JPH05294610A - Production of formed amorphous silica - Google Patents

Production of formed amorphous silica

Info

Publication number
JPH05294610A
JPH05294610A JP9683992A JP9683992A JPH05294610A JP H05294610 A JPH05294610 A JP H05294610A JP 9683992 A JP9683992 A JP 9683992A JP 9683992 A JP9683992 A JP 9683992A JP H05294610 A JPH05294610 A JP H05294610A
Authority
JP
Japan
Prior art keywords
amorphous silica
slurry
silica particles
molded body
quartz glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9683992A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kono
博之 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP9683992A priority Critical patent/JPH05294610A/en
Publication of JPH05294610A publication Critical patent/JPH05294610A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C12/00Powdered glass; Bead compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crushing And Grinding (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Silicon Compounds (AREA)

Abstract

PURPOSE:To provide a process for producing a formed amorphous silica having high strength and capable of easily giving quartz glass by sintering and melting. CONSTITUTION:A slurry of amorphous silica particles having primary particle diameter of 0. 1-100mum and a pH adjusted to >=10 is subjected to shearing treatment to apply high shearing stress to the amorphous silica particles in the slurry and the treated product is formed in wet state and dried to obtain the objective formed silica.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非晶質シリカ成形体の
新規な製造方法に関する。詳しくは、高い強度を有し、
焼結、溶融によって容易に石英ガラスを形成することが
可能な非晶質シリカ成形体の製造方法である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel method for producing an amorphous silica molded body. Specifically, it has high strength,
This is a method for producing an amorphous silica molded body that allows silica glass to be easily formed by sintering and melting.

【0002】[0002]

【従来の技術】石英ガラスは、高い絶縁性を有し、しか
も、熱膨張係数が小さいため、その粉状体は、半導体封
止材等の寸法精度を要求される樹脂成形体の充填材とし
て、また、一定の構造を有する成形体は、絶縁材料等と
して使用されている。
2. Description of the Related Art Quartz glass has a high insulating property and a small coefficient of thermal expansion. Therefore, its powdery material is used as a filler for resin moldings such as semiconductor encapsulating materials which require high dimensional accuracy. Moreover, a molded product having a certain structure is used as an insulating material or the like.

【0003】上記の石英ガラスの成形体を製造する方法
の一つとして、非晶質シリカ粉末を使用した方法があ
る。かかる方法は、非晶質シリカ粉末を水に分散させて
スラリー化し、該スラリーを噴霧造粒等の方法により成
形した後、焼結、溶融させる方法である。
As one of the methods for producing the above-mentioned quartz glass molded body, there is a method using amorphous silica powder. This method is a method in which amorphous silica powder is dispersed in water to form a slurry, and the slurry is molded by a method such as spray granulation, followed by sintering and melting.

【0004】[0004]

【発明が解決しようとする課題】ところが、上記方法の
噴霧造粒により得られる粉状体は、その成形体の強度が
弱く、これを焼結、溶融する工程で、該成形体の角が欠
けたり、全体が割れたりして微粉を多く含有し、工業的
な石英ガラスの粉状体の製造において、歩留りを低下さ
せるのみでなく、微細な粉状体の除去に大掛かりな手段
を必要とし、該成形体の製造において大きな問題となっ
ていた。また、スラリーを一定の型枠に鋳込んで湿式成
形した後、乾燥さることにより非晶質シリカ成形体を製
造しようとした場合には、得られる成形体の強度が低い
ために、型枠から取り外す際、或いは、移動中に破損す
ることが多く、石英ガラス成形体の歩留りを著しく低下
させていた。また、成形体の製造において、有機結合剤
を単独で使用する方法も考えられるが、かかる方法で
は、該有機結合剤を加熱分解後の成形体の強度が十分で
なく、歩留りの低下の問題は依然として残っていた。
However, the powdery body obtained by the spray granulation according to the above method has a weak strength of the molded body, and the corners of the molded body are chipped in the steps of sintering and melting the molded body. Or, the whole is cracked and contains a large amount of fine powder, and in the production of an industrial quartz glass powder, not only the yield is lowered, but also a large-scale means is required to remove the fine powder, It has been a big problem in the production of the molded body. In addition, when an attempt is made to produce an amorphous silica molded product by casting the slurry into a fixed mold and wet-molding it and then drying it, the strength of the resulting molded product is low. It often breaks during removal or during movement, which significantly reduces the yield of the quartz glass molded body. Further, in the production of a molded body, a method of using an organic binder alone can be considered, but in such a method, the strength of the molded body after thermal decomposition of the organic binder is not sufficient, and the problem of a decrease in yield is It was still there.

【0005】[0005]

【課題を解決するための手段】本発明者らは、非晶質シ
リカ粉末を使用した上記方法において、高い強度を有す
る非晶質シリカ成形体を製造する方法を開発すべく、鋭
意研究を重ねた結果、前記非晶質シリカのスラリーにお
ける、該非晶質シリカ粒子の粒子径と該スラリーのpH
を特定の値に調整すると共に、調整されたスラリー中の
非晶質シリカ粒子に高いせん断力を与えるように該スラ
リを処理することによって、極めて強度の高い非晶質シ
リカ成形体が得られることを見い出し、本発明を完成す
るに至った。
[Means for Solving the Problems] The inventors of the present invention have conducted extensive studies to develop a method for producing an amorphous silica compact having high strength in the above method using amorphous silica powder. As a result, the particle size of the amorphous silica particles and the pH of the slurry in the slurry of the amorphous silica are
Is adjusted to a specific value, and the slurry is treated so as to give a high shearing force to the amorphous silica particles in the adjusted slurry, whereby an amorphous silica molded product having extremely high strength can be obtained. The present invention has been completed and the present invention has been completed.

【0006】本発明は、pHが10以上に調整された、
一次粒子径0.1〜100μmの非晶質シリカ粒子のス
ラリーに、該スラリー中の非晶質シリカ粒子に強いせん
断力を与える処理(以下、「せん断処理」ともいう)を
施した後、湿式成形し、得られる成形体を乾燥すること
を特徴とする非晶質シリカ成形体の製造方法である。
In the present invention, the pH is adjusted to 10 or more,
A slurry of amorphous silica particles having a primary particle diameter of 0.1 to 100 μm is subjected to a treatment for imparting a strong shearing force to the amorphous silica particles in the slurry (hereinafter, also referred to as “shear treatment”), and then wet. A method for producing an amorphous silica molded body, which comprises molding and drying the resulting molded body.

【0007】尚、本発明において、非晶質シリカ粒子の
一次粒子径は、レーザー回折・散乱法により測定した値
をいう。
In the present invention, the primary particle diameter of the amorphous silica particles means a value measured by a laser diffraction / scattering method.

【0008】本発明に使用される非晶質シリカ粒子は、
0.1〜100μm、好ましくは、0.2〜50μmの
範囲の粒子径(直径)を有するものである。上記粒子径
が0.1μmより小さい場合、スラリー中の非晶質シリ
カ粒子が、ゲル化し易くなり、これを湿式成形、乾燥し
て得られる成形体は、乾燥の後の体積収縮が大きく、得
られる成形体に割れやひびが入り、本発明の目的を達成
することができない。また、該粒子径が1μmを越える
場合、均一なスラリーを形成することが困難となり、得
られる成形体の強度を十分大きくできなかったり、該成
形体の強度に大きなばらつきが生じると行った問題を有
する。
The amorphous silica particles used in the present invention are
It has a particle diameter (diameter) in the range of 0.1 to 100 μm, preferably 0.2 to 50 μm. When the particle size is smaller than 0.1 μm, the amorphous silica particles in the slurry are easily gelled, and a molded product obtained by wet molding and drying the same has a large volume contraction after drying, The resulting molded article is cracked or cracked, and the object of the present invention cannot be achieved. Further, when the particle diameter exceeds 1 μm, it becomes difficult to form a uniform slurry, the strength of the obtained molded article cannot be sufficiently increased, or the strength of the molded article varies greatly. Have.

【0009】上記の非晶質シリカ粒子は、0.1〜10
0μmの範囲内の粒子径を有するものであれば、その粒
度分布は、特に制限されないが、一般には、正規分布を
有し、シャープな分布を有するものが好適に使用され
る。
The above-mentioned amorphous silica particles are 0.1-10
The particle size distribution is not particularly limited as long as it has a particle size in the range of 0 μm, but in general, a particle having a normal distribution and a sharp distribution is preferably used.

【0010】本発明において、上記非晶質シリカ粒子の
製造方法は、特に制限されない。代表的な方法を例示す
れば、四塩化珪素を火炎中で酸化して得られる乾式シリ
カを、火炎中で凝集溶融又は焼結させて前記粒子径とす
る方法が挙げられる。かかる非晶質シリカ粒子の製造方
法は、原料の精製による高純度化が容易であり、高純度
の非晶質シリカ成形体を得る上で好適である。
In the present invention, the method for producing the amorphous silica particles is not particularly limited. A typical method is, for example, a method in which dry silica obtained by oxidizing silicon tetrachloride in a flame is coagulated and melted or sintered in a flame to have the above-mentioned particle size. This method for producing amorphous silica particles is suitable for obtaining a highly purified amorphous silica molded product because it is easy to make the material highly purified by refining it.

【0011】また、上記非晶質シリカ粒子の粒子の形状
は特に制限されない。一般には、球状、無定形、柱状等
の形状が挙げられる。そのうち、球状が成形密度を高く
することができ好ましい。
The shape of the amorphous silica particles is not particularly limited. Generally, shapes such as spherical shape, amorphous shape, and columnar shape are mentioned. Among them, the spherical shape is preferable because the molding density can be increased.

【0012】本発明において、上記非晶質シリカ粒子の
スラリーのpHは、10以上、好ましくは、11以上に
調整されることが、前記特定の粒子径を有する非晶質シ
リカ粒子を使用することとの相乗的な効果により、強度
の高い非晶質シリカ成形体を得るために必要である。即
ち、本発明において、非晶質シリカ粒子の粒子径を前記
した好適な範囲としても、スラリーのpHが10未満の
場合は、前記粒子径の調節による強度の向上効果は、殆
ど発揮されず、強度の低い成形体しか得られないのであ
る。
In the present invention, the pH of the slurry of the above-mentioned amorphous silica particles is adjusted to 10 or more, preferably 11 or more, by using the amorphous silica particles having the above-mentioned specific particle diameter. It is necessary to obtain a high-strength amorphous silica molded product due to a synergistic effect with. That is, in the present invention, even if the particle size of the amorphous silica particles is set to the above-described preferable range, when the pH of the slurry is less than 10, the effect of improving the strength by adjusting the particle size is hardly exhibited, Only a molded product with low strength can be obtained.

【0013】上記pHの調整方法は特に制限されるもの
ではないが、得られる非晶質シリカ成形体、或いは、そ
の後の焼結または、溶融により、石英ガラス成形体を製
造する場合、その純度を低下させないために、易熱分解
性アルカリ物質で該スラリーのpHを調整することが好
ましい。かかる易熱分解性アルカリ物質としては、公知
のものが特に制限なく使用される。代表的なものを例示
すれば、アンモニア:テトラメチルアンモニウムハイド
ロオキサイド(TMAH)、テトラエチルアンモニウム
ハイドロオキサイド(TEAH)、コリン等の有機アル
カリ物質などが挙げられる。そのうち、特にアンモニア
及びTMAHが好適に使用される。
The method of adjusting the pH is not particularly limited, but when the obtained amorphous silica molded product or the quartz glass molded product is manufactured by subsequent sintering or melting, the purity of the product is adjusted. In order not to lower the pH, it is preferable to adjust the pH of the slurry with an easily decomposable alkaline substance. As such an easily decomposable alkaline substance, known substances can be used without particular limitation. Typical examples include ammonia: tetramethylammonium hydroxide (TMAH), tetraethylammonium hydroxide (TEAH), organic alkali substances such as choline, and the like. Of these, particularly ammonia and TMAH are preferably used.

【0014】本発明において、非晶質シリカ粒子のスラ
リー濃度は、採用する成形方法によって異なり、一概に
限定することはできないが、一般には、10〜80重量
%、好ましくは、30〜75重量%の濃度が好適であ
る。
In the present invention, the slurry concentration of the amorphous silica particles varies depending on the molding method used and cannot be unconditionally limited, but is generally 10 to 80% by weight, preferably 30 to 75% by weight. Is preferred.

【0015】本発明において、非晶質シリカ粒子のスラ
リーのせん断処理は、pHが10以上に調整された該ス
ラリーに対して行われる。かかるせん断処理の方法は、
非晶質シリカ粒子に強いせん断力が付与される方法であ
れば特に制限されない。代表的な方法を例示すれば、ボ
ールミル、等によりスラリーを処理する方法が好適であ
る。上記方法において、スラリーと接触する部分、例え
ば、上記ボールミルにおいては、ボール及びミルのケー
シング内面が、樹脂でコーティングされていることが好
ましい。また、せん断処理の時間は、処理強度によって
多少異なるため、一概に限定することはできないが、一
般に0.5〜3時間程度が好ましい。
In the present invention, the shearing treatment of the slurry of amorphous silica particles is performed on the slurry whose pH is adjusted to 10 or more. The method of such shearing treatment is
There is no particular limitation as long as it is a method in which a strong shearing force is applied to the amorphous silica particles. As a typical method, a method of treating the slurry with a ball mill or the like is suitable. In the above method, it is preferable that a portion that comes into contact with the slurry, for example, in the ball mill, the balls and the inner surface of the casing of the mill are coated with a resin. Further, the time of the shearing treatment is somewhat different depending on the treatment strength and therefore cannot be unconditionally limited, but generally 0.5 to 3 hours is preferable.

【0016】上記したスラリーのせん断処理により、該
スラリーを湿式成形後、乾燥して得られる成形体の強度
を著しく向上させることができる。
By the shearing treatment of the above-mentioned slurry, the strength of the molded product obtained by wet-molding the slurry and then drying it can be remarkably improved.

【0017】本発明において、せん断処理後の非晶質シ
リカ粒子のスラリーの成形方法は、公知の湿式成形方法
が特に制限なく採用される。例えば、鋳込成形、噴霧造
粒等の湿式成形方法が挙げられる。上記鋳込成形、噴霧
造粒は、公知の方法が特に制限なく採用される。例え
ば、鋳込成形に使用する型枠としては、樹脂型、石膏型
等が一般に使用される。特に、樹脂型を使用する場合に
は、得られる成形体の純度の低下を効果的に防止でき好
ましい。また、鋳込成形は、常圧成形、又は加圧成形が
好適に採用される。
In the present invention, as a method for shaping the slurry of the amorphous silica particles after the shearing treatment, a known wet shaping method is adopted without particular limitation. For example, wet molding methods such as cast molding and spray granulation can be mentioned. For the above-mentioned cast molding and spray granulation, known methods are adopted without particular limitation. For example, a resin mold, a gypsum mold, etc. are generally used as a mold used for casting. In particular, when a resin mold is used, it is preferable because deterioration of the purity of the obtained molded product can be effectively prevented. Further, as the cast molding, normal pressure molding or pressure molding is suitably adopted.

【0018】上記方法による成形体の乾燥は、湿潤成形
体を形成後に行っても良いし、成形と同時に行っても良
い。鋳込成形の場合は、一般に湿式成形後に行われ、噴
霧成形の場合は、湿式成形の直後或いは同時に乾燥が行
われる。乾燥は、pH調節に使用したアルカリ物質が分
解除去される温度で行うことが好ましい。一般に、かか
る温度は、特に制限されないが、一般には、50〜70
0℃の範囲で決定すれば良い。
Drying of the molded body by the above method may be carried out after forming the wet molded body, or may be carried out simultaneously with molding. In the case of cast molding, it is generally carried out after wet molding, and in the case of spray molding, drying is carried out immediately after wet molding or at the same time. Drying is preferably performed at a temperature at which the alkaline substance used for pH adjustment is decomposed and removed. Generally, the temperature is not particularly limited, but is generally 50 to 70.
It may be determined in the range of 0 ° C.

【0019】本発明において、得られる非晶質シリカ成
形体の強度を更に向上させるために、前記非晶質シリカ
粒子のスラリーに、一次粒子径0.1μm未満の無機微
粒子を、該非晶質シリカ粒子100重量部に対して10
重量部以下、好ましくは、0.01〜3重量部の割合で
存在させることが好ましい。上記無機微粒子としては、
シリカ、アルミナ等が好適である。特に、アルミナの添
加は、得られる非晶質シリカ成形体を使用して製造され
た石英ガラスの高温安定性を高めることができる。
In the present invention, in order to further improve the strength of the obtained amorphous silica molded product, the amorphous silica particles are added to the slurry of the amorphous silica particles by adding inorganic fine particles having a primary particle size of less than 0.1 μm. 10 to 100 parts by weight of particles
It is preferable to make it exist in an amount of not more than 1 part by weight, preferably 0.01 to 3 parts by weight. As the inorganic fine particles,
Silica, alumina and the like are suitable. In particular, the addition of alumina can enhance the high temperature stability of the quartz glass produced by using the obtained amorphous silica molded body.

【0020】尚、上記無機微粒子の粒子径は、BET法
により測定された比表面積より計算により平均粒子径と
して求めることができる。
The particle size of the above-mentioned inorganic fine particles can be obtained as an average particle size by calculation from the specific surface area measured by the BET method.

【0021】また、本発明の効果を著しく阻害しない範
囲で、前記アルカリ物質と併用して、公知の有機結合剤
を使用することも特に制限されない。
There is no particular limitation on the use of a known organic binder in combination with the above-mentioned alkaline substance, as long as the effects of the present invention are not significantly impaired.

【0022】本発明の方法によって得られた非晶質シリ
カ成形体は、必要により、焼結、更には、溶融すること
によって、石英ガラス成形体を得ることができる。上記
焼結は、1000〜1600℃で、0.5〜5時間行え
ば良く、また、溶融は、シリカの融点以上の温度で行え
ば良い。
The amorphous silica molded body obtained by the method of the present invention can be sintered and further melted, if necessary, to obtain a quartz glass molded body. The sintering may be performed at 1000 to 1600 ° C. for 0.5 to 5 hours, and the melting may be performed at a temperature equal to or higher than the melting point of silica.

【0023】[0023]

【効果】上記説明より理解されるように、本発明の方法
は、特定の粒子径を有する非晶質シリカ粒子を使用し、
且つ該非晶質シリカ粒子を特定のpHを有するスラリー
に調節した後、せん断処理を施し、該スラリーを湿式成
形、乾燥することにより、高い強度を有する非晶質シリ
カ成形体を得ることができる。
As can be understood from the above description, the method of the present invention uses amorphous silica particles having a specific particle size,
Further, the amorphous silica particles having high strength can be obtained by adjusting the amorphous silica particles to a slurry having a specific pH, performing a shearing treatment, wet-molding the slurry, and drying the slurry.

【0024】従って、該非晶質シリカ成形体を焼結、溶
融によって石英ガラスを形成する場合、破損が極めて少
なく、高い歩留りで石英ガラス成形体を得ることが可能
である。
Therefore, when quartz glass is formed by sintering and melting the amorphous silica compact, it is possible to obtain a quartz glass compact with a very low yield and a high yield.

【0025】上記本発明の方法は、鋳込成形、噴霧造粒
等により、種々の形状、大きさの非晶質シリカ粒子を得
ることができ、これらを焼結及び/又は溶融することに
より、該形状に対応した石英ガラス成形体を高い歩留り
で得ることができ、その産業上の価値は極めて高い。
According to the above method of the present invention, amorphous silica particles having various shapes and sizes can be obtained by cast molding, spray granulation and the like, and by sintering and / or melting them, A quartz glass molded body corresponding to the shape can be obtained with a high yield, and its industrial value is extremely high.

【0026】[0026]

【実施例】以下、本発明を具体的に説明するために、実
施例を示すが、本発明はこれらの実施例に限定されるも
のではない。
EXAMPLES Examples are shown below for specifically explaining the present invention, but the present invention is not limited to these examples.

【0027】尚、実施例、比較例において、非晶質シリ
カ成形体の強度は、以下の方法によって測定した。
In the examples and comparative examples, the strength of the amorphous silica compacts was measured by the following method.

【0028】(1)非晶質シリカ粒子の一次粒子径 SKレーザー 7000S(商品名:(株)セイシン企
業社製)で測定した。 (2)無機微粒子の一次粒子径 BET法により測定された比表面積より計算により求め
た。
(1) Primary Particle Size of Amorphous Silica Particles Measured with SK laser 7000S (trade name: manufactured by Seishin Enterprise Co., Ltd.). (2) Primary Particle Diameter of Inorganic Fine Particles It was calculated from the specific surface area measured by the BET method.

【0029】(3)非晶質シリカ成形体の強度 30mmφ×50mmの円柱状の試料を作成し、測定
機:テンシロン RTA−1T(商品名:(株)オリエ
ンテック社製)により、圧縮強度を測定した。
(3) Strength of Amorphous Silica Molded Body A cylindrical sample having a size of 30 mmφ × 50 mm was prepared, and its compressive strength was measured by a measuring machine: Tensilon RTA-1T (trade name: manufactured by Orientec Co., Ltd.). It was measured.

【0030】実施例1 水を分散媒体として、一次粒子径0.1〜40μm(平
均粒子径8μm)の非晶質シリカ粒子(エクセリカ(商
品名:徳山曹達(株)社製))を70重量%の濃度で含
有するスラリーを調製した。上記スラリーに、表1に示
すpHとなるようにアンモニア水を添加した後、該スラ
リーをナイロン製ボールミル(10mmφの鉄芯入ナイ
ロンボール使用)おいて、回転数20回/分で1時間せ
ん断処理した。次いで、該スラリーを鋳込成形の型枠に
充填して、脱水後、300℃で乾燥して非晶質シリカ成
形体を得た。上記型枠は、樹脂型のHA−8(商品名:
(株)ノリタケカンパニー社製)を使用し、成形は、加
圧成形により行った。
Example 1 70 parts by weight of amorphous silica particles (Excellica (trade name: manufactured by Tokuyama Soda Co., Ltd.)) having a primary particle size of 0.1 to 40 μm (average particle size of 8 μm) using water as a dispersion medium. A slurry containing a concentration of 1% was prepared. Ammonia water was added to the above slurry so as to have the pH shown in Table 1, and the slurry was subjected to a shearing treatment in a nylon ball mill (using nylon balls with iron core of 10 mmφ) at a rotation speed of 20 times / minute for 1 hour. did. Next, the slurry was filled in a casting mold, dehydrated, and dried at 300 ° C. to obtain an amorphous silica molded body. The mold is a resin type HA-8 (trade name:
(Manufactured by Noritake Company, Ltd.) was used, and molding was performed by pressure molding.

【0031】得られた非晶質シリカ成形体について、強
度を測定した結果を表1に併せて示す。
The results of measuring the strength of the obtained amorphous silica molded body are also shown in Table 1.

【0032】また、本発明の方法により得られた非晶質
シリカ成形体を1400℃で2時間加熱して焼結を行
い、更に、溶融して石英ガラス成形体を製造した結果、
透明な石英ガラス成形体を得ることができた。得られた
石英ガラス中の不純物は、それぞれ10ppm以下であっ
た。
Further, the amorphous silica molded body obtained by the method of the present invention was heated at 1400 ° C. for 2 hours to be sintered, and further fused to produce a quartz glass molded body.
A transparent quartz glass molded body could be obtained. The impurities in the obtained quartz glass were 10 ppm or less, respectively.

【0033】[0033]

【表1】 [Table 1]

【0034】実施例2 実施例1において、pH調整に使用したアンモニア水に
代えて、表2に示す易熱分解性アルカリ物質を使用し、
乾燥温度を700℃に変えた以外は、同様にして非晶質
シリカ成形体を製造した。また、比較のため、アルカリ
物質に代えて有機結合剤(ポリビニールアルコール)を
スラリーに対して1.0重量%添加した例を併せて示
す。
Example 2 In Example 1, the ammonia water used for pH adjustment was replaced with an easily heat decomposable alkaline substance shown in Table 2,
Amorphous silica moldings were produced in the same manner except that the drying temperature was changed to 700 ° C. Further, for comparison, an example in which an organic binder (polyvinyl alcohol) is added in an amount of 1.0% by weight to the slurry instead of the alkaline substance is also shown.

【0035】非晶質シリカ粒子のスラリーのpH及び得
られた非晶質シリカ成形体の強度を表2に併せて示す。
Table 2 also shows the pH of the slurry of amorphous silica particles and the strength of the obtained amorphous silica compact.

【0036】また、本発明の方法により得られた非晶質
シリカ成形体を実施例1と同様な方法で、焼結、溶融し
て石英ガラス成形体を製造した結果、透明な石英ガラス
成形体を得ることができた。得られた石英ガラス中の不
純物は、それぞれ10ppm以下であった。
Further, the amorphous silica molded body obtained by the method of the present invention was sintered and melted in the same manner as in Example 1 to produce a quartz glass molded body. As a result, a transparent quartz glass molded body was obtained. I was able to get The impurities in the obtained quartz glass were 10 ppm or less, respectively.

【0037】[0037]

【表2】 [Table 2]

【0038】実施例3 実施例1の表1の各実験No.で調製されたスラリー
を、噴霧成形機:スプレードライヤーDCR−3(商品
名:(株)坂本技研社製)により一定条件のもとで成形
した。
Example 3 Each experiment No. 1 in Table 1 of Example 1 was performed. The slurry prepared in 1. was molded under a constant condition with a spray molding machine: spray dryer DCR-3 (trade name: manufactured by Sakamoto Giken Co., Ltd.).

【0039】得られた非晶質シリカ成形体の平均粒子径
と粒度分布を表3に示す。表3より、本発明の方法によ
って得られた粒状非晶質シリカ成形体は、強度が高いた
め、比較例に対して微粉の生成が少なく、歩留りが高い
ことが理解される。
Table 3 shows the average particle size and particle size distribution of the obtained amorphous silica molded product. From Table 3, it is understood that the granular amorphous silica molded body obtained by the method of the present invention has a high strength, so that it produces less fine powder and has a higher yield than the comparative example.

【0040】[0040]

【表3】 [Table 3]

【0041】実施例4 実施例1の表1のNo.2において、非晶質シリカ粒子
として、表4に示す粒子径のものを使用した以外は、同
様にして非晶質シリカ成形体を製造した。
Example 4 No. 1 in Table 1 of Example 1 Amorphous silica moldings were produced in the same manner as in 2, except that the amorphous silica particles having the particle diameters shown in Table 4 were used.

【0042】得られた非晶質シリカ成形体について、強
度を測定した結果を表4に併せて示す。
The results of measuring the strength of the obtained amorphous silica molded body are also shown in Table 4.

【0043】また、本発明の方法により得られた非晶質
シリカ成形体を1400℃で2時間加熱して焼結を行
い、更に、溶融して石英ガラス成形体を製造した結果、
透明な石英ガラス成形体を得ることができた。得られた
石英ガラス中の不純物は、それぞれ10ppm以下であ
った。
Further, the amorphous silica molded body obtained by the method of the present invention was heated at 1400 ° C. for 2 hours for sintering, and further fused to produce a quartz glass molded body.
A transparent quartz glass molded body could be obtained. The impurities in the obtained quartz glass were 10 ppm or less, respectively.

【0044】[0044]

【表4】 [Table 4]

【0045】実施例5 実施例1の表1のNo.2において、非晶質シリカ粒子
のスラリーに、無機微粒子として、平均粒子径0.01
5μmのシリカ微粒子(レオロシール:商品名、徳山曹
達(株)社製)を該非晶質シリカ粒子100重量部に対
して1重量部の割合で配合した以外は、同様にして非晶
質シリカ成形体を製造した(No.1)。 得られた非
晶質シリカ成形体について、強度を測定した結果、14
kg/cm2であった。
Example 5 No. 1 in Table 1 of Example 1 2, the average particle diameter of the amorphous silica particles was 0.01
Amorphous silica molded article was prepared in the same manner except that 5 μm silica fine particles (Reorosil: trade name, manufactured by Tokuyama Soda Co., Ltd.) were blended in a ratio of 1 part by weight to 100 parts by weight of the amorphous silica particles. Was produced (No. 1). As a result of measuring the strength of the obtained amorphous silica molded body, 14
It was kg / cm 2 .

【0046】また、三塩化アルミニウムを高温気流中で
加水分解して得られた平均粒子径0.015μmのアル
ミナ微粒子を該非晶質シリカ粒子100重量部に対して
1重量部の割合で配合した以外は、同様にして非晶質シ
リカ成形体を製造した(No.2)。
Further, except that alumina fine particles having an average particle diameter of 0.015 μm obtained by hydrolyzing aluminum trichloride in a high temperature air flow are blended at a ratio of 1 part by weight to 100 parts by weight of the amorphous silica particles. Manufactured an amorphous silica molded body in the same manner (No. 2).

【0047】得られた非晶質シリカ成形体について、強
度を測定した結果、12kg/cm2であった。
The strength of the obtained amorphous silica molded product was measured and found to be 12 kg / cm 2 .

【0048】また、本発明の方法により得られた非晶質
シリカ成形体を1400℃で2時間加熱して焼結を行
い、更に、溶融して石英ガラス成形体を製造した結果、
透明な石英ガラス成形体を得ることができた。
Further, the amorphous silica molded body obtained by the method of the present invention was heated at 1400 ° C. for 2 hours for sintering, and further fused to produce a quartz glass molded body.
A transparent quartz glass molded body could be obtained.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】pHが10以上に調整された、一次粒子径
0.1〜100μmの非晶質シリカ粒子のスラリーに、
該スラリー中の非晶質シリカ粒子に強いせん断力を与え
る処理を施した後、湿式成形し、得られる成形体を乾燥
することを特徴とする非晶質シリカ成形体の製造方法。
1. A slurry of amorphous silica particles having a primary particle diameter of 0.1 to 100 μm, the pH of which is adjusted to 10 or more,
A process for producing an amorphous silica molded product, which comprises subjecting the amorphous silica particles in the slurry to a treatment for imparting a strong shearing force, wet-molding the product, and drying the resulting molded product.
【請求項2】非晶質シリカ粒子のスラリーが一次粒子径
0.1μm未満の無機微粒子を、該非晶質シリカ粒子1
00重量部に対して10重量部以下の割合で含有する請
求項第1項記載の非晶質シリカ成形体の製造方法。
2. Amorphous silica particles 1 are prepared by converting inorganic fine particles having a primary particle diameter of less than 0.1 μm into a slurry of amorphous silica particles.
The method for producing an amorphous silica molded product according to claim 1, wherein the content is 10 parts by weight or less based on 00 parts by weight.
JP9683992A 1992-04-16 1992-04-16 Production of formed amorphous silica Pending JPH05294610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9683992A JPH05294610A (en) 1992-04-16 1992-04-16 Production of formed amorphous silica

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9683992A JPH05294610A (en) 1992-04-16 1992-04-16 Production of formed amorphous silica

Publications (1)

Publication Number Publication Date
JPH05294610A true JPH05294610A (en) 1993-11-09

Family

ID=14175695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9683992A Pending JPH05294610A (en) 1992-04-16 1992-04-16 Production of formed amorphous silica

Country Status (1)

Country Link
JP (1) JPH05294610A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001017902A1 (en) * 1999-09-09 2001-03-15 Wacker-Chemie Gmbh HIGHLY FILLED SiO2 DISPERSION, METHODS FOR THE PRODUCTION THEREOF AND ITS USE
DE10158521A1 (en) * 2001-11-29 2003-06-26 Wacker Chemie Gmbh In partial areas or fully glazed SiO2 moldings, process for its production and use
JP2007536190A (en) * 2004-05-04 2007-12-13 キャボット コーポレイション Method for preparing aggregate metal oxide particle dispersion having desired aggregate particle diameter
JP2015036359A (en) * 2013-08-13 2015-02-23 東ソー株式会社 Manufacturing method of silica solidified body and silica solidified body
JP2015036358A (en) * 2013-08-13 2015-02-23 東ソー株式会社 Solidification method of silica powder and high-purity silica solidified body
WO2020179701A1 (en) * 2019-03-01 2020-09-10 塩野義製薬株式会社 Contaminant-depleted nanoparticle composition and method for producing same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001017902A1 (en) * 1999-09-09 2001-03-15 Wacker-Chemie Gmbh HIGHLY FILLED SiO2 DISPERSION, METHODS FOR THE PRODUCTION THEREOF AND ITS USE
US6699808B1 (en) 1999-09-09 2004-03-02 Wacker-Chemie Gmbh High-solids SiO2 dispersions, process for producing them, and their use
DE10158521A1 (en) * 2001-11-29 2003-06-26 Wacker Chemie Gmbh In partial areas or fully glazed SiO2 moldings, process for its production and use
DE10158521B4 (en) * 2001-11-29 2005-06-02 Wacker-Chemie Gmbh In partial areas or completely glazed SiO2 shaped bodies and process for its production
JP2007536190A (en) * 2004-05-04 2007-12-13 キャボット コーポレイション Method for preparing aggregate metal oxide particle dispersion having desired aggregate particle diameter
JP2012148973A (en) * 2004-05-04 2012-08-09 Cabot Corp Method of preparing aggregate metal oxide particle dispersion having desired aggregate particle diameter
JP2015036359A (en) * 2013-08-13 2015-02-23 東ソー株式会社 Manufacturing method of silica solidified body and silica solidified body
JP2015036358A (en) * 2013-08-13 2015-02-23 東ソー株式会社 Solidification method of silica powder and high-purity silica solidified body
WO2020179701A1 (en) * 2019-03-01 2020-09-10 塩野義製薬株式会社 Contaminant-depleted nanoparticle composition and method for producing same

Similar Documents

Publication Publication Date Title
US3301635A (en) Molded amorphous silica bodies and molding powders for manufacture of same
US5534348A (en) Hollow borosilicate microspheres and method of making
US4200445A (en) Method of densifying metal oxides
EP3000790B2 (en) Method for production of components made of synthetic quartz-glass from SiO2 granulate
KR102123925B1 (en) Method for producing a pore-containing opaque quartz glass
JP2004131378A (en) Process for manufacturing opaque quartz glass material
JP2002362932A (en) PROCESS FOR PRODUCTION OF SiO2-CONTAINING COMPOSITE MATERIAL, COMPOSITE MATERIAL OBTAINED BY THE PRODUCTION PROCESS AND USE OF THE COMPOSITE MATERIAL
JP2001072427A (en) Sintered material
JP2017210403A5 (en)
US5643347A (en) Process for manufacture of silica granules
JPH02289416A (en) Production of low silanol silica
JPH05294610A (en) Production of formed amorphous silica
US3458332A (en) Microsphere glass agglomerates and method for making them
DK159677B (en) PROCEDURE FOR SHAPING A PRODUCT OF GLASS OR CERAMICS
JPH04219310A (en) Production of non-sintered cristobalite particle
JPH05262513A (en) Production of amorphous silica form
KR101930998B1 (en) Method for producing a composite body of a material with a high silicic acid content
JPH03275527A (en) Porous silica glass powder
CN106587963A (en) High-strength ceramic with small expansion coefficient and preparation method thereof
US6193926B1 (en) Process for making molded glass and ceramic articles
JPH01275438A (en) Production of formed glass
RU2211810C2 (en) Method of fabricating high-density lithium-aluminosilicate glass-based aqueous slips
KR960010780B1 (en) Process for manufacturing fine silica particles
JP2581612B2 (en) Method for producing doped silica particles
JPH06171977A (en) Production of porous glass