distilled water: powder = 3: 2 and dispersed for 120 minutes while irradiating ultrasonic waves to prepare a suspension. The suspension was passed through a nylon sieve having a pore size of 10 μm, and the suspension was fractionated so that the amount of SiO 2 became 200 g. A Teflon filter having a pore size of 0.2 μm and an inner diameter of 1 μm were prepared.
Vacuum filtration was performed using a 40 mm Teflon mold. In the process of filtration under reduced pressure, the silica suspension was in a liquid state when there was a sufficient amount of solvent, but when the amount of the solvent was reduced, the silica gelled and became a wet gel. Therefore, the experiment was stopped when the crack occurred.

【0032】比較例 2 四塩化珪素を高温中において火炎加水分解後、堆積させ
た多孔質体を石英ガラス製の乳鉢を使用し粉砕すること
により比表面積が18m/g、平均粒径0.15μm
のシリカ粉末を得た。この粉末を蒸留水と重量比が蒸留
水:粉末=3:2になるように混合し、超音波を照射し
ながら120分間分散させ懸濁液を調製した。この懸濁
液を孔径10μm のナイロン製のフルイを通過させた
後、懸濁液をSiO量が200gになるように分取
し、孔径0.2μmのテフロン製のフィルター及び内径
140mmのテフロン製の型を使用し、減圧濾過を行っ
た。減圧濾過の過程で、シリカの懸濁液は充分に溶媒が
ある時は液状であるが、溶媒が少なくなるとゲル化し湿
潤ゲルとなった。懸濁液に水が少なくなりゲル化した時
点で吸引を中止し、フィルター上の成型体を取り出し
た。その成型体を、内部を60℃湿度90%に保った恒
温恒湿器内に移し10日間乾燥させた。
COMPARATIVE EXAMPLE 2 After flame hydrolysis of silicon tetrachloride in a high temperature, the deposited porous material was pulverized using a mortar made of quartz glass to have a specific surface area of 18 m 2 / g and an average particle diameter of 0.1 m 2 / g. 15 μm
Was obtained. This powder was mixed with distilled water in a weight ratio of distilled water: powder = 3: 2 and dispersed for 120 minutes while irradiating ultrasonic waves to prepare a suspension. The suspension was passed through a nylon sieve having a pore diameter of 10 μm, and the suspension was fractionated so that the amount of SiO 2 became 200 g. , And vacuum filtration was performed. In the process of filtration under reduced pressure, the silica suspension was liquid when there was sufficient solvent, but gelled and became a wet gel when the solvent was reduced. The suction was stopped when the water content of the suspension was reduced to gel, and the molded body on the filter was taken out. The molded body was transferred into a thermo-hygrostat maintained at 60 ° C. and 90% humidity, and dried for 10 days.

【0033】得られた直径130mm厚さ4mmの乾燥
ゲルを石英ガラス上に置き、石英ガラスを炉芯管とする
管状炉内にセットし、透明ガラス化処理を以下のように
行った。室温より800℃まで酸素ガス雰囲気中におい
て毎時200℃の速度で加熱し、800〜1000℃ま
で10%塩素ガスを含むヘリウムガス雰囲気中において
毎時200 ℃の速度で加熱後1000℃で2時間保持をし
た後、1550℃までヘリウムガス雰囲気中において毎
時100℃の速度で加熱し、1550℃で1時間保持を
した後、炉内で冷却した。
The obtained dried gel having a diameter of 130 mm and a thickness of 4 mm was placed on quartz glass, set in a tubular furnace using quartz glass as a furnace tube, and subjected to a transparent vitrification treatment as follows. Heat from room temperature to 800 ° C. in an oxygen gas atmosphere at a rate of 200 ° C./hour, and from 800 to 1000 ° C. in a helium gas atmosphere containing 10% chlorine gas at a rate of 200 ° C./hour and hold at 1000 ° C. for 2 hours. After that, it was heated at a rate of 100 ° C./hour in a helium gas atmosphere to 1550 ° C., kept at 1550 ° C. for 1 hour, and then cooled in a furnace.

【0034】得られた石英ガラスの表面にはかなりの凹
凸が見られた。その成因は濾過に使用した濾紙に存在す
る凹凸であり、それがそのまま湿潤ゲル成型体に写し取
られ、焼結後の石英ガラス上にも残ったのである。また
乾燥成型体の厚さは濾過器が水平でない場合は不均質に
なり、しいては焼結してできた石英ガラスの厚さも不均
質となった。
The surface of the obtained quartz glass had considerable irregularities. The origin is the unevenness present in the filter paper used for filtration, which was directly copied to the wet gel molding and remained on the sintered quartz glass. When the filter was not horizontal, the thickness of the dried molded article was non-uniform, and the thickness of the sintered quartz glass was also non-uniform.

【0035】[0035]

【発明の効果】以上の説明からも明らかなように本発明
によれば、シリカ粉末を原料としこの粉末を遠心力を利
用した成型法により効率良く成型することができ、その
後成型体を焼結することにより、泡のない大型の石英ガ
ラスを容易に歩留り良くかつ安価に製造できる。
As is apparent from the above description, according to the present invention, silica powder can be used as a raw material and this powder can be efficiently molded by a molding method utilizing centrifugal force. By doing so, large quartz glass without bubbles can be easily produced with good yield and at low cost.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】シリカ粉末を湿式成型し焼結して石英ガラ
スを得る方法において、湿式成型がシリカ粉末を液体の
分散媒に分散させた後、予め容器に入れてある比重2.
2g/cm3以上の比重を持ち、分散媒とは互いに溶解
度をほとんど持たない液体の上にスラリーを流し込み、
容器全体を毎分1000回転以上で回転する遠心分離器
にかけ、シリカ粉末を遠心力で前記比重2.2g/cm
3 以上の比重を持ち、分散媒とは互いに溶解度をほとん
ど持たない液体上に沈降、堆積させ成型することを特徴
とする石英ガラス製造方法。
In a method for obtaining silica glass by wet molding and sintering silica powder, the specific gravity of silica powder dispersed in a liquid dispersion medium and placed in a container beforehand is obtained by wet molding.
A slurry having a specific gravity of 2 g / cm 3 or more and a dispersion medium and a slurry having little solubility with respect to each other,
The whole container is centrifuged at 1000 rpm or more, and the silica powder is centrifuged at a specific gravity of 2.2 g / cm.
It has a specific gravity of 3 or more and has almost the same solubility with the dispersion medium.
A method for producing quartz glass, which comprises setting, depositing, and forming on a liquid that does not have it.
JP20370291A 1991-07-19 1991-07-19 Manufacturing method of quartz glass Expired - Fee Related JP3203694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20370291A JP3203694B2 (en) 1991-07-19 1991-07-19 Manufacturing method of quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20370291A JP3203694B2 (en) 1991-07-19 1991-07-19 Manufacturing method of quartz glass

Publications (2)

Publication Number Publication Date
JPH0524853A JPH0524853A (en) 1993-02-02
JP3203694B2 true JP3203694B2 (en) 2001-08-27

Family

ID=16478438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20370291A Expired - Fee Related JP3203694B2 (en) 1991-07-19 1991-07-19 Manufacturing method of quartz glass

Country Status (1)

Country Link
JP (1) JP3203694B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6294698B1 (en) 1999-04-16 2001-09-25 Kimberly-Clark Worldwide, Inc. Photoinitiators and applications therefor
US6331056B1 (en) 1999-02-25 2001-12-18 Kimberly-Clark Worldwide, Inc. Printing apparatus and applications therefor
US6342305B1 (en) 1993-09-10 2002-01-29 Kimberly-Clark Corporation Colorants and colorant modifiers
US6368396B1 (en) 1999-01-19 2002-04-09 Kimberly-Clark Worldwide, Inc. Colorants, colorant stabilizers, ink compositions, and improved methods of making the same
US6368395B1 (en) 1999-05-24 2002-04-09 Kimberly-Clark Worldwide, Inc. Subphthalocyanine colorants, ink compositions, and method of making the same
US6503559B1 (en) 1998-06-03 2003-01-07 Kimberly-Clark Worldwide, Inc. Neonanoplasts and microemulsion technology for inks and ink jet printing
US6524379B2 (en) 1997-08-15 2003-02-25 Kimberly-Clark Worldwide, Inc. Colorants, colorant stabilizers, ink compositions, and improved methods of making the same
US10220602B2 (en) 2011-03-29 2019-03-05 Apple Inc. Marking of fabric carrying case for a portable electronic device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4504036B2 (en) * 2004-01-30 2010-07-14 東ソー株式会社 Amorphous silica molded body and method for producing the same
DE102006014689A1 (en) 2006-03-28 2007-10-11 Heraeus Noblelight Gmbh Infrared radiation unit

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6342305B1 (en) 1993-09-10 2002-01-29 Kimberly-Clark Corporation Colorants and colorant modifiers
US6524379B2 (en) 1997-08-15 2003-02-25 Kimberly-Clark Worldwide, Inc. Colorants, colorant stabilizers, ink compositions, and improved methods of making the same
US6503559B1 (en) 1998-06-03 2003-01-07 Kimberly-Clark Worldwide, Inc. Neonanoplasts and microemulsion technology for inks and ink jet printing
US6368396B1 (en) 1999-01-19 2002-04-09 Kimberly-Clark Worldwide, Inc. Colorants, colorant stabilizers, ink compositions, and improved methods of making the same
US6331056B1 (en) 1999-02-25 2001-12-18 Kimberly-Clark Worldwide, Inc. Printing apparatus and applications therefor
US6294698B1 (en) 1999-04-16 2001-09-25 Kimberly-Clark Worldwide, Inc. Photoinitiators and applications therefor
US6368395B1 (en) 1999-05-24 2002-04-09 Kimberly-Clark Worldwide, Inc. Subphthalocyanine colorants, ink compositions, and method of making the same
US10220602B2 (en) 2011-03-29 2019-03-05 Apple Inc. Marking of fabric carrying case for a portable electronic device

Also Published As

Publication number Publication date
JPH0524853A (en) 1993-02-02

Similar Documents

Publication Publication Date Title
JP3203694B2 (en) Manufacturing method of quartz glass
US4042361A (en) Method of densifying metal oxides
WO1984002519A1 (en) Process for producing quartz glass
KR20030034128A (en) Expanded perlite products with controlled particle size distribution
JPH04219333A (en) Production of quartz glass
JP3413873B2 (en) Synthetic quartz glass powder
JP4371565B2 (en) Quartz glass precursor and method for producing the same
EP1258456A1 (en) Silica glass formation process
JPH0524852A (en) Production of quartz glass
JPS59131538A (en) Production of quartz glass
JP2002137913A (en) Silica gel and its manufacturing method
JPS61104255A (en) Method for wet packing of fine particulate porous glass filler for high performance chromatography
JPH0624771A (en) High-purity opaque quartz glass and its production
JPH04240112A (en) Production of silica particulates
JPH05294610A (en) Production of formed amorphous silica
JPH01270530A (en) Production of formed glass body
JP4268489B2 (en) Method for producing transparent quartz glass body
JP2820865B2 (en) Method for producing quartz glass foam
JPS60239329A (en) Manufacture of quartz glass
JPH01270531A (en) Production of formed glass body
JPS62207723A (en) Production of glass
JPH0674148B2 (en) Quartz glass manufacturing method
JPS6158818A (en) Manufacture of quartz glass
JP2734083B2 (en) Method for producing transparent quartz glass molded body
JPS61232230A (en) Production of quartz glass

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees