JP3159040U - Carbon nanotube heat sink - Google Patents

Carbon nanotube heat sink Download PDF

Info

Publication number
JP3159040U
JP3159040U JP2010001271U JP2010001271U JP3159040U JP 3159040 U JP3159040 U JP 3159040U JP 2010001271 U JP2010001271 U JP 2010001271U JP 2010001271 U JP2010001271 U JP 2010001271U JP 3159040 U JP3159040 U JP 3159040U
Authority
JP
Japan
Prior art keywords
layer
heat dissipation
holes
heat
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010001271U
Other languages
Japanese (ja)
Inventor
義則 山田
義則 山田
Original Assignee
有限会社ディアックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社ディアックス filed Critical 有限会社ディアックス
Priority to JP2010001271U priority Critical patent/JP3159040U/en
Application granted granted Critical
Publication of JP3159040U publication Critical patent/JP3159040U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

【課題】良好な熱伝導性を有するCuとMoから成る多層の放熱基板を提供する。【解決手段】Cu/Mo/Cuの3層構造を有する放熱基板又は5層以上の積層からなる放熱基板において、Cu層からMo層に達するスルーホールが複数形成され、さらにCu層から下層のCu層に達するスルーホールが複数形成され、スルーホール内にカーボンナノチューブが形成される。【選択図】図1AA multilayer heat dissipation substrate made of Cu and Mo having good thermal conductivity is provided. In a heat dissipation substrate having a three-layer structure of Cu / Mo / Cu or a heat dissipation substrate composed of five or more layers, a plurality of through-holes reaching from the Cu layer to the Mo layer are formed, and from the Cu layer to the lower layer Cu A plurality of through holes reaching the layer are formed, and carbon nanotubes are formed in the through holes. [Selection] Figure 1A

Description

本考案は搭載される電子部品から発生する熱を良好に放散させる放熱板に関する。  The present invention relates to a heat radiating plate that dissipates heat generated from electronic components to be mounted well.

半導体素子を含む電子部品を収納するパッケージは、電子部品を直接に搭載する基板とこれにセラミックなどの枠体を取り付けた基体として構成されるのが一般的である。その基板には熱伝導性に優れた放熱部材が必要であり、またそれに搭載される電子部品との熱膨張係数、及びセラミックなどの枠体と熱膨張係数が適合していることが必要になる。  A package for storing an electronic component including a semiconductor element is generally configured as a substrate on which the electronic component is directly mounted and a base body having a frame such as ceramic attached thereto. The substrate must have a heat dissipation member with excellent thermal conductivity, and must have a thermal expansion coefficient compatible with the electronic components mounted on it and a thermal expansion coefficient compatible with a frame such as ceramic. .

例えば、特許文献1には銅(Cu)/モリブデン(Mo)/銅(Cu)の3層から成る基板のモリブデンの体積比を変えることにより熱伝導率と熱膨張係数を制御できることが開示されている。また特許文献2には、CuとMoを交互に5層以上積層した基板において各層の厚さを変えることにより熱伝導性を損なわずに熱膨張係数を制御できることを開示している。これらはいずれもMoの熱膨張係数(CTE=5.1×10−6/K)がSi(CTE=4.2×10−6/K)やアルミナセラミック(CTE=6.5×10−6/K)に近いことを利用しているのであるが、Moの熱伝導率(142W/mK)はCu(398W/mK)に比べて低く、CuとMoの積層による放熱基板を製作しようとすると熱伝導性を犠牲にするか、アルミナセラミックなどとの熱膨張係数の適合性を犠牲にするかの選択になる。ちなみにCuの熱膨張係数は17.8×10−6/KでアルミナセラミックやSiには全く適合していない。特にパッケージを製作する場合にはセラミック枠と放熱基板との高温(約800℃)のロウ付け工程があり、耐熱性も確保しなければならないなどの制約もある。For example, Patent Document 1 discloses that the thermal conductivity and the thermal expansion coefficient can be controlled by changing the volume ratio of molybdenum in a substrate composed of three layers of copper (Cu) / molybdenum (Mo) / copper (Cu). Yes. Patent Document 2 discloses that the thermal expansion coefficient can be controlled without impairing the thermal conductivity by changing the thickness of each layer in a substrate in which five or more layers of Cu and Mo are alternately laminated. In any of these, the thermal expansion coefficient of Mo (CTE = 5.1 × 10 −6 / K) is Si (CTE = 4.2 × 10 −6 / K) or alumina ceramic (CTE = 6.5 × 10 −6). The thermal conductivity of Mo (142 W / mK) is lower than that of Cu (398 W / mK), and an attempt is made to produce a heat dissipation substrate by stacking Cu and Mo. The choice is between sacrificing thermal conductivity or compatibility of thermal expansion coefficient with alumina ceramic or the like. Incidentally, the thermal expansion coefficient of Cu is 17.8 × 10 −6 / K, which is not suitable for alumina ceramic or Si. In particular, when a package is manufactured, there is a high temperature (about 800 ° C.) brazing process between the ceramic frame and the heat dissipation substrate, and there is a restriction that heat resistance must also be ensured.

特許文献2には半導体やアルミナセラミックに近い熱膨張係数を持つ3層構造と多層構造の放熱材の例があげられてる。3層構造についてはCu(400μm)/Mo(1200μm)/Cu(400μm)、多層構造についてはCu(400μm)/Mo(50μm)/Cu(400μm)/Mo(50μm)/Cu(400μm)である。これら両者の熱伝導性については特に言及されていないが、Moの熱伝導率が低いことから3層構造の熱伝導性は多層構造に比べて低いことは明らかである。しかし製作面では3層構造が簡便であることも明らかである。  Patent Document 2 gives an example of a heat dissipation material having a three-layer structure and a multilayer structure having a thermal expansion coefficient close to that of a semiconductor or alumina ceramic. For a three-layer structure, Cu (400 μm) / Mo (1200 μm) / Cu (400 μm), and for a multilayer structure, Cu (400 μm) / Mo (50 μm) / Cu (400 μm) / Mo (50 μm) / Cu (400 μm). . The thermal conductivity of both of these is not particularly mentioned, but it is clear that the thermal conductivity of the three-layer structure is lower than that of the multilayer structure because of the low thermal conductivity of Mo. However, it is clear that the three-layer structure is simple in terms of manufacturing.

特開平6−268115JP-A-6-268115 特開2007−115731JP 2007-115731 A

上述のように、Cu/Mo/Cu及びCuとMoの多層構造による放熱基板は、CuとMoの体積比を変えることにより熱膨張係数を電子部品やセラミックの熱膨張係数に近づけることが可能であり、電子部品収納用のパッケージとしてこれまで多く使用されてきている。しかし電力用半導体(スイッチング素子や高周波電力素子など)のような発熱素子に対しての熱伝導性は不十分であり改良する必要がある。  As described above, the heat dissipation substrate having a multilayer structure of Cu / Mo / Cu and Cu and Mo can make the thermal expansion coefficient close to that of electronic components and ceramics by changing the volume ratio of Cu and Mo. There have been many used as packages for storing electronic components. However, the thermal conductivity with respect to a heating element such as a power semiconductor (such as a switching element or a high frequency power element) is insufficient and needs to be improved.

本考案は上記の点に鑑みてなされたもので、極めて高い熱伝導率を有するカーボンナノチューブをCu/Mo/Cuの3層構造及びCuとMoの5層以上の積層からなる基板に好適に埋め込むことにより基板が有する熱伝導性を改良するものである。なおカーボンナノチューブは一般にCuの10倍の熱伝導率(約4000W/mK)を持っていると言われており、極めて熱伝導性が良い。  The present invention has been made in view of the above points, and carbon nanotubes having extremely high thermal conductivity are preferably embedded in a substrate composed of a three-layer structure of Cu / Mo / Cu and a laminate of five or more layers of Cu and Mo. This improves the thermal conductivity of the substrate. Carbon nanotubes are generally said to have a thermal conductivity 10 times that of Cu (approximately 4000 W / mK), and have extremely good thermal conductivity.

本考案では、Cu/Mo/Cuの3層構造を有する放熱基板において、前記放熱基板上層のCu層からMo層に達するスルーホールが複数形成され、さらに前記放熱基板上層のCu層から下層のCu層に達するスルーホールが複数形成され、前記スルーホール内にカーボンナノチューブが形成されたことを特徴とする。  In the present invention, in the heat dissipation substrate having a three-layer structure of Cu / Mo / Cu, a plurality of through holes reaching the Mo layer from the Cu layer on the heat dissipation substrate are formed, and further, the Cu layer on the lower layer from the Cu layer on the heat dissipation substrate. A plurality of through holes reaching the layer are formed, and carbon nanotubes are formed in the through holes.

また最上層と最下層をCu層とし、Cu層とMo層が交互に5層以上積層された放熱基板において、放熱基板最上層の第1のCu層から下層側の第2のCu層に達するスルーホールが複数形成され、前記スルーホール内にカーボンナノチューブが形成されたことを特徴とする。  In the heat dissipation substrate in which the uppermost layer and the lowermost layer are Cu layers, and five or more Cu layers and Mo layers are alternately stacked, the first Cu layer on the uppermost layer of the heat dissipation substrate reaches the second Cu layer on the lower layer side. A plurality of through holes are formed, and carbon nanotubes are formed in the through holes.

前述の放熱基板において、放熱基板最上層の第1のCu層から下層側の第3のCu層に達するスルーホールが複数形成されたことを特徴とする。  The above-described heat dissipation board is characterized in that a plurality of through holes are formed from the first Cu layer on the uppermost layer of the heat dissipation board to the third Cu layer on the lower layer side.

以上の放熱板構造を採用することにより、カーボンナノチューブの極めて高い熱伝導性を利用することができ、Cu/Mo/Cu構造及び多層構造の放熱基板が有する熱膨張係数を変えずに熱伝導性が改良できる。  By adopting the above heat sink structure, the extremely high thermal conductivity of the carbon nanotube can be utilized, and the thermal conductivity is maintained without changing the thermal expansion coefficient of the heat dissipation board of Cu / Mo / Cu structure and multilayer structure. Can be improved.

本考案の実施形態における放熱基材の例を示す断面図Sectional drawing which shows the example of the thermal radiation base material in embodiment of this invention 本考案の実施形態における放熱基材の例を示す外観図External view showing an example of a heat dissipating base material in an embodiment of the present invention 本考案の実施形態における放熱基材の別の実施例を示す断面図Sectional drawing which shows another Example of the thermal radiation base material in embodiment of this invention 本考案の実施形態における放熱基材の別の実施例を示す断面図Sectional drawing which shows another Example of the thermal radiation base material in embodiment of this invention 本考案の実施形態における放熱基材の別の実施例を示す断面図Sectional drawing which shows another Example of the thermal radiation base material in embodiment of this invention 本考案の実施形態における放熱基材の別の実施例を示す外観図The external view which shows another Example of the thermal radiation base material in embodiment of this invention 本考案の放熱基材を使用したパッケージの概略断面図Schematic sectional view of a package that uses the heat dissipation substrate of the present invention

以下、本考案の実施の形態を図に基づいて説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1Aは本考案の一つの実施形態を示しており、図1Bに示すa−a’の断面図である。第1のCu層1、Mo層2、第2のCu層3から成る3層構造の放熱基板において、第1のCu層1からMo層2に至るスルーホールが複数形成され、そのスルーホール内部にカーボンナノチューブ4が形成される。同様に第1のCu層1から第2のCu層3に至るスルーホールを複数形成し、そのスルーホール内部にカーボンナノチューブ5を形成する。特許文献1によると放熱基材の熱膨張係数を約8×10−6(/K)とするには、Cu(400μm)/Mo(1200μm)/Cu(400μm)の構造となる。Cu層に比べて熱伝導率の低いMo層が厚い構造となり、放熱基板の熱抵抗は良いとは言えない。なお上記の熱膨張係数はアルミナセラミック(6.5×10−6(/K))に近いものである。ちなみにMoの熱伝導率は142W/mK、Cuは398W/mKであり、Moの熱伝導性はCuに比べて低い。FIG. 1A shows one embodiment of the present invention, and is a cross-sectional view taken along the line aa ′ shown in FIG. 1B. In the heat dissipation substrate having a three-layer structure including the first Cu layer 1, the Mo layer 2, and the second Cu layer 3, a plurality of through holes extending from the first Cu layer 1 to the Mo layer 2 are formed. Thus, the carbon nanotube 4 is formed. Similarly, a plurality of through holes extending from the first Cu layer 1 to the second Cu layer 3 are formed, and carbon nanotubes 5 are formed inside the through holes. According to Patent Document 1, in order to set the thermal expansion coefficient of the heat dissipation base material to about 8 × 10 −6 (/ K), the structure is Cu (400 μm) / Mo (1200 μm) / Cu (400 μm). The Mo layer having a lower thermal conductivity than the Cu layer has a thick structure, and the heat resistance of the heat dissipation substrate cannot be said to be good. The thermal expansion coefficient is close to that of alumina ceramic (6.5 × 10 −6 (/ K)). Incidentally, the thermal conductivity of Mo is 142 W / mK, Cu is 398 W / mK, and the thermal conductivity of Mo is lower than that of Cu.

図1Bは外観図であるが、カーボンナノチューブが埋め込まれた浅いスルーホール4と深いスルーホール5は特定の領域に複数形成するのが良いが、特定の領域とは電子部品、特に発熱のある半導体素子が実装される領域である。カーボンナノチューブが埋め込まれたスルーホール4、5は図1Aに示すように交互に配置されるのが好ましいが、配置の方法について特に限定しなくとも本考案の目的は達成できる。  Although FIG. 1B is an external view, a plurality of shallow through holes 4 and deep through holes 5 in which carbon nanotubes are embedded may be formed in a specific region. The specific region is an electronic component, particularly a semiconductor that generates heat. This is a region where elements are mounted. The through holes 4 and 5 in which the carbon nanotubes are embedded are preferably arranged alternately as shown in FIG. 1A, but the object of the present invention can be achieved even if the arrangement method is not particularly limited.

カーボンナノチューブは熱伝導率が極めて高く、一般に約4000W/mKであると言われるが、熱はカーボンナノチューブの細い線に沿って伝わり線の外には熱が伝わらない。図1Aの放熱基板のカーボンナノチューブ4、5において、熱は基板の縦方向には極めて高い熱伝導率で伝わるが、基板の横方向には熱が伝わり難いことを意味している。一方で放熱基板の上部に発熱源がある場合、放熱性を良くするためには放熱基板全体に熱が伝わることが必要であり、放熱基板は厚い方が熱が広がり易いことになる。カーボンナノチューブ4はMo(1200μm)/Cu(400μm)の厚い基板層に熱を伝えそして横方向に熱を伝え易くすることを目的とし、カーボンナノチューブ5は熱伝導率の良いCu層3に熱を伝えることを目的としている。但しCu層3は薄いため横方向に熱が十分に伝わることは期待できないため、放熱基板表面に想定される熱を直接縦方向に放熱させる役割を持つ。なお本考案で言うところのカーボンナノチューブは束状になっているものを言う。  Carbon nanotubes have extremely high thermal conductivity and are generally said to be about 4000 W / mK, but heat is transferred along the thin lines of the carbon nanotubes, and heat is not transferred outside the lines. In the carbon nanotubes 4 and 5 of the heat dissipation substrate in FIG. 1A, heat is transmitted with extremely high thermal conductivity in the vertical direction of the substrate, but it is difficult to transfer heat in the horizontal direction of the substrate. On the other hand, when there is a heat generation source above the heat dissipation board, heat must be transmitted to the entire heat dissipation board in order to improve heat dissipation, and the thicker the heat dissipation board, the easier the heat spreads. The purpose of the carbon nanotubes 4 is to transfer heat to a thick substrate layer of Mo (1200 μm) / Cu (400 μm) and facilitate heat transfer in the lateral direction, and the carbon nanotubes 5 transfer heat to the Cu layer 3 having good thermal conductivity. The purpose is to convey. However, since the Cu layer 3 is thin, it cannot be expected that heat is sufficiently transmitted in the lateral direction, and thus has a role of directly radiating heat assumed on the surface of the heat dissipation substrate in the vertical direction. Note that the carbon nanotubes referred to in the present invention are bundles.

図2AはCu6/Mo7/Cu8/Mo9/Cu10の5層構造からなる放熱基板の例を示している。カーボンナノチューブを埋め込んだスルーホール11は基板最上層より第1のCu層6から第2のCu層8に至るように形成している。なお特許文献1によると各金属層の厚さの一例として、Cu6(400μm)/Mo7(50μm)/Cu8(400μm)/Mo9(50μm)/Cu10(400μm)がアルミナセラミックの熱膨張係数に近いものである。熱伝導性の良いCu層8に熱を伝えると共にCu8/Mo9/Cu10までを含めた金属積層が比較的厚いために横方向に熱が伝わり易くなるため、カーボンナノチューブを形成しない場合に比べて放熱性は改良できる。  FIG. 2A shows an example of a heat dissipation substrate having a five-layer structure of Cu6 / Mo7 / Cu8 / Mo9 / Cu10. The through hole 11 in which the carbon nanotube is embedded is formed so as to extend from the first Cu layer 6 to the second Cu layer 8 from the uppermost layer of the substrate. According to Patent Document 1, as an example of the thickness of each metal layer, Cu6 (400 μm) / Mo7 (50 μm) / Cu8 (400 μm) / Mo9 (50 μm) / Cu10 (400 μm) is close to the thermal expansion coefficient of alumina ceramic. It is. Heat is transferred to the Cu layer 8 having good thermal conductivity and heat is easily transferred in the lateral direction because the metal stack including Cu8 / Mo9 / Cu10 is relatively thick. Sex can be improved.

図2Bは図2Aのカーボンナノチューブ11の他に第3のCu層10に達するスルーホール12を形成している例であり、図2Aと同様の効果が期待されるが、製作がやや煩雑になる欠点がある。図2Bに示すように、カーボンナノチューブを埋め込んだ浅いスルーホールと深いスルーホールは交互に配置するのが好ましいが、特に限定するものではない。  FIG. 2B is an example in which a through hole 12 reaching the third Cu layer 10 is formed in addition to the carbon nanotube 11 of FIG. 2A, and the same effect as that of FIG. 2A is expected, but the production is somewhat complicated. There are drawbacks. As shown in FIG. 2B, the shallow through holes and the deep through holes in which the carbon nanotubes are embedded are preferably arranged alternately, but are not particularly limited.

ちなみに特許文献2によるとCuとMoの多数積層は、最上層と最下層がCuとなるようにCuとMoが交互に積層された構造を採るのが良く、本考案でも5層以上の積層基板は同じ構造に従っている。  By the way, according to Patent Document 2, it is good to adopt a structure in which Cu and Mo are laminated in such a manner that Cu and Mo are alternately laminated so that the uppermost layer and the lowermost layer are Cu. Follows the same structure.

図3A、Bは、カーボンナノチューブが埋め込まれた複数のスルーホール領域に電解めっきなどで金属皮膜13を形成した例である。本考案の放熱基板をパッケージに適用した場合、上記のスルーホール領域には半導体素子が半田などで実装されるため実装し易くなる利点がある。金属皮膜としてはCu、Ni、Auあるいはこれらの積層構造が使用できる。  3A and 3B show an example in which a metal film 13 is formed by electrolytic plating or the like in a plurality of through-hole regions in which carbon nanotubes are embedded. When the heat dissipation board of the present invention is applied to a package, the semiconductor element is mounted in the above-described through-hole region with solder or the like, so that there is an advantage that mounting is easy. As the metal film, Cu, Ni, Au, or a laminated structure thereof can be used.

以下本考案の放熱板の製作について図1A、Bを例に簡単に記述する。先ずスルーホール4はフォトレジストを用いたフォトリソグラフィーにより放熱基材上面にスルーホールパターンを介してエッチングで形成する。Cuのエッチングは塩化第二鉄を主成分とする溶液エッチング液(FeCl3、Fe(NO3)3、水)を使用することができる。この後、スパッタリング法などによりTiN膜を形成し、Co粒子の分散及びCo膜を形成した後にフォトレジストを溶解してスルーホール以外のTiN膜、Co粒子及びCo膜を除去する。同様にしてフォトリソグラフィーとエッチングを使用してスルーホール5を形成し、スルーホール内部にのみTiN膜、Co粒子の分散及びCo膜を形成する。その後アセチレン及びアルゴンガスの混合ガスを用いた熱CVD法によりスルーホール内にカーボンナノチューブを成長させる。成長したカーボンナノチューブは基板表面から伸び出しているので、フォトレジストなどの樹脂で基板表面を覆いCMP(Chemical−Mecahanical Polishing)で表面を研削して平坦化する。フォトレジストの代わりに電解めっきにより金属膜を形成して、CMPにより平坦化することもできる。この場合には図3A、Bの放熱板構造が実現できる。なおMoのエッチング液は燐酸系(H3PO4、HNO3)を使用することができる。  The production of the heat sink of the present invention will be briefly described below with reference to FIGS. 1A and 1B. First, the through hole 4 is formed by etching through the through hole pattern on the upper surface of the heat dissipating base material by photolithography using a photoresist. For etching Cu, a solution etching solution (FeCl 3, Fe (NO 3) 3, water) containing ferric chloride as a main component can be used. Thereafter, a TiN film is formed by sputtering or the like, and after the dispersion of Co particles and the Co film are formed, the photoresist is dissolved to remove the TiN film, Co particles, and Co film other than the through holes. Similarly, the through hole 5 is formed using photolithography and etching, and a TiN film, a dispersion of Co particles, and a Co film are formed only inside the through hole. Thereafter, carbon nanotubes are grown in the through holes by a thermal CVD method using a mixed gas of acetylene and argon gas. Since the grown carbon nanotubes extend from the substrate surface, the substrate surface is covered with a resin such as a photoresist, and the surface is ground and flattened by CMP (Chemical-Mechanical Polishing). It is also possible to form a metal film by electrolytic plating instead of the photoresist and planarize by CMP. In this case, the heat sink structure shown in FIGS. 3A and 3B can be realized. As the Mo etching solution, phosphoric acid (H3PO4, HNO3) can be used.

図4には本考案によるCu/Mo/Cuの放熱板を使用してパッケージを製作した例を示す。Cu/Mo/Cuはその厚さの比によりセラミック枠16の熱膨張係数に近くすることができるので高温でロウ付けすることが可能である。また発熱素子である半導体素子14はカーボンナノチューブが埋め込まれたスルーホール領域の金属皮膜上に半田などて実装される。スルーホールの数は特に限定しないが、限られた領域に高い密度で形成するのは放熱板の強度を落とすことになるため配慮すべきである。  FIG. 4 shows an example in which a package is manufactured using a Cu / Mo / Cu heat sink according to the present invention. Since Cu / Mo / Cu can be made close to the thermal expansion coefficient of the ceramic frame 16 depending on the ratio of its thickness, it can be brazed at a high temperature. Further, the semiconductor element 14 which is a heating element is mounted by soldering or the like on the metal film in the through-hole region in which the carbon nanotube is embedded. Although the number of through holes is not particularly limited, it should be taken into account that forming a high density in a limited area reduces the strength of the heat sink.

本考案はCu/Mo/Cuの3層構造の放熱板にカーボンナノチューブを埋め込み、熱伝導性を改良するものである。またCuとMoを5層以上積層した構造の放熱板の熱伝導性を改良するものである。高電力のスイッチング素子、高周波用の電力素子、高輝度LEDなどの発熱素子のパッケージに使用すると、従来構造CuとMoの積層基板によるパッケージに比べて半導体素子の高信頼化、高性能化を図ることができる。  The present invention improves the thermal conductivity by embedding carbon nanotubes in a heat sink with a three-layer structure of Cu / Mo / Cu. Moreover, it improves the thermal conductivity of a heat sink having a structure in which five or more layers of Cu and Mo are laminated. When used in a package of a heating element such as a high-power switching element, a high-frequency power element, or a high-brightness LED, the reliability and performance of the semiconductor element are improved compared to a package using a conventional Cu and Mo laminated substrate. be able to.

1、6 第1のCu層
3、8 第2のCu層
10 第3のCu層
2、7、9 Mo層
4、11 カーボンナノチューブが埋め込まれた浅いスルーホール
5、12 カーボンナノチューブが埋め込まれた深いスルーホール
13 金属皮膜
14 半導体素子
15 配線
16 セラミック枠
17 リード
1, 6 First Cu layer 3, 8 Second Cu layer 10 Third Cu layer 2, 7, 9 Mo layer 4, 11 Shallow through-hole with carbon nanotube embedded 5, 12 Carbon nanotube embedded Deep through hole 13 Metal film 14 Semiconductor element 15 Wiring 16 Ceramic frame 17 Lead

Claims (3)

Cu/Mo/Cuの3層構造を有する放熱基板において、前記放熱基板上層のCu層からMo層に達するスルーホールが複数形成され、さらに前記放熱基板上層のCu層から下層のCu層に達するスルーホールが複数形成され、前記スルーホール内にカーボンナノチューブが形成されたことを特徴とする放熱基板。  In the heat dissipation board having a three-layer structure of Cu / Mo / Cu, a plurality of through holes reaching the Mo layer from the upper Cu layer of the heat dissipation board are formed, and further, the through hole reaching the lower Cu layer from the upper Cu layer of the heat dissipation board A heat dissipation substrate, wherein a plurality of holes are formed, and carbon nanotubes are formed in the through holes. 最上層と最下層をCu層とし、Cu層とMo層が交互に5層以上積層された放熱基板において、放熱基板最上層の第1のCu層から下層側に設けられた第2のCu層に達するスルーホールが複数形成され、前記スルーホール内にカーボンナノチューブが形成されたことを特徴とする放熱基板。  In the heat dissipation substrate in which the uppermost layer and the lowermost layer are Cu layers and five or more Cu layers and Mo layers are alternately laminated, the second Cu layer provided on the lower layer side from the first Cu layer of the uppermost layer of the heat dissipation substrate A heat radiating substrate, wherein a plurality of through-holes reaching the diameter are formed, and carbon nanotubes are formed in the through-holes. 請求項2に記載の放熱基板において、放熱基板最上層の第1のCu層から下層側に設けられた第3のCu層に達するスルーホールが複数形成されたことを特徴とする放熱基板。  3. The heat dissipation board according to claim 2, wherein a plurality of through holes are formed from the first Cu layer of the uppermost layer of the heat dissipation board to a third Cu layer provided on the lower layer side.
JP2010001271U 2010-02-09 2010-02-09 Carbon nanotube heat sink Expired - Fee Related JP3159040U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010001271U JP3159040U (en) 2010-02-09 2010-02-09 Carbon nanotube heat sink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010001271U JP3159040U (en) 2010-02-09 2010-02-09 Carbon nanotube heat sink

Publications (1)

Publication Number Publication Date
JP3159040U true JP3159040U (en) 2010-05-06

Family

ID=54862347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010001271U Expired - Fee Related JP3159040U (en) 2010-02-09 2010-02-09 Carbon nanotube heat sink

Country Status (1)

Country Link
JP (1) JP3159040U (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10256188B2 (en) 2016-11-26 2019-04-09 Texas Instruments Incorporated Interconnect via with grown graphitic material
US10283688B2 (en) 2016-08-22 2019-05-07 Nichia Corporation Light emitting device
US10529641B2 (en) 2016-11-26 2020-01-07 Texas Instruments Incorporated Integrated circuit nanoparticle thermal routing structure over interconnect region
US10811334B2 (en) 2016-11-26 2020-10-20 Texas Instruments Incorporated Integrated circuit nanoparticle thermal routing structure in interconnect region
US10861763B2 (en) 2016-11-26 2020-12-08 Texas Instruments Incorporated Thermal routing trench by additive processing
US11004680B2 (en) 2016-11-26 2021-05-11 Texas Instruments Incorporated Semiconductor device package thermal conduit

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10283688B2 (en) 2016-08-22 2019-05-07 Nichia Corporation Light emitting device
US10256188B2 (en) 2016-11-26 2019-04-09 Texas Instruments Incorporated Interconnect via with grown graphitic material
US10529641B2 (en) 2016-11-26 2020-01-07 Texas Instruments Incorporated Integrated circuit nanoparticle thermal routing structure over interconnect region
US10790228B2 (en) 2016-11-26 2020-09-29 Texas Instruments Incorporated Interconnect via with grown graphitic material
US10811334B2 (en) 2016-11-26 2020-10-20 Texas Instruments Incorporated Integrated circuit nanoparticle thermal routing structure in interconnect region
US10861763B2 (en) 2016-11-26 2020-12-08 Texas Instruments Incorporated Thermal routing trench by additive processing
US11004680B2 (en) 2016-11-26 2021-05-11 Texas Instruments Incorporated Semiconductor device package thermal conduit

Similar Documents

Publication Publication Date Title
JP3159040U (en) Carbon nanotube heat sink
JP5356972B2 (en) Heat dissipating component, manufacturing method thereof, and semiconductor package
JP5788854B2 (en) Circuit board
EP1848035B1 (en) Semiconductor device with integrated heat spreader
JP5250707B2 (en) Electronic equipment substrate and electronic equipment
JP2006108377A (en) Carbon nanotube structure, semiconductor device and semiconductor package
JP2012009828A (en) Multilayer circuit board
JP2010080572A (en) Electronic equipment
JP2011086700A (en) Heat dissipating part
JP2013243263A (en) Combination of power supply and heat dissipation (cooling) in three-dimensional laminate package
TWI690246B (en) Built-in longitudinal heat dissipation ceramic block printed circuit board and circuit assembly with the circuit board
TW200806160A (en) High heat conductive substrate and manufacturing method thereof
KR101260179B1 (en) A Laminated Heat Dissipating Plate and An Electronic Assembly Structure Using the Same
JP5709719B2 (en) Electronic component support apparatus and electronic device
JP6119111B2 (en) Circuit board, circuit board manufacturing method, electronic device, and electronic device manufacturing method
JP2012074591A (en) Circuit board and electronic divice
JP2012084786A (en) Led package
JP6327513B2 (en) Semiconductor device and manufacturing method thereof
JP2009117489A (en) Semiconductor device package and mounting substrate
JP2012195464A (en) Ceramic multilayer substrate and manufacturing method of the same
JP2009188366A (en) Integral semiconductor heat dissipating substrate and its manufacturing method
JP2006310806A (en) Heat dissipation member, substrate for mounting electronic component, package for housing electronic component and electronic apparatus
JP2005223348A (en) Multilayer substrate
JP2019075564A (en) Heat sink plate
JP3975910B2 (en) Radiator

Legal Events

Date Code Title Description
R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees