JP2005223348A - Multilayer substrate - Google Patents

Multilayer substrate Download PDF

Info

Publication number
JP2005223348A
JP2005223348A JP2005058708A JP2005058708A JP2005223348A JP 2005223348 A JP2005223348 A JP 2005223348A JP 2005058708 A JP2005058708 A JP 2005058708A JP 2005058708 A JP2005058708 A JP 2005058708A JP 2005223348 A JP2005223348 A JP 2005223348A
Authority
JP
Japan
Prior art keywords
heat sink
multilayer substrate
substrate
heat
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005058708A
Other languages
Japanese (ja)
Other versions
JP3818310B2 (en
Inventor
Yasutomi Asai
浅井  康富
Takashi Nagasaka
長坂  崇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2005058708A priority Critical patent/JP3818310B2/en
Publication of JP2005223348A publication Critical patent/JP2005223348A/en
Application granted granted Critical
Publication of JP3818310B2 publication Critical patent/JP3818310B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48475Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball
    • H01L2224/48476Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area
    • H01L2224/48491Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area being an additional member attached to the bonding area through an adhesive or solder, e.g. buffer pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently radiate heat generated by power devices including semiconductor devices. <P>SOLUTION: A multilayer substrate 2 is formed by stacking three insulating layers 1a, 1b and 1c comprising alumina. In the insulating layer 1a of the multilayer substrate 2, a heat sink S1 comprising filler metal 4a as a conductor for heat transfer is formed, and in the insulating layer 1b beneath the layer 1a, a heat sink S2 comprising filler metal 4b as a conductor for heat transfer is formed. The heat sinks S1, S2 are arranged laterally in the figure, which is parallel with respect to a surface layer of the multilayer substrate 2. In the substrate, the lateral length of the heat sink S2 is longer than the lateral length of the heat sink S1, and both the heat sinks S1, S2 are formed pyramidally. A power device 6 is mounted on the heat sink S1. Heat generated in the power device 6 is transferred through the heat sinks S1, S2 and radiated downward at about 45 degrees. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は多層基板に関するものである。   The present invention relates to a multilayer substrate.

従来、多層基板においては、例えば図14に示すように、多層よりなるセラミック基板31上にCuやAgよりなる厚膜導体32が印刷焼成にて形成され、その上に半田33を介してMoやCuよりなるヒートシンク34が配置され、さらにその上に半田35を介してパワー素子36が実装されている。尚、図中、37はワイヤであり、38はチップターミナルである。   Conventionally, in a multilayer substrate, for example, as shown in FIG. 14, a thick film conductor 32 made of Cu or Ag is formed on a ceramic substrate 31 made of multilayer by printing and firing. A heat sink 34 made of Cu is disposed, and a power element 36 is mounted thereon via a solder 35. In the figure, 37 is a wire and 38 is a chip terminal.

ところが、上記の如くセラミック基板31上にヒートシンク34を配置する構造では、過渡的な熱抵抗を下げ、且つヒートシンク34のコストダウン及び実装容積の縮小を実現することは困難であった。そこで、従来、半導体素子直下の多層基板にスルーホールを形成し、そこに金属ペーストを充填してヒートシンクとして用いた多層基板が提案されている(例えば、特開平3−286590号公報)。   However, in the structure in which the heat sink 34 is arranged on the ceramic substrate 31 as described above, it is difficult to reduce the transient thermal resistance, and to reduce the cost of the heat sink 34 and the mounting volume. In view of this, there has conventionally been proposed a multilayer substrate in which a through hole is formed in a multilayer substrate immediately below a semiconductor element and a metal paste is filled therein and used as a heat sink (for example, Japanese Patent Laid-Open No. 3-286590).

しかしながら、上記従来技術(上記公報)では、ヒートシンクが半導体素子に対して垂直方向にしか形成されておらず、放熱性においては垂直方向のみにその効果が得られるだけであり、ヒートシンクとしての効果が十分に発揮されていない。即ち、半導体素子による発熱は、半導体素子直下の基板に対して広角に(ほぼ45°下方に)発散するように考えることができる。従って、上記公報のように半導体素子の下方のみにヒートシンクを形成したとしても45°方向に広がる熱までも十分に放熱することができない。   However, in the above prior art (the above publication), the heat sink is formed only in the vertical direction with respect to the semiconductor element, and in terms of heat dissipation, the effect is obtained only in the vertical direction. It is not fully demonstrated. That is, the heat generated by the semiconductor element can be considered to diverge at a wide angle (approximately 45 ° downward) with respect to the substrate immediately below the semiconductor element. Therefore, even if a heat sink is formed only below the semiconductor element as in the above publication, heat that spreads in the 45 ° direction cannot be sufficiently dissipated.

そこで、この発明は上記課題に着目してなされたものであって、その目的は、半導体素子等、パワー素子による発熱を効率的に放熱することができる多層基板を提供することにある。   Accordingly, the present invention has been made paying attention to the above problems, and an object thereof is to provide a multilayer substrate capable of efficiently dissipating heat generated by a power element such as a semiconductor element.

請求項1に記載の発明は、複数の絶縁層からなり基板表層にパワー素子が搭載されると共に、パワー素子下部領域の絶縁層に熱伝達用導体からなるヒートシンクを設けた多層基板であって、前記ヒートシンクは、前記パワー素子下方の絶縁層に設けられた第1のヒートシンク部と、その第1のヒートシンク部よりも下方の絶縁層に設けられ、前記基板表層に平行となる方向に延びる第2のヒートシンク部とを有し、前記第2のヒートシンク部の面積を前記第1のヒートシンク部の面積よりも大きくするとともに、前記第1のヒートシンク部及び第2のヒートシンク部の中心を同一にして両ヒートシンク部を配置している。   The invention according to claim 1 is a multilayer substrate in which a power element is mounted on a surface layer of a substrate made of a plurality of insulating layers, and a heat sink made of a heat transfer conductor is provided on an insulating layer in a lower region of the power element, The heat sink is provided in a first heat sink portion provided in an insulating layer below the power element, and in a second insulating layer provided below the first heat sink portion and extending in a direction parallel to the substrate surface layer. The area of the second heat sink part is larger than the area of the first heat sink part, and the centers of the first heat sink part and the second heat sink part are the same. A heat sink is arranged.

請求項1に記載の発明によれば、半導体素子等、パワー素子により発生した熱は、第1のヒートシンク部並びに第2のヒートシンク部により吸収、発散される。このとき、第2のヒートシンク部は、第1のヒートシンク部よりも下方であって且つ基板表層に平行となる少なくとも一方向に延設されているため、パワー素子による熱は基板表層に垂直な方向だけでなく他の方向にも放熱され、放熱性が向上する。つまり、熱が例えばパワー素子の下方45°に伝達されるとした場合にも、その際に最も効果的なヒートシンクを多層基板内に設けることが可能となる。また、請求項1に記載の発明によれば、第2のヒートシンク部の面積を第1のヒートシンク部の面積よりも大きくするとともに、第1のヒートシンク部及び第2のヒートシンク部の中心を同一にして両ヒートシンク部を配置しているため、パワー素子による発熱が拡散しながら伝達されることから、より効率の良い放熱が可能となるとともに、ヒートシンクがピラミッド状に積層されることになるため、広角な範囲での放熱が可能となる。   According to the first aspect of the present invention, heat generated by the power element such as a semiconductor element is absorbed and dissipated by the first heat sink part and the second heat sink part. At this time, since the second heat sink portion extends below at least one direction below the first heat sink portion and parallel to the substrate surface layer, the heat from the power element is perpendicular to the substrate surface layer. In addition to heat dissipation in other directions, heat dissipation is improved. That is, even when heat is transmitted to, for example, 45 ° below the power element, the most effective heat sink can be provided in the multilayer substrate. According to the first aspect of the present invention, the area of the second heat sink part is made larger than the area of the first heat sink part, and the centers of the first heat sink part and the second heat sink part are made the same. Since both heat sinks are arranged, the heat generated by the power element is transmitted while diffusing, enabling more efficient heat dissipation and the heat sink being stacked in a pyramid shape. Heat dissipation within a wide range.

請求項2に記載の発明では、複数の絶縁層からなり基板表層にパワー素子が搭載されると共に、パワー素子下部領域の絶縁層に熱伝達用導体からなるヒートシンクを設けた多層基板であって、前記ヒートシンクは、前記パワー素子下方の絶縁層に設けられた第1のヒートシンク部と、その第1のヒートシンク部よりも下方の絶縁層に設けられ、前記基板表層に平行となる方向に延びる第2のヒートシンク部とを有し、前記第1のヒートシンク部及び第2のヒートシンク部は、一部が上下に重なった状態で、かつ前記パワー素子を制御するための制御回路から離れる方向にずらして配置している。   In the invention according to claim 2, the power element is mounted on the surface layer of the substrate made of a plurality of insulating layers, and the multilayer substrate is provided with a heat sink made of a heat transfer conductor on the insulating layer in the lower region of the power element, The heat sink is provided in a first heat sink portion provided in an insulating layer below the power element, and in a second insulating layer provided below the first heat sink portion and extending in a direction parallel to the substrate surface layer. The first heat sink portion and the second heat sink portion are arranged in a state where a part of the first heat sink portion and the second heat sink portion overlap each other in a vertical direction and away from a control circuit for controlling the power element. doing.

請求項2に記載の発明によれば、熱伝導に方向性を持たすことができるとともに、制御回路を有する場合には、その制御回路に与える熱影響が解消できる。   According to the second aspect of the present invention, the direction of heat conduction can be given, and when the control circuit is provided, the thermal influence on the control circuit can be eliminated.

請求項3に記載の発明では、請求項1または2に記載の発明において、前記ヒートシンクとパワー素子とが対向配置されている。請求項4に記載の発明では、請求項3に記載の発明において、前記ヒートシンクにおける対向面の面積を、前記パワー素子における対向面の面積よりも大きくした。   According to a third aspect of the present invention, in the first or second aspect of the present invention, the heat sink and the power element are arranged to face each other. In the invention according to claim 4, in the invention according to claim 3, the area of the facing surface of the heat sink is made larger than the area of the facing surface of the power element.

請求項5に記載の発明では、請求項1乃至4の何れか1つに記載の多層基板において、前記パワー素子下部領域の絶縁層には充填金属収納用貫通部が形成され、該充填金属収納用貫通部内に前記熱伝達用導体からなるヒートシンクが充填されている。   According to a fifth aspect of the present invention, in the multilayer substrate according to any one of the first to fourth aspects, a filling metal accommodating through portion is formed in the insulating layer in the lower region of the power element. A heat sink made of the heat transfer conductor is filled in the through portion for use.

請求項5に記載の発明によれば、絶縁層の厚さを調整することにより、所望のヒートシンク厚さを容易に形成することができる。   According to the fifth aspect of the invention, a desired heat sink thickness can be easily formed by adjusting the thickness of the insulating layer.

請求項6に記載の発明では、請求項1乃至5の何れか1つに記載の多層基板において、前記多層基板はアルミナ基板であるとともに、前記熱伝達用導体からなるヒートシンクは少なくともアルミナを含んでいる。   According to a sixth aspect of the present invention, in the multilayer substrate according to any one of the first to fifth aspects, the multilayer substrate is an alumina substrate, and the heat sink made of the heat transfer conductor includes at least alumina. Yes.

請求項6に記載の発明によれば、充填金属の熱膨脹率をアルミナ基板の熱膨脹率に近づけることができるため、アルミナ基板と充填金属の熱応力を低く抑えることができる。   According to the sixth aspect of the present invention, the thermal expansion coefficient of the filled metal can be brought close to the thermal expansion coefficient of the alumina substrate, so that the thermal stress between the alumina substrate and the filled metal can be kept low.

請求項7に記載の発明では、請求項1乃至6の何れか1つに記載の多層基板において、前記多層基板はアルミナ基板であるとともに、前記熱伝達用導体からなるヒートシンクは少なくともモリブデンを含んでいる。   According to a seventh aspect of the present invention, in the multilayer substrate according to any one of the first to sixth aspects, the multilayer substrate is an alumina substrate, and the heat sink made of the heat transfer conductor includes at least molybdenum. Yes.

請求項7に記載の発明によれば、モリブデンは高融点材料(多層基板の焼成温度よりも融点の高い材料)であるため、グリーンシートに充填金属のペーストを充填した後、グリーンシートを千数百℃以上で焼成しても充填金属であるモリブデンが融けることがない。   According to the invention described in claim 7, since molybdenum is a high melting point material (a material having a melting point higher than the firing temperature of the multilayer substrate), after filling the green sheet with the paste of the filling metal, the number of green sheets is Even when firing at a temperature of 100 ° C. or higher, molybdenum as a filling metal does not melt.

請求項8に記載の発明では、請求項1乃至7の何れか1つに記載の多層基板において、前記第2のヒートシンク部の一端は前記基板表層の反対側の基板裏面に露出するとともに、前記第2のヒートシンク部には多数のホールが形成されている。   According to an eighth aspect of the present invention, in the multilayer substrate according to any one of the first to seventh aspects, one end of the second heat sink portion is exposed on the back surface of the substrate opposite to the substrate surface layer, and the A number of holes are formed in the second heat sink portion.

請求項8に記載の発明によれば、第2のヒートシンク部に形成されたホールにより第2のヒートシンクの放熱面積が増し、放熱性が向上する。   According to the eighth aspect of the present invention, the heat dissipation area of the second heat sink is increased by the holes formed in the second heat sink portion, and the heat dissipation is improved.

請求項9に記載の発明では、請求項1乃至6の何れか1つに記載の多層基板において、前記基板表層の反対側の基板裏面には放熱板が接合される。   In a ninth aspect of the present invention, in the multilayer substrate according to any one of the first to sixth aspects, a heat radiating plate is bonded to the back surface of the substrate opposite to the substrate surface layer.

請求項9に記載の発明によれば、より効率の良い放熱が可能となる。   According to the ninth aspect of the present invention, more efficient heat dissipation is possible.

以下、この発明を具体化した実施例を図面に従って説明する。図1に全体構成図を示す。多層基板2は、アルミナよりなる3つの絶縁層1a,1b,1cを重ねて形成されている。多層基板2の最上層の絶縁層1aにおける所定領域には充填金属収納用貫通部(以下、単に貫通部という)3aが形成され、この貫通部3a内に熱伝導性のよい熱伝達用導体としての充填金属4aが充填されている。また、絶縁層1aの下層にあたる絶縁層1bの所定領域には充填金属収納用貫通部(以下、単に貫通部という)3bが形成され、この貫通部3b内には前記充填金属4aと同じ金属からなる熱伝達用導体としての充填金属4bが充填されている。尚、本実施例では、上記充填金属4a,4bによりヒートシンクS1,S2が構成されており、充填金属4aの部分が第1のヒートシンク部に、充填金属4bの部分が第2のヒートシンク部に相当する。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an overall configuration diagram. The multilayer substrate 2 is formed by overlapping three insulating layers 1a, 1b, and 1c made of alumina. In a predetermined region of the uppermost insulating layer 1a of the multi-layer substrate 2, a filled metal housing penetration (hereinafter simply referred to as a penetration) 3a is formed, and a heat transfer conductor having good thermal conductivity is formed in the penetration 3a. The filled metal 4a is filled. In addition, a predetermined portion of the insulating layer 1b, which is the lower layer of the insulating layer 1a, is formed with a filling metal storage through portion (hereinafter simply referred to as a through portion) 3b. The through portion 3b is made of the same metal as the filling metal 4a. Filling metal 4b as a heat transfer conductor is filled. In this embodiment, the heat sinks S1 and S2 are constituted by the filling metals 4a and 4b. The portion of the filling metal 4a corresponds to the first heat sink portion and the portion of the filling metal 4b corresponds to the second heat sink portion. To do.

ヒートシンクS1,S2は、多層基板2の表層(基板表層)に対して平行となる図の横方向に延設されており、このうちヒートシンクS2の横方向の長さはヒートシンクS1の横方向の長さよりも大きい。即ち、ヒートシンクS2の上面(下面)での面積はヒートシンクS1の上面(下面)での面積よりも大きい。このとき、ヒートシンクS1,S2の中心はほぼ同一であるため、その断面形状はピラミッド状をなしている。また、ヒートシンクS1,S2(充填金属4a,4b)は、絶縁層1bにおける内層配線5と電気的に接続されている。   The heat sinks S1 and S2 are extended in the horizontal direction in the figure parallel to the surface layer (substrate surface layer) of the multilayer substrate 2, and the horizontal length of the heat sink S2 is the horizontal length of the heat sink S1. Bigger than that. That is, the area on the upper surface (lower surface) of the heat sink S2 is larger than the area on the upper surface (lower surface) of the heat sink S1. At this time, since the centers of the heat sinks S1 and S2 are substantially the same, the cross-sectional shape is a pyramid shape. Further, the heat sinks S1 and S2 (filling metals 4a and 4b) are electrically connected to the inner layer wiring 5 in the insulating layer 1b.

充填金属4a,4bには、高融点材料であるMo(モリブデン)粒子とアルミナ粒子の混合物が用いられている。ここで、Mo(モリブデン)は、その熱伝導度が0.328cal・cm-1deg-1-1(20℃)、融点が2622±10℃である。他の充填金属4a,4bとしては、高融点材料であるW(タングステン)粒子とアルミナ粒子の混合物、或いは、Mo(モリブデン)粒子とW(タングステン)粒子とアルミナ粒子との混合物が使用される。W(タングステン)は、その熱伝導度が0.382cal・cm-1deg-1-1(20℃)、融点が3382℃である。 As the filling metals 4a and 4b, a mixture of Mo (molybdenum) particles and alumina particles, which are high melting point materials, is used. Here, Mo (molybdenum) has a thermal conductivity of 0.328 cal · cm −1 deg −1 s −1 (20 ° C.) and a melting point of 2622 ± 10 ° C. As other filling metals 4a and 4b, a mixture of W (tungsten) particles and alumina particles, or a mixture of Mo (molybdenum) particles, W (tungsten) particles and alumina particles, which is a high melting point material, is used. W (tungsten) has a thermal conductivity of 0.382 cal · cm −1 deg −1 s −1 (20 ° C.) and a melting point of 3382 ° C.

ヒートシンクS1(充填金属4a)の上にはパワー素子6(シリコンチップ)が半田(或いはAgペースト)によりダイマウントされている。また、パワー素子6はワイヤ7にて多層基板2の最上層の絶縁層1a上の導体部と電気的に接続されている。   A power element 6 (silicon chip) is die-mounted by solder (or Ag paste) on the heat sink S1 (filling metal 4a). Further, the power element 6 is electrically connected to a conductor portion on the uppermost insulating layer 1 a of the multilayer substrate 2 by a wire 7.

次に、多層基板2の製造方法を図2〜図6を用いて説明する。図2に示すように、平板状のアルミナグリーンシート8(図1の絶縁層1aに相当する)を用意する。このアルミナグリーンシート8の厚みは0.254mmである。そして、アルミナグリーンシート8の所定領域に正方形状の貫通部3aをパンチングにより形成する。尚、貫通部3aはスルーホールの形成と同一工程で作ってもよい。   Next, a method for manufacturing the multilayer substrate 2 will be described with reference to FIGS. As shown in FIG. 2, a flat alumina green sheet 8 (corresponding to the insulating layer 1a in FIG. 1) is prepared. The thickness of this alumina green sheet 8 is 0.254 mm. And the square penetration part 3a is formed in the predetermined area | region of the alumina green sheet 8 by punching. Note that the through portion 3a may be formed in the same process as the formation of the through hole.

その後、図3に示すように、貫通部3bを形成したアルミナグリーンシート9(図1の絶縁層1bに相当する)と、貫通部の無いアルミナグリーンシート10(図1の絶縁層1cに相当する)とを2枚重ねにし、エマルジョンマスク或いはメタルマスクを用いてMo粒子とアルミナ粒子を混合したペースト11を印刷により貫通部3bに充填する。さらにその上に、前記アルミナグリーンシート8を重ね合わせる。その結果、図4のものが得られる。   Thereafter, as shown in FIG. 3, an alumina green sheet 9 (corresponding to the insulating layer 1 b in FIG. 1) having the penetrating part 3 b and an alumina green sheet 10 (corresponding to the insulating layer 1 c in FIG. 1) without the penetrating part. ) And a paste 11 in which Mo particles and alumina particles are mixed using an emulsion mask or a metal mask to fill the penetrating portion 3b by printing. Further, the alumina green sheet 8 is overlaid thereon. As a result, the one shown in FIG. 4 is obtained.

さらに、図5に示すように、エマルジョンマスク或いはメタルマスクを用いてMo粒子とアルミナ粒子を混合したペースト11を印刷により貫通部3aに充填する。   Further, as shown in FIG. 5, a paste 11 in which Mo particles and alumina particles are mixed is filled into the through-hole 3a by printing using an emulsion mask or a metal mask.

その後、積層されたアルミナグリーンシート8〜10を加圧し、千数百℃以上で焼成することにより、多層セラミック基板を得る。さらに、焼成された多層基板の表面の導体部分(ペースト11を焼成した充填金属4、メタライズ)に接合性を向上させるためにメッキを施す。そして、多層基板の表面または裏面に厚膜導体、厚膜抵抗体、ガラス等の印刷・焼成を繰り返す。   Thereafter, the laminated alumina green sheets 8 to 10 are pressurized and fired at a temperature of at least a few hundred degrees Celsius to obtain a multilayer ceramic substrate. Further, plating is applied to the conductor portion (filled metal 4 obtained by baking paste 11, metallized) on the surface of the fired multilayer substrate in order to improve the bondability. And printing and baking of a thick film conductor, a thick film resistor, glass, etc. are repeated on the surface or back surface of a multilayer substrate.

そして、図6に示すように、ペースト11を焼成した充填金属4に、パワー素子6を半田(或いはAgペースト)によりダイマウントし、ワイヤ7によるワイヤーボンドを施す。その結果、図1に示す多層基板2が形成される。   Then, as shown in FIG. 6, the power element 6 is die-mounted with solder (or Ag paste) on the filled metal 4 obtained by baking the paste 11, and wire bonding with the wires 7 is performed. As a result, the multilayer substrate 2 shown in FIG. 1 is formed.

この図1の構成においては、パワー素子6に発生する熱がヒートシンクS1,S2(充填金属4a,4b)で吸収できる。このとき、充填金属4a,4bの成分であるMo(モリブデン)自体も極めて低抵抗であるため、充填金属4a,4bを配線として考えた場合には基板全体の発熱を軽減できる。   In the configuration of FIG. 1, heat generated in the power element 6 can be absorbed by the heat sinks S1 and S2 (filling metals 4a and 4b). At this time, Mo (molybdenum) itself, which is a component of the filling metals 4a and 4b, also has an extremely low resistance, so that when the filling metals 4a and 4b are considered as wirings, heat generation of the entire substrate can be reduced.

また、図1の構成では、下側のヒートシンクS2の横方向の幅を上側のヒートシンクS1の横方向の幅よりも大きくし、両ヒートシンクS1,S2をピラミッド状に多層配置した。かかる場合、パワー素子6で発生した熱は、同素子6の下方へ向けて広角(約45°の角度)で伝達されるが、この熱がヒートシンクS1,S2でいち早く吸収される。その結果、パワー素子6での発熱をより効果的に放熱させることが可能となる。   Further, in the configuration of FIG. 1, the lateral width of the lower heat sink S2 is made larger than the lateral width of the upper heat sink S1, and both the heat sinks S1 and S2 are arranged in a pyramid shape. In such a case, the heat generated in the power element 6 is transmitted toward the lower side of the element 6 at a wide angle (an angle of about 45 °), but this heat is quickly absorbed by the heat sinks S1 and S2. As a result, it is possible to dissipate the heat generated by the power element 6 more effectively.

さらに、充填金属4a,4bにて構成されるヒートシンクS1,S2を絶縁層1a,1bの厚さに応じて厚くすることができるので、表層導体(図18の厚膜導体32)を使用した場合に比べ電気抵抗を数10分の1にできる。さらには、熱抵抗も例えば、Mo単体の80〜90%程度になるが充填金属4a,4bの厚みや面積を大きくして充填金属4a,4bの体積を増加することにより、図18のヒートシンク34を使用したものよりも熱抵抗を小さくすることができる。   Further, since the heat sinks S1 and S2 composed of the filling metals 4a and 4b can be increased according to the thickness of the insulating layers 1a and 1b, the surface layer conductor (thick film conductor 32 in FIG. 18) is used. The electrical resistance can be reduced to several tenths compared to. Furthermore, the heat resistance is, for example, about 80 to 90% of Mo alone, but by increasing the thickness and area of the filling metals 4a and 4b to increase the volume of the filling metals 4a and 4b, the heat sink 34 in FIG. The thermal resistance can be made smaller than that using the.

また、充填金属4a,4bにはMo粒子に対しアルミナ粒子を混合してあるので、充填金属4a,4bの熱膨張率をアルミナ基板の熱膨張率に近づけることができる。よって、アルミナ基板と充填金属4a,4bの熱応力を低く抑えることができる。   Moreover, since alumina particles are mixed with Mo particles in the filler metals 4a and 4b, the thermal expansion coefficient of the filler metals 4a and 4b can be brought close to the thermal expansion coefficient of the alumina substrate. Therefore, the thermal stress of the alumina substrate and the filling metals 4a and 4b can be kept low.

さらに本実施例では、表層(絶縁層1a)内に熱伝導性のよい充填金属4a(熱伝達用導体)を充填し、その充填金属4a上にパワー素子6を配置した。また、絶縁層1bには、充填金属4aに接触させて充填金属4b(熱伝達用導体)を充填した。よって、パワー素子6で発生した熱は、表層(絶縁層1a)内の充填金属4a及びその下層(絶縁層1b)の充填金属4bを通して伝達され放熱される。この際、従来のヒートシンクが基板内に配置されていると考えるならば、充填金属4a,4bの体積を大きくすることにより過渡熱抵抗を下げることができ、このように過渡熱抵抗を下げることができるのでヒートシンクを薄くして定常熱抵抗を下げることが可能となる。換言すれば、従来のように表層の上方に突出したヒートシンクは不要、若しくはヒートシンクを小さくすることが可能となり、コストダウンが図れると共に実装容積を縮小させることができる。さらに、放熱のために高価なAlN等の基板材料を使用する必要もなくなり安価に熱伝導性の優れた基板を作成することが可能となる。   Further, in the present example, the surface layer (insulating layer 1a) was filled with the filling metal 4a (heat transfer conductor) having good thermal conductivity, and the power element 6 was disposed on the filling metal 4a. The insulating layer 1b was filled with the filling metal 4b (heat transfer conductor) in contact with the filling metal 4a. Therefore, the heat generated in the power element 6 is transmitted and dissipated through the filling metal 4a in the surface layer (insulating layer 1a) and the filling metal 4b in the lower layer (insulating layer 1b). At this time, if it is considered that the conventional heat sink is disposed in the substrate, the transient thermal resistance can be lowered by increasing the volume of the filling metals 4a and 4b, and thus the transient thermal resistance can be lowered. Therefore, it is possible to reduce the steady thermal resistance by thinning the heat sink. In other words, the conventional heat sink protruding above the surface layer is unnecessary, or the heat sink can be made small, so that the cost can be reduced and the mounting volume can be reduced. Furthermore, it is not necessary to use an expensive substrate material such as AlN for heat dissipation, and a substrate having excellent thermal conductivity can be produced at a low cost.

また、充填金属4a,4bには、高融点材料(多層基板2の焼成温度よりも融点の高い材料)であるMo(融点;2622±10℃)の粒子を使用したので、グリーンシートに充填金属のペーストを充填した後、グリーンシートを千数百℃以上で焼成しても充填金属であるMoが融けることがない。   In addition, since the particles of Mo (melting point; 2622 ± 10 ° C.), which is a high melting point material (a material having a melting point higher than the firing temperature of the multilayer substrate 2), are used for the filling metals 4a and 4b, After filling the paste, Mo, which is a filling metal, does not melt even if the green sheet is baked at a temperature of several thousand hundred degrees C or higher.

また、図1では、多層基板2内において横方向に延びるヒートシンクS2を埋設したため、基板表面の高密度化が可能になる。尚、この発明は上記実施例に限定されるものでなく、その変形例を以下に記述する。例えば図7において、多層基板2の表層(絶縁層1a)にはヒートシンクが配置されておらず、2層目以降の絶縁層1b,1cにヒートシンクS1,S2が2段に配置されている。この場合、ヒートシンクS1,S2はパワー素子6に接触していないが、接触している場合(例えば、図1の場合)に近い効果が期待できる。   In FIG. 1, since the heat sink S <b> 2 extending in the lateral direction is embedded in the multilayer substrate 2, it is possible to increase the density of the substrate surface. In addition, this invention is not limited to the said Example, The modification is described below. For example, in FIG. 7, the heat sink is not disposed on the surface layer (insulating layer 1a) of the multilayer substrate 2, and the heat sinks S1 and S2 are disposed in two stages on the second and subsequent insulating layers 1b and 1c. In this case, the heat sinks S1 and S2 are not in contact with the power element 6, but an effect close to that in the case of contact (for example, in the case of FIG. 1) can be expected.

また、図8は前述の図1を変形した具体例を示す。図8において、多層基板2の絶縁層1a,1bには図1と同様のヒートシンクS1,S2が形成されている。また、絶縁層1cには、絶縁層1bのヒートシンクS2よりも横方向に幅の長いヒートシンクS3が形成されている。この場合、絶縁層1b,1cのヒートシンクS2,S3が第2のヒートシンク部に相当する。この構成でも、ヒートシンクS1〜S3がピラミッド状に多層配置される構造となるため、約45°方向で広がる熱(パワー素子6による発熱)を効率的に吸収し、放熱性を高めることができる。尚、最下層のヒートシンクS3は、特にヒートシンク全域に充填金属を充填させなくてもよく、ヒートシンクS3に複数の貫通穴を形成してもよい。   FIG. 8 shows a specific example obtained by modifying FIG. In FIG. 8, heat sinks S <b> 1 and S <b> 2 similar to those in FIG. 1 are formed on the insulating layers 1 a and 1 b of the multilayer substrate 2. The insulating layer 1c is formed with a heat sink S3 that is wider in the lateral direction than the heat sink S2 of the insulating layer 1b. In this case, the heat sinks S2 and S3 of the insulating layers 1b and 1c correspond to the second heat sink portion. Even in this configuration, since the heat sinks S1 to S3 are arranged in a multi-layer shape in a pyramid shape, heat spreading in the direction of about 45 ° (heat generation by the power element 6) can be efficiently absorbed and heat dissipation can be improved. Note that the lowermost heat sink S3 does not need to be filled with a filling metal, and a plurality of through holes may be formed in the heat sink S3.

また、図8の多層基板2において、表層の反対側の基板裏面には、接着剤21によりアルミニウム製の放熱板22が接合されている。この場合、接着剤21に高熱伝導性のものを使用することにより、熱抵抗を大幅に低減させることができる。   Further, in the multilayer substrate 2 of FIG. 8, an aluminum heat sink 22 is bonded to the back surface of the substrate opposite to the surface layer by an adhesive 21. In this case, the thermal resistance can be greatly reduced by using a highly heat conductive adhesive 21.

図9は他の実施例の構成を示す。図9において、多層基板2は4層の絶縁層1a〜1dを有し、パワー素子6直下の絶縁層1a及び絶縁層1b(絶縁層1aだけでも可)には、比較的幅の狭いヒートシンクS4(第1のヒートシンク部)が設けられている。また、絶縁層1cを隔てた最下層の絶縁層1dには、比較的幅の広いヒートシンクS5(第2のヒートシンク部)が設けられている。この場合、パワー素子6による発熱は絶縁層1c(充填金属の無い層)を経由して最下層(絶縁層1d)のヒートシンクS5に伝達される。つまり、熱は基板裏面から放熱されることになる。尚、パワー素子6直下のヒートシンクS4に電流が流れない構成であれば、そのヒートシンクS4と最下層のヒートシンクS5とを直接、接続することができ、それにより大きな放熱効果が得られる。   FIG. 9 shows the configuration of another embodiment. In FIG. 9, the multilayer substrate 2 has four insulating layers 1a to 1d, and the insulating layer 1a and the insulating layer 1b immediately below the power element 6 (only the insulating layer 1a is acceptable) have a relatively narrow heat sink S4. A (first heat sink part) is provided. In addition, a heat sink S5 (second heat sink portion) having a relatively wide width is provided in the lowermost insulating layer 1d with the insulating layer 1c therebetween. In this case, the heat generated by the power element 6 is transmitted to the heat sink S5 of the lowermost layer (insulating layer 1d) via the insulating layer 1c (layer without filling metal). That is, heat is dissipated from the back surface of the substrate. If the current does not flow through the heat sink S4 directly under the power element 6, the heat sink S4 and the lowermost heat sink S5 can be directly connected, thereby obtaining a large heat dissipation effect.

図10は図9の変形例を示す。図10の多層基板2において、絶縁層1dの下方には絶縁層1eが設けられ、この絶縁層1eには、ヒートシンクS5と同じ幅のヒートシンクS6が設けられている。このヒートシンクS6には多数のホール23が形成されている。この場合、ホール23によりヒートシンクS6の放熱面積が増し、放熱性が向上する。   FIG. 10 shows a modification of FIG. In the multilayer substrate 2 of FIG. 10, an insulating layer 1e is provided below the insulating layer 1d, and a heat sink S6 having the same width as the heat sink S5 is provided on the insulating layer 1e. A number of holes 23 are formed in the heat sink S6. In this case, the heat dissipation area of the heat sink S6 is increased by the hole 23, and the heat dissipation is improved.

ここで、図11には、図10における絶縁層1eの形成過程を示す。つまり、図11(a)において、アルミナグリーンシート24に矩形状の貫通部25を成形し、そこに充填金属26を充填する。そして、充填金属26を乾燥させた後に、図11(b)に示すように、例えば円形状(四角形状,長穴形状等、形状は任意でよい)のホール27をパンチング等により成形する。   Here, FIG. 11 shows a process of forming the insulating layer 1e in FIG. That is, in FIG. 11A, a rectangular through portion 25 is formed in the alumina green sheet 24, and the filling metal 26 is filled therewith. Then, after the filling metal 26 is dried, as shown in FIG. 11 (b), for example, a circular hole 27 (rectangular shape, long hole shape, etc., the shape may be arbitrary) is formed by punching or the like.

さらに、図12は他の変形例の構成を示す。図12において、多層基板2の表層には、IC回路(チップ)50及びコンデンサ51が設けられると共に、その下方領域には内部抵抗52及び抵抗53等が設けられており(以下、制御回路55という)、この制御回路55によりパワー素子6が駆動されるようになっている。ヒートシンクS7〜S9は、上記制御回路55から離れる方向(図の左下方)に階段状に設けられている。この場合、上記制御回路55は、概してパワー素子6による発熱の影響を受け易いが、ヒートシンクS7〜S9により発熱による制御回路55の温度上昇が抑えられる。即ち、パワー素子6による発熱の横方向の広がりを吸収し且つ放熱すると共に、熱伝導に方向性を持たせることができ、その結果、制御回路55への熱影響が回避できる。   Further, FIG. 12 shows a configuration of another modified example. In FIG. 12, an IC circuit (chip) 50 and a capacitor 51 are provided on the surface layer of the multilayer substrate 2, and an internal resistor 52 and a resistor 53 are provided in a lower region thereof (hereinafter referred to as a control circuit 55). ), The power element 6 is driven by the control circuit 55. The heat sinks S7 to S9 are provided stepwise in a direction away from the control circuit 55 (lower left in the figure). In this case, the control circuit 55 is generally easily affected by the heat generated by the power element 6, but the temperature rise of the control circuit 55 due to the heat generation can be suppressed by the heat sinks S7 to S9. That is, the lateral spread of heat generated by the power element 6 can be absorbed and radiated, and the direction of heat conduction can be given, so that the influence of heat on the control circuit 55 can be avoided.

ここで、上記図1〜図11に示す実施例は特に請求項に記載した発明に相当し、図12に示す実施例は特に請求項2に記載した発明に相当する。尚、図12の実施例においては、制御回路55から離れる方向に伝熱方向を設定したが、この構成に限られるものではなく、伝熱方向を任意に設定できることをその要点とする。   Here, the embodiment shown in FIG. 1 to FIG. 11 corresponds to the invention described in claims, and the embodiment shown in FIG. 12 corresponds to the invention described in claim 2 in particular. In the embodiment of FIG. 12, the heat transfer direction is set in a direction away from the control circuit 55, but the present invention is not limited to this configuration, and the main point is that the heat transfer direction can be set arbitrarily.

一方で、本発明の多層基板は、熱発生量の大きいPGA(ピングリッドアレイ)や、チップキャリア、スライドブレージング、フラットパッケージ等のパッケージ構造にも適用することができる。即ち、図13はPGAに適用した具体例を示す。図13において、PGA80は、セラミック板81、セラミックパッケージ82及びピン端子83を有する。セラミックパッケージ82には、発生熱量の大きなIC素子84等が内蔵されており、セラミック板81はIC素子84やワイヤボンディング部85等を保護している。   On the other hand, the multilayer substrate of the present invention can also be applied to package structures such as PGA (pin grid array), chip carrier, slide brazing, and flat package that generate a large amount of heat. That is, FIG. 13 shows a specific example applied to PGA. In FIG. 13, the PGA 80 includes a ceramic plate 81, a ceramic package 82, and pin terminals 83. The ceramic package 82 incorporates an IC element 84 and the like that generate a large amount of heat, and the ceramic plate 81 protects the IC element 84 and the wire bonding portion 85 and the like.

セラミックパッケージ82には、熱抵抗の小さい充填金属からなるヒートシンクS13〜S15が多層に設けられており、それらはピラミッド状に積層されている。この場合、IC素子84にて発生した比較的多量の熱は、ヒートシンクS13〜S15を伝わってパッケージ外(大気中)に放出される。   The ceramic package 82 is provided with heat sinks S13 to S15 made of a filling metal having a low thermal resistance in multiple layers, and these are stacked in a pyramid shape. In this case, a relatively large amount of heat generated in the IC element 84 is transferred to the outside of the package (in the atmosphere) through the heat sinks S13 to S15.

また、本実施例によれば、以下に示す効果も得られる。即ち、本実施例ではパワー素子がシリコン基板に形成され、ヒートシンクがモリブデン(Mo)やタングステン(W)からなる。この場合、シリコンの熱膨張係数が3ppm/℃、モリブデンの熱膨張係数が4ppm/℃、タングステンの熱膨張係数が4.5ppm/℃であるため、熱膨張係数に関して各金属の相性が良い。そのため、応力緩和層を必要としない。   Moreover, according to the present Example, the effect shown below is also acquired. That is, in this embodiment, the power element is formed on the silicon substrate, and the heat sink is made of molybdenum (Mo) or tungsten (W). In this case, since the thermal expansion coefficient of silicon is 3 ppm / ° C., the thermal expansion coefficient of molybdenum is 4 ppm / ° C., and the thermal expansion coefficient of tungsten is 4.5 ppm / ° C., each metal has good compatibility with respect to the thermal expansion coefficient. Therefore, no stress relaxation layer is required.

さらに、本実施例では、アルミナ層(絶縁層)と上記高融点材料(Mo,W)を用いており、この場合、やはり基板との熱膨張係数の整合性が良い。即ち、アルミナ基板の熱膨張係数は7.5ppm/℃であり、充填金属としてのモリブデンやタングステンの熱膨張係数はおよそ3.7〜5.3ppm/℃、4.5〜5.0ppm/℃程度と非常に近寄っている。そのため、焼成後に充填材料が抜け落ちてしまうという問題も解消できる。   Furthermore, in this embodiment, an alumina layer (insulating layer) and the high melting point material (Mo, W) are used, and in this case, the thermal expansion coefficient is consistent with the substrate. That is, the thermal expansion coefficient of the alumina substrate is 7.5 ppm / ° C., and the thermal expansion coefficient of molybdenum or tungsten as the filling metal is about 3.7 to 5.3 ppm / ° C., about 4.5 to 5.0 ppm / ° C. And very close. Therefore, the problem that the filling material falls off after firing can be solved.

尚、本発明のパワー素子としては、パワートランジスタ、パワーダイオード、又は高速マイクロコンピュータに使用される発熱量の大きい素子や、スーパーコンピュータやワークステーションに使用される発熱量の大きい素子が、それに相当する。   The power element according to the present invention corresponds to a power transistor, a power diode, a high heat generation element used in a high-speed microcomputer, or a high heat generation element used in a supercomputer or workstation. .

基板材質としてはガラスとセラミックの複合材料であるガラスセラミックまたはガラス材を用いてもよい。この場合の導体材は、Ag,Ag−Pd,Cu等を用いる。製法はアルミナの場合と同一である。   As the substrate material, glass ceramic or glass material which is a composite material of glass and ceramic may be used. In this case, Ag, Ag-Pd, Cu or the like is used as the conductor material. The manufacturing method is the same as that of alumina.

以上詳述したように請求項1〜6に記載の発明によれば、半導体素子等、パワー素子による発熱を効率的に放熱することができるという優れた効果を発揮する。この場合、放熱性を向上させると共に、放熱の方向性を持たせることができる。   As described above in detail, according to the inventions described in claims 1 to 6, an excellent effect that heat generated by a power element such as a semiconductor element can be efficiently radiated is exhibited. In this case, the heat dissipation can be improved and the direction of heat dissipation can be provided.

実施例の多層基板の断面図。Sectional drawing of the multilayer substrate of an Example. 多層基板の製造工程図。The manufacturing process figure of a multilayer substrate. 多層基板の製造工程図。The manufacturing process figure of a multilayer substrate. 多層基板の製造工程図。The manufacturing process figure of a multilayer substrate. 多層基板の製造工程図。The manufacturing process figure of a multilayer substrate. 多層基板の製造工程図。The manufacturing process figure of a multilayer substrate. 他の別例の多層基板の断面図。Sectional drawing of the multilayer substrate of another example. 他の別例の多層基板の断面図。Sectional drawing of the multilayer substrate of another example. 他の別例の多層基板の断面図。Sectional drawing of the multilayer substrate of another example. 他の別例の多層基板の断面図。Sectional drawing of the multilayer substrate of another example. 図10の多層基板の製造工程の一部を示す図。The figure which shows a part of manufacturing process of the multilayer substrate of FIG. 他の別例の多層基板の断面図。Sectional drawing of the multilayer substrate of another example. 他の別例の多層基板の断面図。Sectional drawing of the multilayer substrate of another example. 従来の多層基板の断面図。Sectional drawing of the conventional multilayer substrate.

符号の説明Explanation of symbols

1a〜1e…絶縁層、2…多層基板、4a,4b…熱伝達用導体としての充填金属、
6…パワー素子、S1〜S15…ヒートシンク(第1,第2のヒートシンク部)、
55…制御回路。
1a to 1e ... insulating layer, 2 ... multilayer substrate, 4a, 4b ... filled metal as a heat transfer conductor,
6 ... power element, S1-S15 ... heat sink (first and second heat sink parts),
55: Control circuit.

Claims (11)

複数の絶縁層からなり基板表層にパワー素子が搭載されると共に、パワー素子下部領域の絶縁層に熱伝達用導体からなるヒートシンクを設けた多層基板であって、
前記ヒートシンクは、前記パワー素子下方の絶縁層に設けられた第1のヒートシンク部と、その第1のヒートシンク部よりも下方の絶縁層に設けられ、前記基板表層に平行となる方向に延びる第2のヒートシンク部とを有し、
前記第2のヒートシンク部の面積を前記第1のヒートシンク部の面積よりも大きくするとともに、前記第1のヒートシンク部及び第2のヒートシンク部の中心を同一にして両ヒートシンク部を配置したことを特徴とする多層基板。
The power element is mounted on the surface layer of the substrate composed of a plurality of insulating layers, and a multilayer substrate provided with a heat sink made of a heat transfer conductor on the insulating layer in the lower region of the power element,
The heat sink is provided in a first heat sink portion provided in an insulating layer below the power element, and in a second insulating layer provided below the first heat sink portion and extending in a direction parallel to the substrate surface layer. Heat sink part,
The area of the second heat sink part is made larger than the area of the first heat sink part, and both the heat sink parts are arranged such that the centers of the first heat sink part and the second heat sink part are the same. Multi-layer board.
複数の絶縁層からなり基板表層にパワー素子が搭載されると共に、パワー素子下部領域の絶縁層に熱伝達用導体からなるヒートシンクを設けた多層基板であって、
前記ヒートシンクは、前記パワー素子下方の絶縁層に設けられた第1のヒートシンク部と、その第1のヒートシンク部よりも下方の絶縁層に設けられ、前記基板表層に平行となる方向に延びる第2のヒートシンク部とを有し、
前記第1のヒートシンク部及び第2のヒートシンク部は、一部が上下に重なった状態で、かつ前記パワー素子を制御するための制御回路から離れる方向にずらして配置される多層基板。
The power element is mounted on the surface layer of the substrate composed of a plurality of insulating layers, and a multilayer substrate provided with a heat sink made of a heat transfer conductor on the insulating layer in the lower region of the power element,
The heat sink is provided in a first heat sink portion provided in an insulating layer below the power element, and in a second insulating layer provided below the first heat sink portion and extending in a direction parallel to the substrate surface layer. Heat sink part,
The first heat sink portion and the second heat sink portion are multi-layer substrates that are arranged so as to partially overlap each other and are shifted in a direction away from a control circuit for controlling the power element.
請求項1または2に記載の多層基板において、
前記ヒートシンクとパワー素子とが対向配置されている多層基板。
The multilayer substrate according to claim 1 or 2,
A multilayer substrate in which the heat sink and the power element are arranged to face each other.
請求項3に記載の多層基板において、
前記ヒートシンクにおける対向面の面積を、前記パワー素子における対向面の面積よりも大きくした多層基板。
The multilayer substrate according to claim 3, wherein
A multilayer board in which an area of the opposing surface of the heat sink is larger than an area of the opposing surface of the power element.
請求項1乃至4の何れか1つに記載の多層基板において、前記パワー素子下部領域の絶縁層には充填金属収納用貫通部が形成され、該充填金属収納用貫通部内に前記熱伝達用導体からなるヒートシンクが充填されている多層基板。 5. The multilayer substrate according to claim 1, wherein a filling metal accommodating through portion is formed in an insulating layer in the lower region of the power element, and the heat transfer conductor is formed in the filling metal accommodating through portion. A multi-layer substrate filled with a heat sink consisting of 請求項1乃至5の何れか1つに記載の多層基板において、前記多層基板はアルミナ基板であるとともに、前記熱伝達用導体からなるヒートシンクは少なくともアルミナを含む多層基板。 6. The multilayer substrate according to claim 1, wherein the multilayer substrate is an alumina substrate, and the heat sink made of the heat transfer conductor includes at least alumina. 請求項1乃至6の何れか1つに記載の多層基板において、前記多層基板はアルミナ基板であるとともに、前記熱伝達用導体からなるヒートシンクは少なくともモリブデンを含む多層基板。 7. The multilayer substrate according to claim 1, wherein the multilayer substrate is an alumina substrate, and the heat sink made of the heat transfer conductor includes at least molybdenum. 請求項1乃至7の何れか1つに記載の多層基板において、前記第2のヒートシンク部の一端は前記基板表層の反対側の基板裏面に露出するとともに、前記第2のヒートシンク部には多数のホールが形成されている多層基板。 8. The multilayer substrate according to claim 1, wherein one end of the second heat sink portion is exposed on a back surface of the substrate opposite to the substrate surface layer, and a plurality of the second heat sink portions are formed on the second heat sink portion. A multilayer substrate with holes. 請求項1乃至7の何れか1つに記載の多層基板において、前記基板表層の反対側の基板裏面には放熱板が接合される多層基板。 8. The multilayer substrate according to claim 1, wherein a heat sink is bonded to the back surface of the substrate opposite to the substrate surface layer. 請求項1乃至9の何れか1つに記載の多層基板において、前記第1のヒートシンク部が設けられた絶縁層と前記第2のヒートシンク部が設けられた絶縁層との間には、熱伝達用導体からなるヒートシンクが設けられていない絶縁層が介在し、前記第1のヒートシンク部と前記第2のヒートシンク部とは電気的に絶縁されている多層基板。 10. The multilayer substrate according to claim 1, wherein heat transfer is performed between the insulating layer provided with the first heat sink portion and the insulating layer provided with the second heat sink portion. A multilayer substrate in which an insulating layer not provided with a heat sink made of a conductive conductor is interposed, and the first heat sink portion and the second heat sink portion are electrically insulated. 請求項10に記載の多層基板において、前記第1のヒートシンク部の一端は前記基板表層に露出するととともに、前記第2のヒートシンク部の一端は前記基板表層の反対側の基板裏面に露出している多層基板。 11. The multilayer substrate according to claim 10, wherein one end of the first heat sink portion is exposed on the substrate surface layer, and one end of the second heat sink portion is exposed on the back surface of the substrate opposite to the substrate surface layer. Multilayer board.
JP2005058708A 2005-03-03 2005-03-03 Multilayer board Expired - Lifetime JP3818310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005058708A JP3818310B2 (en) 2005-03-03 2005-03-03 Multilayer board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005058708A JP3818310B2 (en) 2005-03-03 2005-03-03 Multilayer board

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP14087095A Division JP3671457B2 (en) 1995-06-07 1995-06-07 Multilayer board

Publications (2)

Publication Number Publication Date
JP2005223348A true JP2005223348A (en) 2005-08-18
JP3818310B2 JP3818310B2 (en) 2006-09-06

Family

ID=34998685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005058708A Expired - Lifetime JP3818310B2 (en) 2005-03-03 2005-03-03 Multilayer board

Country Status (1)

Country Link
JP (1) JP3818310B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007324501A (en) * 2006-06-05 2007-12-13 Ngk Spark Plug Co Ltd Wiring board
JP2012222331A (en) * 2011-04-14 2012-11-12 Mitsubishi Electric Corp Semiconductor package
US10354941B2 (en) 2017-05-30 2019-07-16 Fanuc Corporation Heat sink and heat sink assembly

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007324501A (en) * 2006-06-05 2007-12-13 Ngk Spark Plug Co Ltd Wiring board
JP2012222331A (en) * 2011-04-14 2012-11-12 Mitsubishi Electric Corp Semiconductor package
US10354941B2 (en) 2017-05-30 2019-07-16 Fanuc Corporation Heat sink and heat sink assembly
DE102018207745B4 (en) * 2017-05-30 2020-08-13 Fanuc Corporation Heat sink assembly

Also Published As

Publication number Publication date
JP3818310B2 (en) 2006-09-06

Similar Documents

Publication Publication Date Title
JP3671457B2 (en) Multilayer board
JP4086068B2 (en) Semiconductor device
JP2006210777A (en) Semiconductor device
US20130328200A1 (en) Direct bonded copper substrate and power semiconductor module
JP2012033559A (en) Semiconductor device
JPWO2017130512A1 (en) Power module
US11114355B2 (en) Power module and method for manufacturing power module
JP2015005681A (en) Semiconductor device and method of manufacturing the same
JP3603354B2 (en) Hybrid integrated circuit device
KR101064098B1 (en) Light emitting device package and manufacturing method thereof
TWI269414B (en) Package substrate with improved structure for thermal dissipation and electronic device using the same
KR20060105403A (en) Package structure having circuit and composite substrate
JP3818310B2 (en) Multilayer board
US10347557B2 (en) Wiring board, electronic device, and electronic module
JP6686467B2 (en) Electronic component heat dissipation structure
JPH07162157A (en) Multilayered board
JP4459031B2 (en) Electronic component storage package and electronic device
TWM593659U (en) Packaging structure for directly exporting thermal energy of electronic components
JP2006310806A (en) Heat dissipation member, substrate for mounting electronic component, package for housing electronic component and electronic apparatus
JP2006303467A (en) Heat dissipation member, substrate for mounting electronic component, package for containing electronic component and electronic device
JP2006013420A (en) Package for electronic component housing, and electronic device
JP6060053B2 (en) Power semiconductor device
JP2004006993A (en) Multilayer substrate
JP7236930B2 (en) Heat dissipation device
JP2005277382A (en) Package for storing electronic component, and electronic device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060605

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140623

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term