JP3192720U - Plate member and heat exchanger - Google Patents

Plate member and heat exchanger Download PDF

Info

Publication number
JP3192720U
JP3192720U JP2014003208U JP2014003208U JP3192720U JP 3192720 U JP3192720 U JP 3192720U JP 2014003208 U JP2014003208 U JP 2014003208U JP 2014003208 U JP2014003208 U JP 2014003208U JP 3192720 U JP3192720 U JP 3192720U
Authority
JP
Japan
Prior art keywords
plate
heat exchange
flow path
stacking direction
members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2014003208U
Other languages
Japanese (ja)
Inventor
庸人 和氣
庸人 和氣
大西 人司
人司 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waki Factory Inc
Original Assignee
Waki Factory Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waki Factory Inc filed Critical Waki Factory Inc
Priority to JP2014003208U priority Critical patent/JP3192720U/en
Application granted granted Critical
Publication of JP3192720U publication Critical patent/JP3192720U/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

【課題】熱交換率を向上させる板状部材および熱交換器を提供する。【解決手段】熱交換器は、板状部材40Aによる熱交換部材を複数積層してなる積層体を備える。板状部材40Aには、積層体を構成したときに熱交換部材の部材内流路と連通する第1,第2の積層方向流路を形成するための孔43,44および外側環状突出部46,49と、積層体を構成したときに部材内流路と連通しない第3の積層方向流路を形成するための孔45および外側環状突出部52および内側環状突出部55と、が形成されている。そして、第3,第2の積層方向流路は、積層体の一端側で流入管,流出管に接続され、第1,第2の積層方向流路は、積層体の他端側で連絡されている。【選択図】図3PROBLEM TO BE SOLVED: To provide a plate-shaped member and a heat exchanger for improving a heat exchange rate. A heat exchanger includes a laminate formed by laminating a plurality of heat exchange members made of plate-shaped members 40A. The plate-shaped member 40A has holes 43, 44 and an outer annular protrusion 46 for forming first and second stacking direction flow paths that communicate with the inner flow path of the heat exchange member when the laminated body is formed. , 49, and a hole 45, an outer annular protrusion 52, and an inner annular protrusion 55 for forming a third stacking direction flow path that does not communicate with the inner flow path when the laminated body is formed are formed. There is. Then, the third and second stacking direction flow paths are connected to the inflow pipe and the outflow pipe on one end side of the laminated body, and the first and second stacking direction flow paths are connected on the other end side of the laminated body. ing. [Selection diagram] Fig. 3

Description

本考案は、板状部材および熱交換器に関し、詳しくは、熱伝導性の良好な金属材料による厚みが0.3mm以下の薄板を用いてプレス加工により形成された板状部材およびこの板状部材を用いて構成される熱交換器に関する。   The present invention relates to a plate-like member and a heat exchanger, and more specifically, a plate-like member formed by pressing using a thin plate having a thickness of 0.3 mm or less made of a metal material having good thermal conductivity, and the plate-like member. It is related with the heat exchanger comprised using.

従来、第1,第2外殻板の一端部および他端部を膨出して冷却媒体の入口タンクおよび出口タンクを設けると共に第1,第2外殻板間の入口タンクと出口タンクとの間に冷媒通路を配した熱交換器コア(チューブシート組付体)を、入口タンク同士および出口タンク同士を互いに連通し且つ各熱交換器コア間にアウターフィンを介装しつつ複数積層してなる熱交換器が提案されている(例えば、特許文献1参照)。この熱交換器では、複数の熱交換器コアの積層方向の一端側の入口タンクおよび出口タンクに入口パイプおよび出口パイプが接続されており、入口パイプから導入された冷却媒体(冷却水)は、各熱交換器コアの入口タンク,冷媒通路,出口タンクを流れて出口パイプから排出される。そして、この冷却媒体と、隣接する熱交換器コア間を流れる熱交換媒体と、により熱交換が行なわれる。   Conventionally, one end and the other end of the first and second outer shell plates are expanded to provide an inlet tank and an outlet tank for the cooling medium, and between the inlet tank and the outlet tank between the first and second outer shell plates. A plurality of heat exchanger cores (tube sheet assemblies) in which refrigerant passages are provided are stacked while the inlet tanks and the outlet tanks communicate with each other and outer fins are interposed between the heat exchanger cores. A heat exchanger has been proposed (see, for example, Patent Document 1). In this heat exchanger, an inlet pipe and an outlet pipe are connected to an inlet tank and an outlet tank on one end side in the stacking direction of a plurality of heat exchanger cores, and a cooling medium (cooling water) introduced from the inlet pipe is It flows through the inlet tank, refrigerant passage and outlet tank of each heat exchanger core and is discharged from the outlet pipe. And heat exchange is performed by this cooling medium and the heat exchange medium which flows between adjacent heat exchanger cores.

特開2004−93029号公報JP 2004-93029 A

こうした熱交換器では、用途に応じて、第1,第2外殻板などを薄くしたりアウターフィンを省略するなどして小型化が図られる。熱交換器を小型化する場合、冷媒通路や隣接する熱交換器コア間(熱交換媒体の流路)が狭いことから、熱交換性能を十分に発揮させて熱交換率を向上させるために、各熱交換器コアの冷媒通路に十分な冷却媒体が流れるようにすることがより要請される。上述の熱交換器では、各熱交換器コアの冷媒通路のうち入口パイプや出口パイプから遠い側の冷媒通路に流れる冷却媒体が近い側の冷媒通路に流れる冷却媒体に比して少なくなりやすく、熱交換率の低下の一因となっている。   Such a heat exchanger can be reduced in size by thinning the first and second outer shell plates or omitting the outer fins depending on the application. When the heat exchanger is downsized, the refrigerant passage and the adjacent heat exchanger core (the flow path of the heat exchange medium) are narrow, so that the heat exchange performance can be fully demonstrated and the heat exchange rate can be improved. It is more required that a sufficient cooling medium flows in the refrigerant passage of each heat exchanger core. In the heat exchanger described above, the cooling medium flowing in the refrigerant passage farther from the inlet pipe and the outlet pipe among the refrigerant passages of each heat exchanger core tends to be smaller than the cooling medium flowing in the refrigerant passage on the near side, This contributes to a decrease in the heat exchange rate.

本考案の板状部材および熱交換器は、熱交換率を向上させることを主目的とする。   The plate-like member and heat exchanger of the present invention are mainly intended to improve the heat exchange rate.

本考案の板状部材および熱交換器は、上述の主目的を達成するために以下の手段を採った。   The plate-like member and heat exchanger of the present invention employ the following means in order to achieve the above-mentioned main object.

本考案の板状部材は、
熱伝導性の良好な金属材料による厚みが0.3mm以下の薄板を用いてプレス加工により形成された第1,第2の孔と該第1,第2の孔を連絡するための連絡溝とを有する板状部材を、前記連絡溝が向かい合うと共に前記第1,第2の孔が整合するように重ねて前記連絡溝により熱交換媒体の部材内流路が形成される熱交換部材とし、該熱交換部材を複数積層してなる積層体を備える熱交換器における板状部材であって、
前記第1,第2の孔の外周には、前記積層体を構成したときに前記第1,第2の孔が前記熱交換部材の積層方向に前記部材内流路と連通する前記熱交換媒体の第1,第2の積層方向流路を形成すると共に隣接する前記熱交換部材間に所定の隙間を形成するための第1,第2の環状突出部が形成されており、
前記積層体を構成したときに前記熱交換部材の積層方向に前記部材内流路と連通しない前記熱交換媒体の第3の積層方向流路を形成するための第3の孔が形成されており、
前記第3の孔の外周には、前記積層体を構成したときに隣接する前記熱交換部材間に前記所定の隙間を形成するための第3の環状突出部が形成されている、
ことを特徴とする。
The plate-like member of the present invention is
A first and second hole formed by press working using a thin plate having a thickness of 0.3 mm or less made of a metal material having good thermal conductivity, and a communication groove for connecting the first and second holes; A plate-like member having a heat exchange member in which the communication grooves face each other and the first and second holes are aligned to form a flow passage in the member of the heat exchange medium by the communication grooves, A plate-like member in a heat exchanger comprising a laminate formed by laminating a plurality of heat exchange members,
The heat exchange medium in which the first and second holes communicate with the flow path in the member in the stacking direction of the heat exchange member when the laminated body is formed on the outer periphery of the first and second holes. Forming first and second laminating direction flow paths and first and second annular protrusions for forming a predetermined gap between the adjacent heat exchange members,
A third hole for forming a third stacking direction flow path of the heat exchange medium that does not communicate with the flow path in the member in the stacking direction of the heat exchange member when the stacked body is configured is formed. ,
On the outer periphery of the third hole, a third annular protrusion is formed to form the predetermined gap between the heat exchange members adjacent to each other when the laminate is configured.
It is characterized by that.

この本考案の板状部材を用いて構成される熱交換器では、0.3mm以下の薄板を用いて形成される各板状部材の連絡溝により、各熱交換部材に、熱交換媒体の部材内流路が形成される。また、各板状部材の第1,第2の孔と第1,第2の環状突出部とにより、積層体に、各熱交換部材の部材内流路と連通する熱交換媒体の第1,第2の積層方向流路と、隣接する熱交換部材間の所定の隙間と、が形成される。さらに、各板状部材の第3の孔と第3の環状突出部とにより、積層体に、各熱交換部材の部材内流路と連通しない熱交換媒体の第3の積層方向流路と、隣接する熱交換部材間の所定の隙間と、が形成される。   In the heat exchanger configured using the plate-like member of the present invention, the heat exchange medium member is connected to each heat exchange member by the communication groove of each plate-like member formed using a thin plate of 0.3 mm or less. An inner flow path is formed. In addition, the first and second holes and the first and second annular protrusions of each plate-like member provide the laminated body with the first and second heat exchange media that communicate with the in-member flow path of each heat exchange member. A second stacking direction flow path and a predetermined gap between adjacent heat exchange members are formed. In addition, the third hole in each plate-like member and the third annular protrusion have a third stacking direction flow path of a heat exchange medium that does not communicate with the flow path in the member of each heat exchange member in the stacked body, A predetermined gap between adjacent heat exchange members is formed.

こうした本考案の板状部材を用いて構成される熱交換器では、第3の積層方向流路を積層体の一端側で流入管に接続し、第2の積層方向流路を積層体の一端側で流出管に接続し、第1の積層方向流路と第3の積層方向流路とを積層体の他端側で連絡部材によって連絡する場合には、流入管から第3の積層方向流路に流入した熱交換媒体は、第3の積層方向流路,連絡管,第1の積層方向流路,各熱交換部材の部材内流路,第2の積層方向流路を経由して流出管に流出する。また、第3の積層方向流路を積層体の一端側で流出管に接続し、第2の積層方向流路を積層体の一端側で流入管に接続し、第1の積層方向流路と第3の積層方向流路とを積層体の他端側で連絡部材によって連絡する場合には、流入管から第2の積層方向流路に流入した熱交換媒体は、第2の積層方向流路,各熱交換部材の部材内流路,第1の積層方向流路,連絡管,第3の積層方向流路を経由して流出管に流出する。これらの場合、第1,第2の積層方向流路のうち部材内流路の上流側の積層方向流路(以下、上流側積層方向流路という)の流入側と部材内流路の下流側の積層方向流路(以下、下流側積層方向流路という)の流出側とは、積層体の一端側と他端側となる。そして、部材内流路の熱交換媒体と隣接する熱交換部材間の隙間を流れる被熱交換媒体との熱交換により、熱交換媒体を加熱または冷却したり被熱交換媒体を冷却または加熱したりする。   In the heat exchanger configured using the plate member of the present invention, the third stacking direction flow path is connected to the inflow pipe on one end side of the stacked body, and the second stacking direction flow path is connected to one end of the stacked body. When connecting the first stacking direction flow path and the third stacking direction flow path by the connecting member on the other end side of the stacked body, the third stacking direction flow from the inflow pipe is connected to the outflow pipe on the side. The heat exchange medium that has flowed into the channel flows out through the third stacking direction flow path, the connecting pipe, the first stacking direction flow path, the in-member flow path of each heat exchange member, and the second stacking direction flow path. Spill into the tube. Further, the third stacking direction flow path is connected to the outflow pipe on one end side of the stacked body, the second stacking direction flow path is connected to the inflow pipe on one end side of the stacked body, and the first stacking direction flow path and When the third stacking direction flow path is communicated with the connecting member on the other end side of the stacked body, the heat exchange medium that has flowed into the second stacking direction flow path from the inflow pipe is transferred to the second stacking direction flow path. The heat exchange member flows out into the outflow pipe via the in-member flow path, the first stacking direction flow path, the connecting pipe, and the third stacking direction flow path. In these cases, of the first and second stacking direction channels, the inflow side of the stacking direction channel upstream of the in-member channel (hereinafter referred to as the upstream stacking direction channel) and the downstream side of the in-member channel The outflow side of the stacking direction flow path (hereinafter referred to as the downstream stacking direction flow path) is one end side and the other end side of the stacked body. Then, the heat exchange medium is heated or cooled, or the heat exchange medium is cooled or heated by heat exchange between the heat exchange medium in the member flow path and the heat exchange medium flowing in the gap between the adjacent heat exchange members. To do.

本考案の板状部材を用いて構成される熱交換器では、上述の構成とすることにより、上流側積層方向流路の流入側と下流側積層方向流路の流出側とが積層体の同一端側となるものに比して、0.3mm以下の薄板にプレス加工を施して形成した各対の板状部材を重ね合わせて形成される各熱交換部材の比較的狭い部材内流路に、熱交換媒体が十分に流れる(各部材内流路の流量のバラツキが抑制される)ようにすることができる。この結果、熱交換媒体と被熱交換媒体との間の熱交換性能を十分に発揮させることができ、熱交換率の向上を図ることができる。また、上流側積層方向流路の流入側と下流側積層方向流路の流出側とを積層体の一端側と他端側とするために、それぞれに流入管または流出管を接続すると、流入管や流出管の積層体周辺での配管距離が長くなってしまうが、本考案の板状部材を用いて構成される熱交換器では、第3の積層方向流路と連絡部材とによってこれを行なうことにより、流入管や流出管の積層体周辺での配管距離を短くすることができる。   In the heat exchanger configured using the plate-shaped member of the present invention, by adopting the above-described configuration, the inflow side of the upstream laminating direction flow path and the outflow side of the downstream laminating direction flow path are the same in the laminated body. Compared to the end side, a relatively narrow internal flow path of each heat exchange member formed by stacking each pair of plate members formed by pressing a thin plate of 0.3 mm or less In addition, the heat exchange medium can sufficiently flow (a variation in the flow rate of the flow path in each member is suppressed). As a result, the heat exchange performance between the heat exchange medium and the heat exchange medium can be sufficiently exhibited, and the heat exchange rate can be improved. Further, in order to make the inflow side of the upstream laminating direction flow path and the outflow side of the downstream laminating direction flow path one end side and the other end side of the laminate, an inflow pipe or an outflow pipe is connected to each of the inflow pipe In the heat exchanger configured using the plate-like member of the present invention, this is performed by the third stacking direction flow path and the connecting member. Thereby, the piping distance around the laminated body of the inflow pipe and the outflow pipe can be shortened.

本考案の板状部材において、前記第3の孔は、前記連絡溝内に形成されており、前記第3の環状突出部は、前記連絡溝内における前記第3の孔の外周に形成されており、前記連絡溝内における前記第3の環状突出部の外周には、該第3の環状突出部とは反対側に突出する第4の環状突出部が形成されており、前記第4の環状突出部は、前記熱交換部材を形成したときに対となる前記板状部材と当接して接合される、ものとすることもできる。こうすれば、各板状部材の第4の環状突出部が、その径方向外側(各熱交換部材の部材内流路)と径方向内側(第3の積層方向流路)との隔壁となることにより、積層体に、各熱交換部材の部材内流路と連通しない熱交換媒体の第3の積層方向流路が形成される。また、本考案の板状部材を用いて構成される熱交換器では、0.3mm以下の薄板にプレス加工を施して形成した板状部材を用いるために、部材内流路内の熱交換媒体の圧力などによって板状部材(熱交換部材)が変形しやすいが、板状部材の連絡溝内に第4の環状突出部が形成されることにより、板状部材(熱交換部材)の変形を抑制することができる。   In the plate-like member of the present invention, the third hole is formed in the communication groove, and the third annular protrusion is formed on the outer periphery of the third hole in the communication groove. In addition, a fourth annular projecting portion projecting to the opposite side of the third annular projecting portion is formed on the outer periphery of the third annular projecting portion in the communication groove, and the fourth annular projecting portion is formed. The projecting portion may be joined in contact with the plate-like member that forms a pair when the heat exchange member is formed. If it carries out like this, the 4th cyclic | annular protrusion part of each plate-shaped member will become a partition of the radial direction outer side (channel in a member of each heat exchange member) and radial direction inner side (3rd lamination direction flow path). Thus, a third stacking direction flow path of the heat exchange medium that does not communicate with the in-member flow path of each heat exchange member is formed in the stacked body. Moreover, in the heat exchanger comprised using the plate-shaped member of this invention, in order to use the plate-shaped member formed by performing the press work to the thin plate of 0.3 mm or less, the heat exchange medium in the flow path in a member The plate-like member (heat exchange member) is likely to be deformed by the pressure of the plate, etc., but the plate-like member (heat exchange member) is deformed by forming the fourth annular protrusion in the communication groove of the plate-like member. Can be suppressed.

連絡溝内に第3の孔および第3の環状突出部および第4の環状突出部が形成されている態様の本考案の板状部材において、前記連絡溝および前記第4の環状突出部は、前記連絡溝における前記第1,第2の孔近傍の幅をLa、前記連絡溝における前記第4の環状突出部の中心を通る部分の幅をLb、前記第4の環状突出部の幅をcとしたときに、「Lb−Lc≧La」を満たすように形成されている、ものとすることもできる。こうすれば、熱交換媒体が第4の環状突出部の近傍で流れにくくなるのを抑制することができる。この結果、部材内流路を流れる熱交換媒体の流量が第4の環状突出部の影響によって低下するのを抑制することができる。   In the plate-like member of the present invention in which the third hole, the third annular protrusion, and the fourth annular protrusion are formed in the communication groove, the communication groove and the fourth annular protrusion are: The width of the communication groove near the first and second holes is La, the width of the communication groove passing through the center of the fourth annular protrusion is Lb, and the width of the fourth annular protrusion is c. In this case, it may be formed so as to satisfy “Lb−Lc ≧ La”. In this way, it is possible to suppress the heat exchange medium from becoming difficult to flow in the vicinity of the fourth annular protrusion. As a result, it is possible to suppress a decrease in the flow rate of the heat exchange medium flowing through the in-member flow path due to the influence of the fourth annular protrusion.

本考案の板状部材において、前記板状部材は、矩形状に形成されており、前記第1,第2の孔は、前記板状部材の四隅のうち対角の2つの隅近傍に形成されており、前記連絡溝は、つづら折り状に形成されており、前記第3の孔は、前記板状部材の中央に形成されている、ものとすることもできる。   In the plate member of the present invention, the plate member is formed in a rectangular shape, and the first and second holes are formed in the vicinity of two diagonal corners of the four corners of the plate member. The communication groove may be formed in a zigzag shape, and the third hole may be formed in the center of the plate-like member.

また、本考案の板状部材において、前記第1,第2,第3の環状突出部は、前記板状部材の長手方向および短手方向から見たときに、互いに重ならないように形成されている、ものとすることもできる。この場合、前記第1,第2,第3の環状突出部は、同一径に形成されている、ものとすることもできる。これらによれば、積層体を構成したときに、隣接する熱交換部材間の隙間(被熱交換媒体の流路)の、被熱交換媒体の流れに対する開口面積が長手方向や短手方向の各位置で大きく変化するのを抑制することができる。この結果、被熱交換媒体の流路が部分的に極端に狭くなることによる被熱交換媒体の流量の低下を抑制することができる。   In the plate member of the present invention, the first, second and third annular protrusions are formed so as not to overlap each other when viewed from the longitudinal direction and the short direction of the plate member. It can also be. In this case, the said 1st, 2nd, 3rd cyclic | annular protrusion part shall be formed in the same diameter. According to these, when the laminated body is configured, the opening areas of the gaps between the adjacent heat exchange members (flow paths of the heat exchange medium) with respect to the flow of the heat exchange medium are each in the longitudinal direction and the short direction. It is possible to suppress a large change in position. As a result, it is possible to suppress a decrease in the flow rate of the heat exchange medium due to a partly extremely narrow flow path of the heat exchange medium.

さらに、本考案の板状部材において、前記連絡溝内には、前記積層体を構成したときに隣接する前記熱交換部材間に前記所定の隙間を形成するための複数の外側ボス部と、前記熱交換部材を形成したときに対応する前記板状部材と当接して接合される複数の内側ボス部と、が形成されている、ものとすることもできる。こうすれば、熱交換部材の部材内流路を流れる熱交換媒体などによる板状部材の変形をより抑制することができる。この場合、前記第1,第2の環状突出部,前記連絡溝,前記複数の外側ボス部,前記複数の内側ボス部は、それぞれ前記第3の孔を中心として対称となるように形成されている、ものとすることもできる。こうすれば、板状部材の変形をより効果的に抑制することができる。   Furthermore, in the plate-like member of the present invention, in the communication groove, a plurality of outer boss portions for forming the predetermined gap between the heat exchange members adjacent to each other when the laminated body is configured, A plurality of inner boss portions that are brought into contact with and joined to the corresponding plate-like member when the heat exchange member is formed may be formed. If it carries out like this, a deformation | transformation of the plate-shaped member by the heat exchange medium etc. which flow through the member internal flow path of a heat exchange member can be suppressed more. In this case, the first and second annular projecting portions, the communication groove, the plurality of outer boss portions, and the plurality of inner boss portions are formed so as to be symmetric with respect to the third hole, respectively. It can also be. If it carries out like this, a deformation | transformation of a plate-shaped member can be suppressed more effectively.

本考案の熱交換器は、上述のいずれかの態様の本考案の板状部材を用いて構成される熱交換器であって、前記第3の積層方向流路は、前記積層体の一端側で流入管と流出管とのうち一方に接続され、前記第2の積層方向流路は、前記積層体の一端側で前記流入管と前記流出管とのうち他方に接続され、前記第1の積層方向流路と前記第3の積層方向流路とは、前記積層体の他端側で連絡部材によって連絡されている、ことを要旨とする。   The heat exchanger of the present invention is a heat exchanger configured using the plate-shaped member of the present invention in any one of the above aspects, and the third stacking direction flow path is one end side of the stacked body. Connected to one of the inflow pipe and the outflow pipe, and the second stacking direction flow path is connected to the other of the inflow pipe and the outflow pipe on one end side of the stacked body, The gist of the present invention is that the stacking direction flow path and the third stacking direction flow path are communicated with each other on the other end side of the stacked body.

この本考案の熱交換器では、上述のいずれかの態様の本考案の板状部材を用いて構成され、更に、第3の積層方向流路が積層体の一端側で流入管と流出管とのうち一方に接続され、第2の積層方向流路が積層体の一端側で前記流入管と流出管とのうち他方に接続され、第1の積層方向流路と第3の積層方向流路とが積層体の他端側で連絡部材によって連絡されている。これにより、本考案の板状部材と同様に、熱交換性能を十分に発揮させることができる効果などを奏することができる。   This heat exchanger of the present invention is configured using the plate-shaped member of the present invention of any one of the above-described aspects, and further, the third stacking direction flow path is an inflow pipe and an outflow pipe on one end side of the stack. The first stacking direction channel and the second stacking direction channel are connected to the other of the inflow pipe and the outflow pipe on one end side of the stack. Are communicated by the connecting member on the other end side of the laminate. Thereby, the effect etc. which can fully exhibit heat exchange performance can be show | played like the plate-shaped member of this invention.

本考案の一実施例としての板状部材を用いて構成される熱交換器20の構成の概略を示す構成図である。It is a block diagram which shows the outline of a structure of the heat exchanger 20 comprised using the plate-shaped member as one Example of this invention. 熱交換器20を図1の上側から見たときの構成の概略を示す構成図である。It is a block diagram which shows the outline of a structure when the heat exchanger 20 is seen from the upper side of FIG. 板状部材40Aの構成の概略を示す構成図である。It is a block diagram which shows the outline of a structure of plate-shaped member 40A. 板状部材40Aの図3におけるA−A断面を示す断面図である。It is sectional drawing which shows the AA cross section in FIG. 3 of the plate-shaped member 40A. 板状部材40Aの図3におけるB−B断面を示す断面図である。It is sectional drawing which shows the BB cross section in FIG. 3 of the plate-shaped member 40A. 板状部材40Aの図3におけるC−C断面を示す断面図である。It is sectional drawing which shows CC cross section in FIG. 3 of the plate-shaped member 40A. 実施例の積層体22Aにおける熱交換媒体の流れの様子を模式的に示す説明 図である。It is explanatory drawing which shows typically the mode of the flow of the heat exchange medium in 22 A of laminated bodies of an Example. 比較例の積層体22Cにおける熱交換媒体の流れの様子を模式的に示す説明 図である。It is explanatory drawing which shows typically the mode of the flow of the heat exchange medium in the laminated body 22C of a comparative example. 変形例の板状部材140Aの構成の概略を示す構成図である。It is a block diagram which shows the outline of a structure of the plate-shaped member 140A of a modification. 変形例の板状部材240Aの構成の概略を示す構成図である。It is a block diagram which shows the outline of a structure of the plate-shaped member 240A of a modification.

次に、本考案を実施するための形態を実施例を用いて説明する。   Next, the form for implementing this invention is demonstrated using an Example.

図1は、本考案の一実施例としての板状部材を用いて構成される熱交換器20の構成の概略を示す構成図であり、図2は、熱交換器20を図1の上側から見たときの構成の概略を示す構成図である。   FIG. 1 is a configuration diagram showing an outline of the configuration of a heat exchanger 20 configured using a plate-like member as one embodiment of the present invention, and FIG. 2 shows the heat exchanger 20 from the upper side of FIG. It is a block diagram which shows the outline of a structure when it sees.

実施例の熱交換器20は、空調装置や冷凍装置などの冷凍サイクルや発熱を伴って作動する機器の冷却装置などに用いられ、図1や図2に示すように、各対の矩形状の板状部材40A,40Bにより内側に流路(後述の部材内流路32)が形成される熱交換部材30を複数積層して構成される積層体22A,22Bと、積層体22A,22Bの間に配置されると共に流入管79および流出管80が取り付けられる流入流出用部材70と、積層体22A,22Bの流入流出用部材70側とは反対側に配置される連絡部材75A,75Bと、を備える。この熱交換器20は、積層体22A,22Bの各熱交換部材30の内側の流路を流れるハイドロフルオロカーボンや水などの熱交換媒体と隣接する熱交換部材30間を流れる空気などの被熱交換媒体との熱交換により、熱交換媒体を加熱または冷却する又は被熱交換媒体を冷却または加熱する。なお、実施例では、板状部材40A,40Bは、長手方向の長さが56mm,短手方向の長さが35.8mm,厚みが1.25mmとした。また、積層体22A,22Bは、それぞれ熱交換部材30を65個積層して構成されるものとした。   The heat exchanger 20 according to the embodiment is used in a refrigeration cycle such as an air conditioner or a refrigeration apparatus, a cooling device for equipment that operates with heat generation, and the like, as shown in FIG. 1 and FIG. Between the laminates 22A and 22B, and the laminates 22A and 22B, each of which is formed by laminating a plurality of heat exchange members 30 in which flow paths (in-member flow paths 32 described later) are formed inside by the plate-like members 40A and 40B. And an inflow / outflow member 70 to which the inflow pipe 79 and the outflow pipe 80 are attached, and connecting members 75A, 75B disposed on the opposite side to the inflow / outflow member 70 side of the stacked bodies 22A, 22B. Prepare. The heat exchanger 20 is configured to exchange heat such as air flowing between the heat exchange members 30 adjacent to the heat exchange medium such as hydrofluorocarbon and water flowing through the flow paths inside the heat exchange members 30 of the stacked bodies 22A and 22B. By heat exchange with the medium, the heat exchange medium is heated or cooled, or the heat exchange medium is cooled or heated. In the embodiment, the plate-like members 40A and 40B have a length in the longitudinal direction of 56 mm, a length in the short direction of 35.8 mm, and a thickness of 1.25 mm. In addition, each of the stacked bodies 22A and 22B is configured by stacking 65 heat exchange members 30.

図3は、板状部材40Aの構成の概略を示す構成図であり、図4は、板状部材40Aの図3におけるA−A断面を示す断面図であり、図5は、板状部材40Aの図3におけるB−B断面を示す断面図であり、図6は、板状部材40Aの図3におけるC−C断面を示す断面図である。図4〜図6では、理解を容易にするために、板状部材40Aに加えて、熱交換部材30を構成するときに対となる板状部材40Bや、隣接する熱交換部材30(板状部材40A,40B)も図示した。なお、板状部材40Bは、板状部材40Aを図3中上下反転させた形状に形成されている。したがって、板状部材40Bの各要素については、板状部材40Aと同一の符号を用いて説明する。   FIG. 3 is a block diagram showing an outline of the configuration of the plate-like member 40A, FIG. 4 is a cross-sectional view showing a cross-section taken along line AA in FIG. 3 of the plate-like member 40A, and FIG. FIG. 6 is a cross-sectional view showing a cross section taken along the line BB in FIG. 3, and FIG. 6 is a cross-sectional view showing a cross section taken along the line CC in FIG. 4 to 6, in order to facilitate understanding, in addition to the plate-like member 40 </ b> A, the plate-like member 40 </ b> B that forms a pair when configuring the heat exchange member 30, or the adjacent heat exchange member 30 (plate-like). The members 40A, 40B) are also illustrated. In addition, the plate-like member 40B is formed in a shape obtained by turning the plate-like member 40A upside down in FIG. Therefore, each element of the plate-like member 40B will be described using the same reference numerals as those of the plate-like member 40A.

板状部材40A,40Bは、アルミニウム材料やステンレス材料などの熱伝導性が良好な金属材料による厚みが0.3mm以下の薄板にプレス加工や穴開け加工などを施すことにより、図3に示すように、矩形状に形成されており、且つ、孔43,44や孔43,44を連絡するための連絡溝42などが形成されている。熱交換部材30は、一対の板状部材40A,40Bを、連絡溝42が向かい合って整合すると共に孔43,44が整合する(後述の孔45も整合する)ように重ねて当接部を接合する、ことによって構成される。積層体22A,22Bは、この熱交換部材30を複数積層して当接部を接合することによって構成される。なお、実施例では、薄板として、アルミニウムの板材の両面にアルミシリコン合金などのロウ材を配置して一体に圧延することによって板材とロウ材とを接合した厚さが0.2mmのいわゆるクラッド板を用いるものとした。また、実施例では、積層体22A,22Bは、各対の板状部材40A,40Bを積層配置してロウ材の融点より高く板材の融点より低い温度(例えば610℃や620℃など)で加熱することによって当接部を接合(ロウ付け)して構成されるものとした。即ち、実施例では、熱交換部材30の構成および積層体22A,22Bの構成が同時に行なわれるものとした。   As shown in FIG. 3, the plate-like members 40A and 40B are formed by pressing or punching a thin plate having a thickness of 0.3 mm or less with a metal material having good thermal conductivity such as an aluminum material or a stainless material. In addition, it is formed in a rectangular shape, and the holes 43 and 44 and the communication groove 42 for connecting the holes 43 and 44 are formed. The heat exchanging member 30 joins a pair of plate-like members 40A and 40B, with the connecting grooves 42 facing each other and aligned so that the holes 43 and 44 are aligned (also holes 45 described later are aligned). It is configured by. The stacked bodies 22A and 22B are configured by stacking a plurality of the heat exchange members 30 and joining the contact portions. In the embodiment, as a thin plate, a so-called clad plate having a thickness of 0.2 mm, in which a brazing material such as an aluminum silicon alloy is disposed on both sides of an aluminum plate material and integrally rolled by rolling the brazing material together. Was used. In the embodiment, the laminated bodies 22A and 22B are laminated at the respective pair of plate-like members 40A and 40B and heated at a temperature higher than the melting point of the brazing material and lower than the melting point of the plate (for example, 610 ° C. or 620 ° C.). By doing so, the contact portion is configured to be joined (brazed). That is, in the embodiment, the configuration of the heat exchange member 30 and the configuration of the stacked bodies 22A and 22B are performed simultaneously.

図3〜図6に示すように、矩形状の板状部材40A,40Bは、その中心(後述の孔45の中心)に対して対称となるように形成されている。また、上述の孔43,44は、板状部材40A,40Bの四隅のうち対角の2つの隅近傍に形成されており、連絡溝42は、つづら折り状(蛇腹状またはS字形)に形成されている。板状部材40A,40Bの連絡溝42は、熱交換部材30を構成するときに、互いに整合して熱交換部材30の内側に部材内流路32を形成する。なお、実施例では、連絡溝42の深さは0.3mmとした。   As shown in FIGS. 3 to 6, the rectangular plate-like members 40 </ b> A and 40 </ b> B are formed so as to be symmetric with respect to the center (the center of a hole 45 described later). The above-mentioned holes 43 and 44 are formed in the vicinity of two diagonal corners of the four corners of the plate-like members 40A and 40B, and the communication groove 42 is formed in a zigzag (bellows or S-shape). ing. The communication grooves 42 of the plate-like members 40 </ b> A and 40 </ b> B are aligned with each other to form the in-member flow path 32 inside the heat exchange member 30 when configuring the heat exchange member 30. In the embodiment, the depth of the communication groove 42 is 0.3 mm.

また、板状部材40A,40Bの孔43,44の外周には、隣接する熱交換部材30側に環状で突出する外側環状突出部46,49が形成されている。この外側環状突出部46,49は、互いに面一となると共に同一形状(同一径)に形成されており、連絡溝42や平板部41から隣接する熱交換部材30側に径を縮小しながら延びる積層方向延出部47,50と、積層方向延出部47,50の先端部から径方向内側に延在するフランジ部48,51と、を有する。板状部材40A,40Bの外側環状突出部46、49は、積層体22A,22Bを構成するときに、隣接する熱交換部材30の外側環状突出部46、49と当接して接合される。こうして孔43,44と外側環状突出部46,49とにより、熱交換媒体の積層方向流路23(図1,図2,図4参照)および積層方向流路24(図1,図2,図5参照)が形成される。この積層方向流路23,24は、熱交換部材30の積層方向に連通すると共に各熱交換部材30の部材内流路32と連通する。   Further, outer annular projecting portions 46 and 49 projecting annularly toward the adjacent heat exchange member 30 are formed on the outer circumferences of the holes 43 and 44 of the plate-like members 40A and 40B. The outer annular protrusions 46 and 49 are flush with each other and are formed in the same shape (same diameter), and extend from the connecting groove 42 and the flat plate portion 41 to the adjacent heat exchange member 30 side while reducing the diameter. It has the lamination direction extension parts 47 and 50, and the flange parts 48 and 51 extended to radial inside from the front-end | tip part of the lamination direction extension parts 47 and 50. As shown in FIG. The outer annular protrusions 46 and 49 of the plate-like members 40A and 40B are in contact with and joined to the outer annular protrusions 46 and 49 of the adjacent heat exchange members 30 when configuring the stacked bodies 22A and 22B. Thus, the holes 43 and 44 and the outer annular protrusions 46 and 49 allow the heat exchange medium flow path 23 (see FIGS. 1, 2 and 4) and the heat transfer medium flow path 24 (FIGS. 1, 2 and 2). 5) is formed. The lamination direction flow paths 23 and 24 communicate with the in-member flow path 32 of each heat exchange member 30 while communicating with the heat exchange member 30 in the lamination direction.

さらに、板状部材40A,40Bの中央且つ連絡溝42内には、孔43,44と同一径の孔45が形成されている。孔45の外周には、隣接する熱交換部材30側に環状で突出する外側環状突出部52と、その外側環状突出部52の外周に連続して対となる板状部材40B,40A側に環状で突出する内側環状突出部55と、が形成されている。内側環状突出部55は、平板部41と面一となるように形成されている。また、外側環状突出部52は、上述の外側環状突出部46,49と面一となると共に同一形状(同一径)で更に長手方向や短手方向から見たときに外側環状突出部46,49とは重ならないように形成されている。この外側環状突出部52は、内側環状突出部55の内周に連続して隣接する熱交換部材30側に径を縮小しながら延びる積層方向延出部53と、積層方向延出部53の先端部から径方向内側に延在するフランジ部54と、を有する。板状部材40A,40Bの内側環状突出部55は、熱交換部材30を形成するときに、対となる板状部材40B,40Aの内側環状突出部55と当接して接合され、その径方向内側と径方向外側(部材内流路32)との隔壁となると共に熱交換媒体の圧力などによる熱交換部材30の変形を抑制する。また、板状部材40A,40Bの外側環状突出部52は、積層体22A,22Bを構成するときに、隣接する熱交換部材30の外側環状突出部52と当接して接合される。こうして孔45と外側環状突出部52と内側環状突出部55とにより、熱交換媒体の積層方向流路25が形成される。この積層方向流路25は、熱交換部材30の積層方向に連通するが、各熱交換部材30の部材内流路32とは連通しない。   Furthermore, a hole 45 having the same diameter as the holes 43 and 44 is formed in the center of the plate-like members 40 </ b> A and 40 </ b> B and in the communication groove 42. On the outer periphery of the hole 45, an outer annular protrusion 52 that protrudes in an annular shape toward the adjacent heat exchange member 30 side, and an annular ring on the plate-like members 40 </ b> B and 40 </ b> A side that are continuous with the outer periphery of the outer annular protrusion 52. And an inner annular projecting portion 55 projecting at the end. The inner annular projecting portion 55 is formed so as to be flush with the flat plate portion 41. The outer annular protrusion 52 is flush with the outer annular protrusions 46 and 49 described above and has the same shape (same diameter) as the outer annular protrusions 46 and 49 when viewed from the longitudinal direction and the short direction. It is formed so as not to overlap. The outer annular projecting portion 52 includes a stacking direction extending portion 53 extending while reducing the diameter toward the heat exchange member 30 adjacent to the inner periphery of the inner annular projecting portion 55, and a tip of the stacking direction extending portion 53. And a flange portion 54 extending radially inward from the portion. When the heat exchange member 30 is formed, the inner annular protrusions 55 of the plate-like members 40A and 40B are in contact with and joined to the inner annular protrusions 55 of the paired plate-like members 40B and 40A. And the radially outer side (in-member flow path 32), and the deformation of the heat exchange member 30 due to the pressure of the heat exchange medium is suppressed. Further, the outer annular protrusions 52 of the plate-like members 40A and 40B are in contact with and joined to the outer annular protrusions 52 of the adjacent heat exchange members 30 when configuring the stacked bodies 22A and 22B. Thus, the hole 45, the outer annular projecting portion 52, and the inner annular projecting portion 55 form the stacking direction flow path 25 of the heat exchange medium. The lamination direction flow path 25 communicates with the heat exchange member 30 in the lamination direction, but does not communicate with the in-member flow path 32 of each heat exchange member 30.

ここで、板状部材40A,40Bの連絡溝42と内側環状突出部55とは、連絡溝42における孔43,44近傍の部分の幅を値La、孔45の中心を通る部分(中央部分)の幅をLb、内側環状突出部55の幅をLcとしたときに「Lb−Lc≧La」を満たすように形成されている。したがって、熱交換部材30を形成したときに、孔43(積層方向流路23)と孔44(積層方向流路24)とに連通する部材内流路32は、内側環状突出部55近傍で、孔43や孔44の近傍と同一かそれより広くなるように形成される。これにより、熱交換媒体が内側環状突出部55近傍で流れにくくなるのを抑制することができる。この結果、部材内流路32を流れる熱交換媒体の流量が内側環状突出部55の影響によって低下するのを抑制することができる。   Here, the connecting groove 42 and the inner annular projecting portion 55 of the plate-like members 40A and 40B have the value La as the width of the portion in the vicinity of the holes 43 and 44 in the connecting groove 42, and the portion passing through the center of the hole 45 (center portion). Is Lb and the inner annular protrusion 55 is Lc, so that “Lb−Lc ≧ La” is satisfied. Therefore, when the heat exchange member 30 is formed, the in-member flow path 32 communicating with the hole 43 (stacking direction flow path 23) and the hole 44 (stacking direction flow path 24) is in the vicinity of the inner annular protrusion 55, It is formed so as to be the same as or wider than the vicinity of the hole 43 and the hole 44. Thereby, it can suppress that a heat exchange medium becomes difficult to flow in the inner side annular protrusion 55 vicinity. As a result, it is possible to suppress a decrease in the flow rate of the heat exchange medium flowing through the in-member flow path 32 due to the influence of the inner annular protrusion 55.

板状部材40A,40Bの連絡溝42内には、隣接する熱交換部材30側に外側環状突出部46,49,52と面一となるように突出する外側ボス部60,61,62,63が形成されると共に、対となる板状部材40B,40A側に平板部41や内側環状突出部55と面一となるように突出する内側ボス部64,65が形成されている。外側ボス部60,61は、板状部材40A,40Bの四隅のうち対角の2つの隅近傍に、板状部材40A,40Bの中心に対して対称となるように形成されており、外側ボス部62,63は、孔45の周囲に、板状部材40A,40Bの中心に対して対称となるように形成されており、内側ボス部64,65は、それぞれ孔43,44と外側ボス部60,61との間に、板状部材40A,40Bの中心に対して対称となるように形成されている。板状部材40A,40Bの外側ボス部60,61,62,63は、積層体22A,22Bを構成するときに隣接する熱交換部材30の外側ボス部60,61,62,63と当接して接合され、内側ボス部64,65は、熱交換部材30を形成するときに対となる板状部材40B,40Aの内側ボス部64,65と当接して接合され、部材内流路32内の熱交換媒体の圧力などによる熱交換部材30の変形を抑制する。   In the connecting grooves 42 of the plate-like members 40A and 40B, outer boss portions 60, 61, 62, and 63 projecting so as to be flush with the outer annular projecting portions 46, 49, and 52 on the adjacent heat exchange member 30 side. Are formed, and inner boss portions 64 and 65 projecting so as to be flush with the flat plate portion 41 and the inner annular projecting portion 55 are formed on the pair of plate-like members 40B and 40A. The outer boss portions 60 and 61 are formed in the vicinity of two diagonal corners of the four corners of the plate members 40A and 40B so as to be symmetric with respect to the centers of the plate members 40A and 40B. The parts 62 and 63 are formed around the hole 45 so as to be symmetric with respect to the centers of the plate-like members 40A and 40B, and the inner boss parts 64 and 65 are respectively formed with the holes 43 and 44 and the outer boss part. 60 and 61 are formed so as to be symmetric with respect to the centers of the plate-like members 40A and 40B. The outer boss portions 60, 61, 62, 63 of the plate-like members 40A, 40B are in contact with the outer boss portions 60, 61, 62, 63 of the adjacent heat exchange member 30 when forming the laminated bodies 22A, 22B. The inner boss portions 64 and 65 are joined and contacted with the inner boss portions 64 and 65 of the plate-like members 40B and 40A that form a pair when the heat exchange member 30 is formed. The deformation of the heat exchange member 30 due to the pressure of the heat exchange medium is suppressed.

流入流出用部材70は、その内部に、積層体22A,22Bの積層方向流路25および流入管79と連通する(両者を連絡するための)空間71と、積層体22A,22Bの積層方向流路24および流出管80と連通する空間72と、が形成されている。また、連絡部材75A,75Bは、その内部に、積層体22A,22Bの積層方向流路23および積層方向流路25と連通する空間76が形成されている。   The inflow / outflow member 70 has a space 71 communicating with (in communication with) the stacking direction flow path 25 and the inflow pipe 79 of the stacked bodies 22A and 22B, and a stacking direction flow of the stacked bodies 22A and 22B. A space 72 communicating with the passage 24 and the outflow pipe 80 is formed. In addition, the communication members 75A and 75B are formed therein with spaces 76 communicating with the stacking direction flow paths 23 and the stacking direction flow paths 25 of the stacked bodies 22A and 22B.

こうして構成された実施例の熱交換器20では、流入管79から流入流出用部材70の空間71に流入した熱交換媒体は、積層体22A,22Bの積層方向流路25を連絡部材75A,75B側に流れて、連絡部材75A,75Bの空間76を経由して積層方向流路23に流れ、積層方向流路23,各熱交換部材30の部材内流路32,積層方向流路24を流れて、流入流出用部材70の空間72を経由して流出管80に流出する(図1,図2参照)。また、被熱交換媒体は、積層体22A,22Bの周囲や、積層体22A,22Bの隣接する熱交換部材30間における外側環状突出部46,49,52や外側ボス部60,61,62,63以外の部分に形成される隙間を流れる。そして、部材内流路32を流れる熱交換媒体と隣接する熱交換部材30間の隙間などを流れる被熱交換媒体との間で熱交換が行なわれる。なお、実施例では、厚みが0.2mmの薄板にプレス加工を施して形成した板状部材40A,40Bは、厚みが1.25mmで連絡溝42の深さが0.3mmとしたから、部材内流路32の積層方向(図4〜図6の上下方向)の長さは0.6mmとなり、隣接する熱交換部材30間の隙間(被熱交換媒体の流路)の積層方向の長さは、平板部41や内側環状突出部55,内側ボス部64,65の辺りでは2.1mmとなり、部材内流路32の辺りでは1.5mmとなる。こうした小型の熱交換器では、各熱交換部材30の部材内流路32や隣接する熱交換部材30間の隙間(被熱交換媒体の流路)が比較的狭いから、熱交換性能を十分に発揮させて熱交換率を向上させるために、各部材内流路32に十分な熱交換媒体が流れるようにすることがより要請される。   In the heat exchanger 20 of the embodiment thus configured, the heat exchange medium that has flowed into the space 71 of the inflow / outflow member 70 from the inflow pipe 79 passes through the stacking direction flow path 25 of the stacked bodies 22A, 22B through the connecting members 75A, 75B. To the laminating direction flow path 23 via the space 76 of the connecting members 75A and 75B, and the laminating direction flow path 23, the in-member flow path 32 of each heat exchange member 30, and the laminating direction flow path 24. Then, it flows out to the outflow pipe 80 via the space 72 of the inflow / outflow member 70 (see FIGS. 1 and 2). Further, the heat exchange medium includes outer annular protrusions 46, 49, 52 and outer bosses 60, 61, 62, around the laminates 22A, 22B and between the heat exchange members 30 adjacent to the laminates 22A, 22B. It flows through a gap formed in a portion other than 63. Then, heat exchange is performed between the heat exchange medium flowing through the in-member flow path 32 and the heat exchange medium flowing through the gap between the adjacent heat exchange members 30. In the embodiment, the plate-like members 40A and 40B formed by pressing a thin plate having a thickness of 0.2 mm have a thickness of 1.25 mm and a depth of the connecting groove 42 of 0.3 mm. The length of the inner flow path 32 in the stacking direction (vertical direction in FIGS. 4 to 6) is 0.6 mm, and the length in the stacking direction of the gap between the adjacent heat exchange members 30 (flow path of the heat exchange medium). Is 2.1 mm around the flat plate portion 41, the inner annular projecting portion 55, and the inner boss portions 64 and 65, and 1.5 mm around the member flow passage 32. In such a small heat exchanger, since the in-member flow path 32 of each heat exchange member 30 and the gap between the adjacent heat exchange members 30 (flow path of the heat exchange medium) are relatively narrow, the heat exchange performance is sufficiently high. In order to improve the heat exchange rate, it is required to allow a sufficient heat exchange medium to flow through the in-member flow paths 32.

図7は、実施例の積層体22Aにおける熱交換媒体の流れの様子を模式的に示す説明図であり、図8は、比較例の積層体22Cにおける熱交換媒体の流れの様子を模式的に示す説明図である。図7では、流入管79から積層方向流路25,連絡部材75Aを経由して積層方向流路23に流入した後の熱交換媒体の流れの様子を示す。また、比較例としては、実施例の熱交換器20における積層方向流路25や連絡部材75A,75Bを備えず、且つ、積層方向流路23,24が積層体22A,22Bの同一端側で流入管79および流出管80に接続される構成を考えるものとした。比較例の構成では、図8に示すように、部材内流路32の上流側の積層方向流路23の流入側と部材内流路32の下流側の積層方向流路24の流出側とが積層体22Cの同一端側(図中右端側)となるから、各部材内流路32のうち流入管79や流出管80に近い側の部材内流路には十分な熱交換媒体が流れるが、流入管79や流出管80から遠い側の部材内流路には十分な熱交換媒体が流れにくい。このため、熱交換媒体と被熱交換媒体との間の熱交換性能を十分に発揮できない可能性がある。これに対して、実施例では、図7に示すように、部材内流路32の上流側の積層方向流路23の流入側と部材内流路32の下流側の積層方向流路24の流出側とが積層体22Aの一端側(図中左端側)と他端側(図中右端側)とになるから、熱交換媒体が各部材内流路32に十分に流れる(各部材内流路32の流量のバラツキが抑制される)ようにすることができる。これにより、熱交換性能を十分に発揮させることができ、熱交換率の向上を図ることができる。なお、積層体22Bについても、積層体22Aと同様に考えることができる。   FIG. 7 is an explanatory diagram schematically showing the flow of the heat exchange medium in the laminate 22A of the example, and FIG. 8 schematically shows the flow of the heat exchange medium in the laminate 22C of the comparative example. It is explanatory drawing shown. FIG. 7 shows the flow of the heat exchange medium after flowing into the stacking direction flow path 23 from the inflow pipe 79 via the stacking direction flow path 25 and the connecting member 75A. Moreover, as a comparative example, the stacking direction flow path 25 and the connecting members 75A and 75B in the heat exchanger 20 of the embodiment are not provided, and the stacking direction flow paths 23 and 24 are on the same end side of the stacked bodies 22A and 22B. The configuration connected to the inflow pipe 79 and the outflow pipe 80 was considered. In the configuration of the comparative example, as shown in FIG. 8, the inflow side of the stacking direction flow path 23 upstream of the in-member flow path 32 and the outflow side of the stacking direction flow path 24 downstream of the in-member flow path 32 are Since it is on the same end side (right end side in the figure) of the laminated body 22C, a sufficient heat exchange medium flows in the member internal flow passages on the side close to the inflow pipe 79 and the outflow pipe 80 among the internal flow passages 32 in each member. A sufficient heat exchange medium does not easily flow through the in-member flow path far from the inflow pipe 79 or the outflow pipe 80. For this reason, the heat exchange performance between the heat exchange medium and the heat exchange medium may not be sufficiently exhibited. On the other hand, in the embodiment, as shown in FIG. 7, the inflow side of the stacking direction flow path 23 upstream of the in-member flow path 32 and the outflow of the stacking direction flow path 24 downstream of the in-member flow path 32. Since the side becomes one end side (left end side in the figure) and the other end side (right end side in the figure) of the laminated body 22A, the heat exchange medium sufficiently flows into each member internal flow path 32 (each member internal flow path). The variation of the flow rate of 32 is suppressed). Thereby, the heat exchange performance can be sufficiently exhibited, and the heat exchange rate can be improved. Note that the stacked body 22B can be considered in the same manner as the stacked body 22A.

ところで、積層方向流路23の流入側と積層方向流路24の流出側とを積層体22A,22Bの一端側と他端側とにするためには、積層方向流路23の流入側に流入管79を接続すると共に積層方向流路24の流出側に流出管80を接続することも考えられる。しかしながら、この場合、流入管79や流出管80の積層体22A,22B周辺での配管距離が長くなってしまう。これに対して、実施例では、積層体22Aに積層方向流路25を形成すると共に連絡部材75A,75Bにより積層方向流路25と積層方向流路23とを連絡することによって、積層方向流路23の流入側と積層方向流路24の流出側とを積層体22A,22Bの一端側と他端側とするから、流入管79や流出管80の積層体22A,22B周辺での配管距離を短くすることができる。   By the way, in order to make the inflow side of the laminating direction flow path 23 and the outflow side of the laminating direction flow path 24 be one end side and the other end side of the laminated bodies 22A and 22B, it flows into the inflow side of the laminating direction flow path 23. It is conceivable to connect the pipe 79 and connect the outflow pipe 80 to the outflow side of the stacking direction flow path 24. However, in this case, the piping distance around the stacked bodies 22A and 22B of the inflow pipe 79 and the outflow pipe 80 becomes long. On the other hand, in the embodiment, the lamination direction flow path 25 is formed in the laminated body 22A and the lamination direction flow path 25 and the lamination direction flow path 23 are communicated with each other by the connecting members 75A and 75B. Since the inflow side of 23 and the outflow side of the stacking direction flow path 24 are the one end side and the other end side of the laminates 22A and 22B, the piping distances around the laminates 22A and 22B of the inflow pipe 79 and the outflow pipe 80 are reduced. Can be shortened.

また、実施例の熱交換器20では、板状部材40A,40Bの外側環状突出部46,49,52が同一形状(同一径)で且つ長手方向や短手方向から見たときに互いに重ならないように形成されているから、積層体22A,22Bを構成したときに、隣接する熱交換部材30間の隙間(被熱交換媒体の流路)の、被熱交換媒体の流れに対する開口面積が熱交換部材30の長手方向や短手方向の各位置で大きく変化するのを抑制することができる。被熱交換媒体が熱交換部材30の長手方向(図3の左右方向)に流れるときを考えると、図4〜図6より、長手方向における孔43の中心を通る位置での開口面積(図4中、面積S11,S12,S13の和)と、孔45の中心を通る位置での開口面積(図6中、面積S21,S22の和)と、孔44の中心を通る位置での開口面積(図5中、面積S31,S32,S33の和)とが、外側ボス部60,61や内側ボス部64,65,内側環状突出部55の影響を除けば、同程度となることが分かる。被熱交換媒体が熱交換部材30の短手方向に流れるときについても、これと同様に考えることができる。これにより、被熱交換媒体の流路が部分的に極端に狭くなることによる被熱交換媒体の流量の低下を抑制することができる。実施例では、小型の熱交換器を考えているから、被熱交換媒体の流量を確保することの意義は大きい。   Further, in the heat exchanger 20 of the embodiment, the outer annular protrusions 46, 49, 52 of the plate-like members 40A, 40B have the same shape (same diameter) and do not overlap each other when viewed from the longitudinal direction or the short direction. Therefore, when the laminates 22A and 22B are configured, the opening area of the gap between the adjacent heat exchange members 30 (the flow path of the heat exchange medium) with respect to the flow of the heat exchange medium is hot. It is possible to suppress a large change at each position in the longitudinal direction and the short direction of the exchange member 30. Considering the case where the heat exchange medium flows in the longitudinal direction of the heat exchange member 30 (left and right direction in FIG. 3), the opening area at the position passing through the center of the hole 43 in the longitudinal direction (FIG. 4). The sum of the areas S11, S12, and S13), the opening area at the position passing through the center of the hole 45 (the sum of the areas S21 and S22 in FIG. 6), and the opening area at the position passing through the center of the hole 44 ( In FIG. 5, it can be seen that the sum of the areas S31, S32, and S33 is substantially the same except for the influence of the outer boss portions 60 and 61, the inner boss portions 64 and 65, and the inner annular protrusion 55. The same applies to the case where the heat exchange medium flows in the short direction of the heat exchange member 30. Thereby, the fall of the flow volume of a heat exchange medium by the part of the flow path of a heat exchange medium becoming extremely narrow can be suppressed. In the embodiment, since a small heat exchanger is considered, it is significant to secure the flow rate of the heat exchange medium.

さらに、実施例の熱交換器20では、対となる板状部材40A,40Bは、平板部41と板状部材40A,40Bの中央の内側環状突出部55と内側ボス部64,65とによって接合され、隣接する熱交換部材30は、熱交換部材30(板状部材40A,40B)の四隅近傍の外側環状突出部46,49および外側ボス部60,61と孔45の周囲の外側ボス部62,63とによって接合されるから、熱交換部材30の変形をより効果的に抑制することができる。   Further, in the heat exchanger 20 of the embodiment, the paired plate-like members 40A and 40B are joined by the flat plate portion 41, the inner annular projecting portion 55 at the center of the plate-like members 40A and 40B, and the inner boss portions 64 and 65. The adjacent heat exchanging member 30 includes outer annular protrusions 46 and 49 near the four corners of the heat exchanging member 30 (plate members 40A and 40B) and outer boss portions 60 and 61 and an outer boss portion 62 around the hole 45. , 63, the deformation of the heat exchange member 30 can be more effectively suppressed.

以上説明した実施例の熱交換器20では、0.3mm以下の薄板にプレス加工を施して形成した板状部材40A,40Bによる熱交換部材30を複数積層してなる積層体22A,22Bを備える。そして、この積層体22A,22Bには、板状部材40A,40Bの孔43,44と外側環状突出部46,49とによって熱交換部材30の部材内流路32に連通する積層方向流路23,24が形成されると共に、板状部材40A,40Bの孔45と外側環状突出部52と内側環状突出部55とによって部材内流路32に連通しない積層方向流路25が形成されており、積層方向流路25,24は積層体22A,22Bの一端側で流入流出用部材70の空間71,72を介して流入管79,流出管80に接続され、積層方向流路23,25は積層体22A,22Bの他端側で連絡部材75A,75Bの空間76を介して連絡されている。したがって、部材内流路32の上流側の積層方向流路23の流入側と部材内流路32の下流側の積層方向流路24の流出側とが積層体22A,22Bの一端側と他端側とになるから、積層方向流路23の流入側と積層方向流路24の流出側とが積層体22A,22Bの同一端側となるものに比して、熱交換媒体が各部材内流路32に十分に流れるようにすることができ、熱交換性能を十分に発揮させて熱交換率の向上を図ることができる。また、こうした構成とすることにより、流入管79や流出管80を積層体22A,22Bの周囲で配管して積層方向流路23の流入側と積層方向流路24の流出側とを積層体22A,22Bの一端側と他端側とするものに比して、流入管79や流出管80の積層体22A,22B周辺での配管距離を短くすることができる。さらに、薄板をプレス加工して形成した板状部材40A,40Bを用いるために板状部材40A,40Bが変形しやすいが、連絡溝42内に、対となる板状部材40B,40Aと当接して接合される内側環状突出部55が形成されることにより、部材内流路32内の熱交換媒体の圧力などによる板状部材の変形を抑制することができる。   The heat exchanger 20 according to the embodiment described above includes laminates 22A and 22B formed by laminating a plurality of heat exchange members 30 formed by plate-like members 40A and 40B formed by pressing a thin plate of 0.3 mm or less. . And in this laminated body 22A, 22B, the lamination direction flow path 23 connected to the member internal flow path 32 of the heat exchange member 30 by the holes 43, 44 of the plate-like members 40A, 40B and the outer annular protrusions 46, 49. 24, and the laminating direction flow path 25 that does not communicate with the in-member flow path 32 is formed by the hole 45, the outer annular protrusion 52, and the inner annular protrusion 55 of the plate-like members 40A and 40B. The lamination direction flow paths 25 and 24 are connected to the inflow pipe 79 and the outflow pipe 80 via the spaces 71 and 72 of the inflow / outflow member 70 on one end side of the laminated bodies 22A and 22B. The other ends of the bodies 22A and 22B are connected via the space 76 of the connecting members 75A and 75B. Therefore, the inflow side of the stacking direction flow path 23 upstream of the in-member flow path 32 and the outflow side of the stacking direction flow path 24 downstream of the in-member flow path 32 are one end side and the other end of the stacked bodies 22A, 22B. Therefore, the heat exchange medium flows in each member as compared to the case where the inflow side of the stacking direction flow path 23 and the outflow side of the stacking direction flow path 24 are the same end side of the stacked bodies 22A and 22B. It can be made to flow to the path 32 sufficiently, and the heat exchange performance can be sufficiently exhibited to improve the heat exchange rate. Further, with such a configuration, the inflow pipe 79 and the outflow pipe 80 are piped around the stacked bodies 22A and 22B, and the inflow side of the stacking direction flow path 23 and the outflow side of the stacking direction flow path 24 are stacked 22A. , 22B, the piping distance around the laminated bodies 22A, 22B of the inflow pipe 79 and the outflow pipe 80 can be reduced. Further, since the plate-like members 40A and 40B formed by pressing the thin plate are easily deformed, the plate-like members 40A and 40B are easily deformed, but contact the paired plate-like members 40B and 40A in the communication groove 42. By forming the inner annular protrusion 55 to be joined together, deformation of the plate-like member due to the pressure of the heat exchange medium in the in-member flow path 32 can be suppressed.

実施例の熱交換器20では、板状部材40A,40Bの外側環状突出部46,49,52は、板状部材40A,40Bの長手方向や短手方向から見たときに重ならないように形成されるものとしたが、長手方向または短手方向から見たときに、外側環状突出部52と外側環状突出部46,49のうち少なくとも一方とが重なるように形成されるものとしてもよい。この例としては、孔43,44が、板状部材40A,40Bの四隅のうち隣り合う2つの隅近傍に形成される場合などを考えることができる。また、実施例の熱交換器20では、外側環状突出部46,49,52は、同一形状(同一径)に形成されるものとしたが、若干異なる径に形成されるものとしてもよい。さらに、実施例の熱交換器では、外側環状突出部46,49,52は、積層方向延出部47,50,53とフランジ部48,51,54とを有するものとしたが、フランジ部48,51,54を有さずに、積層方向延出部47,50,53だけを有するものとしてもよい。   In the heat exchanger 20 of the embodiment, the outer annular protrusions 46, 49, 52 of the plate members 40A, 40B are formed so as not to overlap when viewed from the longitudinal direction or the short direction of the plate members 40A, 40B. However, the outer annular protrusion 52 and at least one of the outer annular protrusions 46 and 49 may be formed so as to overlap each other when viewed from the longitudinal direction or the lateral direction. As this example, the case where the holes 43 and 44 are formed in the vicinity of two adjacent corners among the four corners of the plate-like members 40A and 40B can be considered. Further, in the heat exchanger 20 of the embodiment, the outer annular protrusions 46, 49, 52 are formed in the same shape (same diameter), but may be formed in slightly different diameters. Furthermore, in the heat exchanger of the embodiment, the outer annular protrusions 46, 49, 52 have the stacking direction extending portions 47, 50, 53 and the flange portions 48, 51, 54. , 51, 54, and only the stacking direction extending portions 47, 50, 53 may be provided.

実施例の熱交換器20では、板状部材40A,40Bの連絡溝42は、つづら折り状に形成されるものとしたが、これ以外の形状、例えば、矩形状などに形成されるものとしてもよい。   In the heat exchanger 20 of the embodiment, the communication grooves 42 of the plate-like members 40A and 40B are formed in a zigzag shape, but may be formed in other shapes, for example, a rectangular shape. .

実施例の熱交換器20では、板状部材40A,40Bの連絡溝42および内側環状突出部55は、上述の「Lb−Lc≧La」を満たすように形成されるものとしたが、値(Lb−Lc)が値Laより若干小さくなるように形成されるものとしてもよい。   In the heat exchanger 20 of the embodiment, the connecting groove 42 and the inner annular protrusion 55 of the plate-like members 40A and 40B are formed so as to satisfy the above-mentioned “Lb−Lc ≧ La”. (Lb−Lc) may be formed to be slightly smaller than the value La.

実施例の熱交換器20では、板状部材40A,40Bの連絡溝42,外側環状突出部46と外側環状突出部49,外側ボス部60と外側ボス部61,外側ボス部62と外側ボス部63,内側ボス部64と内側ボス部65は、それぞれ板状部材40A,40Bの中心(孔45の中心)に対して対称となるように形成されるものとしたが、少なくとも一部、例えば、外側ボス部62と外側ボス部63や内側ボス部64と内側ボス部65などが板状部材40A,40Bの中心に対して対称に形成されないものとしてもよい。また、実施例の熱交換器20では、孔45は、板状部材40A,40Bの中央に形成されるものとしたが、中央以外の位置に形成されるものとしてもよい。   In the heat exchanger 20 of the embodiment, the connecting grooves 42 of the plate-like members 40A and 40B, the outer annular projecting portion 46 and the outer annular projecting portion 49, the outer boss portion 60 and the outer boss portion 61, the outer boss portion 62 and the outer boss portion. 63, the inner boss part 64 and the inner boss part 65 are formed so as to be symmetric with respect to the centers of the plate-like members 40A and 40B (centers of the holes 45), respectively. The outer boss portion 62 and the outer boss portion 63, the inner boss portion 64, the inner boss portion 65, and the like may not be formed symmetrically with respect to the centers of the plate-like members 40A and 40B. Moreover, in the heat exchanger 20 of an Example, although the hole 45 shall be formed in the center of plate-shaped member 40A, 40B, it is good also as what is formed in positions other than a center.

実施例の熱交換器20では、板状部材40A,40Bの連絡溝42内には、外側ボス部60,61,62,63と内側ボス部64,65とが形成されるものとしたが、外側ボス部および内側ボス部の数は、4つと2つに限定されるものではなく、熱交換器20の用途などに応じて、適宜変更されるものとしてよい。また、外側ボス部や内側ボス部が形成されないものとしてもよい。   In the heat exchanger 20 of the embodiment, the outer boss portions 60, 61, 62, 63 and the inner boss portions 64, 65 are formed in the communication groove 42 of the plate-like members 40A, 40B. The numbers of the outer boss portions and the inner boss portions are not limited to four and two, and may be appropriately changed according to the use of the heat exchanger 20 or the like. Further, the outer boss portion and the inner boss portion may not be formed.

実施例の熱交換器20では、板状部材40A,40Bの連絡溝42内に、孔45と外側環状突出部52と内側環状突出部55とが形成されるものとしたが、図9や図10の変形例の板状部材140A,240Aに示すようにおよびこれと同様に板状部材140B,240Bを考えて、連絡溝42以外の位置に、孔145,245と外側環状突出部152,252とが形成されるものとしてもよい。板状部材140A,140Bや板状部材240A,240Bにおける孔43,44や外側環状突出部46,49の位置や形状は、実施例の板状部材40A,40Bと同一である。板状部材140A,140Bにおける連絡溝142は、孔43の近傍で2つに分岐して孔44の近傍で合流することによって孔43,44を連絡するように形成されており、孔145および外側環状突出部152は、連絡溝142が2つに分岐することによって形成される中央の平板部141に形成されている。また、連絡溝242は、矩形の1つの隅を除いた形状で孔43,44を連絡するように形成されており、孔245および外側環状突出部252は、連絡溝242より外周側の平板部241に形成されている。こうした板状部材140A,140Bや板状部材240A,240Bでは、外側環状突出部152,252の周囲の平板部141,241が、実施例の板状部材40A,40Bの内側環状突出部55と同様に、連絡溝142,242と孔145,245との隔壁(各熱交換部材30の部材内流路32と積層方向流路25との隔壁)となる。なお、図9や図10では、外側ボス部や内側ボス部については図示を省略したが、これらが形成されるものとしてもよい。   In the heat exchanger 20 of the embodiment, the hole 45, the outer annular protrusion 52, and the inner annular protrusion 55 are formed in the communication groove 42 of the plate-like members 40A and 40B. As shown in the plate-like members 140A and 240A of the tenth modified example and the plate-like members 140B and 240B in the same manner, holes 145 and 245 and outer annular protrusions 152 and 252 are provided at positions other than the communication groove 42. And may be formed. The positions and shapes of the holes 43 and 44 and the outer annular protrusions 46 and 49 in the plate members 140A and 140B and the plate members 240A and 240B are the same as those of the plate members 40A and 40B of the embodiment. The connecting grooves 142 in the plate-like members 140A and 140B are formed to branch into two near the hole 43 and to join the holes 43 and 44 by joining in the vicinity of the hole 44. The annular projecting portion 152 is formed on a central flat plate portion 141 formed by branching the connecting groove 142 into two. The communication groove 242 is formed so as to connect the holes 43 and 44 in a shape excluding one corner of the rectangle, and the hole 245 and the outer annular protrusion 252 are flat plate portions on the outer peripheral side from the communication groove 242. 241 is formed. In such plate-like members 140A and 140B and plate-like members 240A and 240B, the flat plate portions 141 and 241 around the outer annular protrusions 152 and 252 are the same as the inner annular protrusion 55 of the plate-like members 40A and 40B of the embodiment. In addition, a partition wall between the communication grooves 142 and 242 and the holes 145 and 245 (a partition wall between the in-member flow path 32 and the stacking direction flow path 25 of each heat exchange member 30) is formed. In FIGS. 9 and 10, the outer boss portion and the inner boss portion are not shown, but these may be formed.

実施例の熱交換器20では、板状部材40A,40Bは、矩形状に形成されるものとしたが、矩形以外の多角形状や円形状,楕円形状などに形成されるものとしてもよい。   In the heat exchanger 20 of the embodiment, the plate-like members 40A and 40B are formed in a rectangular shape, but may be formed in a polygonal shape other than a rectangular shape, a circular shape, an elliptical shape, or the like.

実施例の熱交換器20では、積層体22A,22Bの一端側で、積層方向流路25が流入管79に接続されると共に積層交流路24が流出管80に接続されるものとしたが、積層方向流路25が流出管80に接続されると共に積層方向流路24が流入管79に接続されるものとしてもよい。この場合、流入管79から積層体22A,22Bの積層方向流路24に流入した熱交換媒体は、積層方向流路24,各熱交換部材30の部材内流路32,積層方向流路23,連絡部材75A,75B,積層方向流路25を経由して流出管80に流出する。   In the heat exchanger 20 of the embodiment, the lamination direction flow path 25 is connected to the inflow pipe 79 and the lamination AC path 24 is connected to the outflow pipe 80 on one end side of the stacked bodies 22A and 22B. The stacking direction flow path 25 may be connected to the outflow pipe 80 and the stacking direction flow path 24 may be connected to the inflow pipe 79. In this case, the heat exchange medium that has flowed from the inflow pipe 79 into the lamination direction flow path 24 of the stacked bodies 22A and 22B is the lamination direction flow path 24, the in-member flow path 32 of each heat exchange member 30, the lamination direction flow path 23, It flows out to the outflow pipe 80 via the connecting members 75A and 75B and the stacking direction flow path 25.

実施例の熱交換器20では、2つの積層体22A,22Bを備えるものとしたが、1つの積層体だけを備えるものとしてもよい。   In the heat exchanger 20 of the embodiment, the two stacked bodies 22A and 22B are provided. However, only one stacked body may be provided.

実施例では、熱交換器20の形態として説明したが、こうした熱交換器20の構成に用いられる板状部材40A,40Bの形態としてもよい。   Although the embodiment has been described as a form of the heat exchanger 20, the form of the plate-like members 40 </ b> A and 40 </ b> B used for the configuration of the heat exchanger 20 may be used.

実施例の主要な要素と課題を解決するための手段の欄に記載した考案の主要な要素との対応関係について説明する。実施例では、孔43,44が「第1,第2の孔」に相当し、連絡溝42が「連絡溝」に相当し、板状部材40A,40Bが「板状部材」に相当し、部材内流路32が「部材内流路」に相当し、熱交換部材30が「熱交換部材」に相当し、積層体22A,22Bが「積層体」に相当し、熱交換器20が「熱交換器」に相当し、積層方向流路23,24が「第1,第2の積層方向流路」に相当し、外側環状突出部46,49が「第1,第2の環状突出部」に相当し、孔45が「第3の孔」に相当し、外側環状突出部52が「第3の環状突出部」に相当する。   The correspondence between the main elements of the embodiment and the main elements of the device described in the column of means for solving the problem will be described. In the embodiment, the holes 43 and 44 correspond to “first and second holes”, the communication groove 42 corresponds to “connection groove”, the plate-like members 40A and 40B correspond to “plate-like members”, The in-member flow path 32 corresponds to the “in-member flow path”, the heat exchange member 30 corresponds to the “heat exchange member”, the stacked bodies 22A and 22B correspond to the “laminated body”, and the heat exchanger 20 It corresponds to a “heat exchanger”, the stacking direction channels 23 and 24 correspond to “first and second stacking direction channels”, and the outer annular protrusions 46 and 49 are “first and second annular protrusions”. The hole 45 corresponds to a “third hole”, and the outer annular protrusion 52 corresponds to a “third annular protrusion”.

なお、実施例の主要な要素と課題を解決するための手段の欄に記載した考案の主要な要素との対応関係は、実施例が課題を解決するための手段の欄に記載した考案を実施するための形態を具体的に説明するための一例であることから、課題を解決するための手段の欄に記載した考案の要素を限定するものではない。即ち、課題を解決するための手段の欄に記載した考案についての解釈はその欄の記載に基づいて行なわれるべきものであり、実施例は課題を解決するための手段の欄に記載した考案の具体的な一例に過ぎないものである。   It should be noted that the correspondence between the main elements of the embodiment and the main elements of the device described in the column of means for solving the problem is the same as that of the embodiment described in the column of the means for solving the problem. This is an example for specifically explaining the mode for doing so, and does not limit the elements of the device described in the column of means for solving the problem. In other words, the interpretation of the device described in the column of means for solving the problem should be made based on the description of the column, and the embodiments are not the same as those of the device described in the column of means for solving the problem. It is only a specific example.

以上、本考案を実施するための形態について実施例を用いて説明したが、本考案はこうした実施例に何等限定されるものではなく、本考案の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。   As mentioned above, although the form for implementing this invention was demonstrated using the Example, this invention is not limited to such an Example at all, In the range which does not deviate from the summary of this invention, in various forms. Of course, it can be implemented.

本考案は、熱交換器の製造産業などに利用可能である。   The present invention can be used in the heat exchanger manufacturing industry.

20 熱交換器、22A,22B,22C 積層体、23,24,25 積層方向流路、30 熱交換部材、32 部材内流路、40A,40B,140A,140B,240A,240B 板状部材、41,141,241 平板部、42,142,242 連絡溝、43,44,45,145,245 孔、46,49,52,152,252 外側環状突出部、47,50,53 積層方向延出部、48,51,54 フランジ部、55 内側環状突出部、60、61,62,63 外側ボス部、64,65 内側ボス部、70 流入流出用部材、71,72,76 空間、75A,75B 連絡部材、79 流入管、80 流出管。   20 heat exchanger, 22A, 22B, 22C laminated body, 23, 24, 25 lamination direction flow path, 30 heat exchange member, 32 member internal flow path, 40A, 40B, 140A, 140B, 240A, 240B plate-like member, 41 , 141, 241 Flat plate part, 42, 142, 242 Connecting groove, 43, 44, 45, 145, 245 hole, 46, 49, 52, 152, 252 Outer annular projecting part, 47, 50, 53 Laminating direction extending part 48, 51, 54 Flange, 55 Inner annular protrusion, 60, 61, 62, 63 Outer boss, 64, 65 Inner boss, 70 Inflow / outflow member, 71, 72, 76 Space, 75A, 75B Contact Member, 79 inflow pipe, 80 outflow pipe.

Claims (9)

熱伝導性の良好な金属材料による厚みが0.3mm以下の薄板を用いてプレス加工により形成された第1,第2の孔と該第1,第2の孔を連絡するための連絡溝とを有する板状部材を、前記連絡溝が向かい合うと共に前記第1,第2の孔が整合するように重ねて前記連絡溝により熱交換媒体の部材内流路が形成される熱交換部材とし、該熱交換部材を複数積層してなる積層体を備える熱交換器における板状部材であって、
前記第1,第2の孔の外周には、前記積層体を構成したときに前記第1,第2の孔が前記熱交換部材の積層方向に前記部材内流路と連通する前記熱交換媒体の第1,第2の積層方向流路を形成すると共に隣接する前記熱交換部材間に所定の隙間を形成するための第1,第2の環状突出部が形成されており、
前記積層体を構成したときに前記熱交換部材の積層方向に前記部材内流路と連通しない前記熱交換媒体の第3の積層方向流路を形成するための第3の孔が形成されており、
前記第3の孔の外周には、前記積層体を構成したときに隣接する前記熱交換部材間に前記所定の隙間を形成するための第3の環状突出部が形成されている、
ことを特徴とする板状部材。
A first and second hole formed by press working using a thin plate having a thickness of 0.3 mm or less made of a metal material having good thermal conductivity, and a communication groove for connecting the first and second holes; A plate-like member having a heat exchange member in which the communication grooves face each other and the first and second holes are aligned to form a flow passage in the member of the heat exchange medium by the communication grooves, A plate-like member in a heat exchanger comprising a laminate formed by laminating a plurality of heat exchange members,
The heat exchange medium in which the first and second holes communicate with the flow path in the member in the stacking direction of the heat exchange member when the laminated body is formed on the outer periphery of the first and second holes. Forming first and second laminating direction flow paths and first and second annular protrusions for forming a predetermined gap between the adjacent heat exchange members,
A third hole for forming a third stacking direction flow path of the heat exchange medium that does not communicate with the flow path in the member in the stacking direction of the heat exchange member when the stacked body is configured is formed. ,
On the outer periphery of the third hole, a third annular protrusion is formed to form the predetermined gap between the heat exchange members adjacent to each other when the laminate is configured.
A plate-like member.
請求項1記載の板状部材であって、
前記第3の孔は、前記連絡溝内に形成されており、
前記第3の環状突出部は、前記連絡溝内における前記第3の孔の外周に形成されており、
前記連絡溝内における前記第3の環状突出部の外周には、該第3の環状突出部とは反対側に突出する第4の環状突出部が形成されており、
前記第4の環状突出部は、前記熱交換部材を形成したときに対となる前記板状部材と当接して接合される、
ことを特徴とする板状部材。
The plate-like member according to claim 1,
The third hole is formed in the communication groove;
The third annular protrusion is formed on the outer periphery of the third hole in the communication groove,
On the outer periphery of the third annular projecting portion in the communication groove, a fourth annular projecting portion projecting to the opposite side of the third annular projecting portion is formed,
The fourth annular protrusion is joined in contact with the plate-like member that forms a pair when the heat exchange member is formed.
A plate-like member.
請求項2記載の板状部材であって、
前記連絡溝および前記第4の環状突出部は、前記連絡溝における前記第1,第2の孔近傍の幅をLa、前記連絡溝における前記第4の環状突出部の中心を通る部分の幅をLb、前記第4の環状突出部の幅をLcとしたときに、「Lb−Lc≧La」を満たすように形成されている、
ことを特徴とする板状部材。
The plate-like member according to claim 2,
The connecting groove and the fourth annular projecting portion have a width of the connecting groove in the vicinity of the first and second holes La, and a width of a portion of the connecting groove passing through the center of the fourth annular projecting portion. Lb, when the width of the fourth annular protrusion is Lc, it is formed to satisfy “Lb−Lc ≧ La”.
A plate-like member.
請求項1ないし3のいずれか1つの請求項に記載の板状部材であって、
前記板状部材は、矩形状に形成されており、
前記第1,第2の孔は、前記板状部材の四隅のうち対角の2つの隅近傍に形成されており、
前記連絡溝は、つづら折り状に形成されており、
前記第3の孔は、前記板状部材の中央に形成されている、
ことを特徴とする板状部材。
The plate-like member according to any one of claims 1 to 3,
The plate-like member is formed in a rectangular shape,
The first and second holes are formed in the vicinity of two diagonal corners of the four corners of the plate-like member,
The communication groove is formed in a zigzag shape,
The third hole is formed at the center of the plate-shaped member.
A plate-like member.
請求項1ないし4のいずれか1つの請求項に記載の板状部材であって、
前記第1,第2,第3の環状突出部は、前記板状部材の長手方向および短手方向から見たときに、互いに重ならないように形成されている、
ことを特徴とする板状部材。
The plate-like member according to any one of claims 1 to 4,
The first, second, and third annular protrusions are formed so as not to overlap each other when viewed from the longitudinal direction and the short direction of the plate-like member.
A plate-like member.
請求項5記載の板状部材であって、
前記第1,第2,第3の環状突出部は、同一径に形成されている、
ことを特徴とする板状部材。
The plate-like member according to claim 5,
The first, second and third annular protrusions are formed to have the same diameter,
A plate-like member.
請求項1ないし6のいずれか1つの請求項に記載の板状部材であって、
前記連絡溝内には、前記積層体を構成したときに隣接する前記熱交換部材間に前記所定の隙間を形成するための複数の外側ボス部と、前記熱交換部材を形成したときに対応する前記板状部材と当接して接合される複数の内側ボス部と、が形成されている、
ことを特徴とする板状部材。
The plate-like member according to any one of claims 1 to 6,
In the communication groove, a plurality of outer boss portions for forming the predetermined gaps between the adjacent heat exchange members when the laminated body is formed, and the heat exchange member are formed. A plurality of inner boss portions that are in contact with and joined to the plate-like member are formed,
A plate-like member.
請求項7記載の板状部材であって、
前記第1,第2の環状突出部,前記連絡溝,前記複数の外側ボス部,前記複数の内側ボス部は、それぞれ前記第3の孔を中心として対称となるように形成されている、
ことを特徴とする板状部材。
The plate-like member according to claim 7,
The first and second annular projecting portions, the communication groove, the plurality of outer boss portions, and the plurality of inner boss portions are formed so as to be symmetric with respect to the third hole, respectively.
A plate-like member.
請求項1ないし8のいずれか1つの請求項に記載の板状部材を用いて構成される熱交換器であって、
前記第3の積層方向流路は、前記積層体の一端側で流入管と流出管とのうち一方に接続され、
前記第2の積層方向流路は、前記積層体の一端側で前記流入管と前記流出管とのうち他方に接続され、
前記第1の積層方向流路と前記第3の積層方向流路とは、前記積層体の他端側で連絡部材によって連絡されている、
ことを特徴とする熱交換器。
A heat exchanger configured using the plate-like member according to any one of claims 1 to 8,
The third stacking direction flow path is connected to one of the inflow pipe and the outflow pipe on one end side of the stacked body,
The second stacking direction flow path is connected to the other of the inflow pipe and the outflow pipe on one end side of the stacked body,
The first stacking direction flow path and the third stacking direction flow path are communicated by a connecting member on the other end side of the stacked body,
A heat exchanger characterized by that.
JP2014003208U 2014-06-18 2014-06-18 Plate member and heat exchanger Expired - Lifetime JP3192720U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014003208U JP3192720U (en) 2014-06-18 2014-06-18 Plate member and heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014003208U JP3192720U (en) 2014-06-18 2014-06-18 Plate member and heat exchanger

Publications (1)

Publication Number Publication Date
JP3192720U true JP3192720U (en) 2014-08-28

Family

ID=78225567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014003208U Expired - Lifetime JP3192720U (en) 2014-06-18 2014-06-18 Plate member and heat exchanger

Country Status (1)

Country Link
JP (1) JP3192720U (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016099062A (en) * 2014-11-21 2016-05-30 三浦工業株式会社 Plate type heat exchanger
JP2016151392A (en) * 2015-02-18 2016-08-22 有限会社和氣製作所 Heat exchanger
JP2019095161A (en) * 2017-11-28 2019-06-20 パナソニックIpマネジメント株式会社 Heat exchanger and refrigeration system using the same
US20220196336A1 (en) * 2020-10-27 2022-06-23 Panasonic Intellectual Property Management Co., Ltd. Heat exchanger

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016099062A (en) * 2014-11-21 2016-05-30 三浦工業株式会社 Plate type heat exchanger
JP2016151392A (en) * 2015-02-18 2016-08-22 有限会社和氣製作所 Heat exchanger
JP2019095161A (en) * 2017-11-28 2019-06-20 パナソニックIpマネジメント株式会社 Heat exchanger and refrigeration system using the same
US20220196336A1 (en) * 2020-10-27 2022-06-23 Panasonic Intellectual Property Management Co., Ltd. Heat exchanger

Similar Documents

Publication Publication Date Title
JP6420140B2 (en) Oil cooler
JP3192720U (en) Plate member and heat exchanger
JP6126358B2 (en) Multi-plate oil cooler
JP5206830B2 (en) Heat exchanger
JP2017180856A (en) Heat exchanger
JP6660883B2 (en) Heat exchange plate for plate heat exchanger and plate heat exchanger provided with said heat exchange plate
JP3192719U (en) Plate member and heat exchanger
DK178441B1 (en) Method of producing a heat exchanger and a heat exchanger
JP2018189352A (en) Heat exchanger
JP6531328B2 (en) Heat exchanger and method of manufacturing the same
WO2014091850A1 (en) Multi-plate-stack-type heat exchanger, and core plate therefor
JP3199792U (en) Heat exchanger and manifold member used therefor
US10048014B2 (en) Plate heat exchanger with improved strength in port area
KR20080076222A (en) Laminated heat exchanger and fabricating method thereof
JP6306901B2 (en) Plate heat exchanger
JP2015121335A (en) Plate heat exchanger
JP6408855B2 (en) Heat exchanger
JP2012199421A (en) Plate type cooler and manufacturing method of the same
JP2018071938A (en) Method for manufacturing heat exchanger and heat exchanger
JP2015200445A (en) Heat exchanger and method of manufacturing heat exchanger
JPWO2015128900A1 (en) Heat transfer device
JP2013104591A (en) Heat exchanger
JP6720890B2 (en) Stacked heat exchanger
JP6771370B2 (en) Heat exchanger and its manufacturing method
JP2007017078A (en) Medium passage forming body for microchannel heat exchanger

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Ref document number: 3192720

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250