JP3151672B2 - Optical DC current transformer - Google Patents

Optical DC current transformer

Info

Publication number
JP3151672B2
JP3151672B2 JP11759691A JP11759691A JP3151672B2 JP 3151672 B2 JP3151672 B2 JP 3151672B2 JP 11759691 A JP11759691 A JP 11759691A JP 11759691 A JP11759691 A JP 11759691A JP 3151672 B2 JP3151672 B2 JP 3151672B2
Authority
JP
Japan
Prior art keywords
light
light wave
wavelength
medium
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11759691A
Other languages
Japanese (ja)
Other versions
JPH04344469A (en
Inventor
源治 高橋
達 斉藤
曽根  勇
勝 檜垣
悦紀 森
英三 北
聡 ▲葛▼坂
誠 清水
博人 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Hitachi Ltd
Original Assignee
Kansai Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Hitachi Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP11759691A priority Critical patent/JP3151672B2/en
Publication of JPH04344469A publication Critical patent/JPH04344469A/en
Application granted granted Critical
Publication of JP3151672B2 publication Critical patent/JP3151672B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は電力用変成器に係り、特
に直流成分を有する電流の測定に好適な光応用直流電流
変成器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power transformer, and more particularly to an optical applied DC current transformer suitable for measuring a current having a DC component.

【0002】[0002]

【従来の技術】近年、オプトエレクトロニクスの進展に
より光学的な手法により電磁気量の計測、すなわち電圧
や電流などの測定などができるようになってきた。この
様な光学的手法による電圧や電流の計測原理や構成シス
テムなどについては、たとえば久間和生、布下正宏 共
著「光ファイバセンサ」(情報調査会発行、昭和60年
1月)などに記載されている。この中ではその多くが交
流信号の測定について述べられているが、直流電流の測
定についても記載されている。この中で2光出力方式と
してセンサの出力信号を二つの直交する偏光成分、すな
わちP偏光成分とS偏光成分とに分け、それらの和と差
で除算する処理方法が述べられているが、光の伝送路や
信号処理回路等での光量変動が測定誤差となり、このま
まの方式では高精度の直流電流測定ができにくい問題が
ある。
2. Description of the Related Art In recent years, with the progress of optoelectronics, it has become possible to measure an electromagnetic quantity, that is, a voltage, a current, and the like by an optical method. The principle of measuring voltage and current by such an optical method and the configuration system are described in, for example, "Optical Fiber Sensor" (published by Information Research Council, January 1985) co-authored by Kazuo Hisama and Masahiro Nunoshita. I have. Most of them are described for measuring an AC signal, but also for measuring a DC current. Among them, a processing method of dividing an output signal of a sensor into two orthogonal polarization components, that is, a P-polarization component and an S-polarization component, and dividing by a sum and a difference is described as a two-light output method. Fluctuations in the amount of light in the transmission path, signal processing circuit, and the like cause measurement errors, and there is a problem in that direct current measurement with high accuracy cannot be performed with this method.

【0003】このため、特開昭57−141562号公
報に記載のごとく、直流信号に高周波信号を重畳させた
光源を用い、光源変動を補正する方法が提案されている
が、この方法では高周波分の光量が被測定直流電流の大
きさによって変化するという点に配慮されていないた
め、十分な変動補正ができにくい問題がある。また、特
開昭59−190668号公報には異なる2波長の光を
用い、第1の光はセンサ内で偏光を受け、第2の光はセ
ンサ内で偏光されない様にし、両光の受信強度の比から
変動分を補正しようとする方法が提案されているが、測
定範囲が広くないことや、光源の変動補正が配慮されて
いない問題がある。
For this reason, as disclosed in Japanese Patent Application Laid-Open No. 57-141562, a method has been proposed in which a light source in which a high-frequency signal is superimposed on a DC signal is used to correct the light source fluctuation. However, there is a problem in that it is difficult to sufficiently correct fluctuation because the light amount of the light does not change depending on the magnitude of the DC current to be measured. JP-A-59-190668 uses light of two different wavelengths, the first light is polarized in the sensor, and the second light is not polarized in the sensor. There has been proposed a method of correcting the variation from the ratio of the above, but there are problems that the measurement range is not wide and the variation correction of the light source is not considered.

【0004】[0004]

【発明が解決しようとする課題】上記したように、従来
の光学的な直流電流測定においては、光源から光信号伝
送路、信号処理回路に亘る各部での光量変動に対する有
効な補正が行われておらず、高精度の直流電流測定がで
きない問題があった。本発明の課題は、たとえ光源、光
信号伝送部などで光量の変動があっても、直流電流を広
い範囲で高精度に測定するにある。
As described above, in the conventional optical direct current measurement, an effective correction is made for the light quantity fluctuation in each part from the light source to the optical signal transmission line and the signal processing circuit. There was a problem that high-precision DC current measurement could not be performed. An object of the present invention is to measure a DC current with high accuracy over a wide range even if the light amount fluctuates in a light source, an optical signal transmission unit, or the like.

【0005】[0005]

【課題を解決するための手段】上記の課題は、一定の出
力光を発生する光源と、該光源から発せられた光を直線
偏光させる偏光子と、磁気光学効果を有し被測定電流導
体の周囲に配置された媒質と、検光子とこれから出射す
る光信号を電気信号に変換し、演算・処理する信号処理
回路を備えて成る光応用電流変成器において、前記光源
として波長λ1の光波を発する光源と、波長λ2の光波を
発する光源と、波長λ1の光波と波長λ2の光波をそれぞ
れ別々に伝送する伝送路と、前記伝送路で伝送された
長λ1の光波を該磁気光学効果を有する媒質中を被測定
電流導体を囲むように周回透過させる手段と、前記伝送
路で伝送された波長λ2の光波を該媒質中を通過させる
ことのないよう該媒質への入射口で分岐させる手段と、
前記媒質中を通過した波長λ1の光波と前記媒質中を通
過しない波長λ2の光波とを合流させたのちP偏光成分
及びS偏光成分に分離する手段と、該P偏光成分及びS
偏光成分をそれぞれ伝送する伝送路と、該伝送されたP
偏光成分及びS偏光成分をそれぞれ波長λ1と波長λ2と
に分離する手段と、この分離された光出力信号の和差演
算処理により、被測定電流と同極性の電気出力信号を得
る信号処理回路とを備え、前記波長λ2の光波を分岐さ
せる手段を、前記磁気光学効果を有する媒質に接して配
置することにより達成される。
An object of the present invention is to provide a light source for generating a constant output light, a polarizer for linearly polarizing the light emitted from the light source, and a light source for measuring a current conductor having a magneto-optical effect. A light source having a wavelength of λ1 is emitted as the light source in an optical applied current transformer including a medium disposed around, an analyzer and a signal processing circuit that converts an optical signal emitted from the analyzer into an electric signal, and performs operation and processing. A light source, a light source that emits a light wave of wavelength λ2, a light wave of wavelength λ1 and a light wave of wavelength λ2
Is a transmission path for transmitting separately, means for circulating a transmission so as to surround the measured current conductor in a medium having a magnetic optical effect to the light wave of the transmission path in the transmitted wave <br/> length .lambda.1, wherein transmission
Means for splitting the lightwave of wavelength λ2 transmitted through the path at the entrance to the medium so as not to pass through the medium;
Means for combining a lightwave having a wavelength λ1 that has passed through the medium and a lightwave having a wavelength λ2 that has not passed through the medium, and then separating the P-polarized component and the S-polarized component;
A transmission path for transmitting each polarization component, and the transmitted P
Means for separating the polarization component and the S-polarization component into wavelengths λ1 and λ2, respectively, and a signal processing circuit for obtaining an electric output signal having the same polarity as the current to be measured by a sum-difference calculation process of the separated optical output signals. And the lightwave having the wavelength λ2 is branched.
Means for contacting the medium having the magneto-optical effect.
This is achieved by placing

【0006】[0006]

【0007】上記の課題はさらに、一定の出力光を発生
する光源と、該光源から発せられた光を直線偏光させる
偏光子と、磁気光学効果を有し被測定電流導体の周囲に
配置された媒質と、検光子とこれから出射する光信号を
電気信号に変換し、演算・処理する信号処理回路を備え
て成る光応用電流変成器において、前記光源として波長
λ10の光波1を発する光源と、波長が異なる別光源と
して波長λ0の光波2を発する光源とを備え、光波2を
発する光源には光波2に高周波を重畳させる手段を備
光波1を磁気光学効果を有する媒質中を被測定電流
導体を囲むように周回透過させる手段と、光波2を該媒
質中を通過させることのないように該媒質への入射口で
分岐させる手段と、前記媒質中を通過した光波1と前記
媒質中を通過しない光波2とを合流させたのちP偏光成
分とS偏光成分に分離する手段と、該P偏光成分とS偏
光成分をそれぞれ伝送する伝送路と、検光子から出力さ
れたP偏光成分とS偏光成分を光電変換する光電変換手
段と、該光電変換手段の出力をそれぞれ直流分と交流分
に分離する分離手段と、該分離手段の出力を演算処理す
る演算回路と、を備えたことを特徴とする光応用直流電
流変成器によっても達成される。
[0007] The above problems further generate a constant output light.
Light source, and linearly polarized light emitted from the light source
Polarizer and around the current conductor to be measured having magneto-optical effect
The placed medium, the analyzer and the optical signal
Equipped with a signal processing circuit that converts to electrical signals and performs operation and processing
In the optical applied current transformer comprising
a light source that emits a lightwave 1 of λ10 and another light source with a different wavelength
And a light source that emits a light wave 2 having a wavelength λ0.
The light source that emits has a means for superimposing a high frequency wave on the light wave 2.
The light wave 1 is transmitted through a medium having a magneto-optical effect to a current to be measured.
Means for orbiting the conductor so as to surround the conductor;
At the entrance to the medium so that it does not pass through
Means for branching, the light wave 1 having passed through the medium,
After merging the light wave 2 that does not pass through the medium and the P-polarized light
Means for separating the P-polarized component and the S-polarized
The transmission path for transmitting each optical component and the output from the analyzer
A photoelectric conversion unit that photoelectrically converts the P-polarized component and the S-polarized component, a separating unit that separates an output of the photoelectric converting unit into a DC component and an AC component, and an arithmetic circuit that performs arithmetic processing on the output of the separating unit. The present invention is also achieved by an optical-applied DC current transformer characterized by comprising:

【0008】[0008]

【作用】異なる波長λ1,λ2の二光源からの入射光が光
ファイバによる光伝送路で磁気光学効果を有する媒質
(以下ファラディ素子という)(磁界センサ)に導かれ
る。波長λ1の第1の光波はファラディ素子の入射端に
配された偏光子で直線偏光された後、素子中を被測定電
流導体を囲むように周回通過することで電流値に応じた
ファラディ回転を受ける。一方、波長λ2の第2の光波
はファラディ素子の入射端でファラディ素子中を通らな
いように分岐されるため被測定電流の影響は受けない。
そして、上記ファラディ素子からの光出射端では、(λ1
+λ2)の光信号を互いに直交するP偏光成分とS偏光成
分に分け、さらに該P偏光成分とS偏光成分それぞれに
含まれる(λ1+λ2)の光成分をそれぞれに分波して、合
計で四つの光信号成分、つまり波長λ1のP偏光成分I
λ1pとS偏光成分Iλ1s,波長λ2のP偏光成分Iλ2
pとS偏光成分Iλ2sが得られる。得られた二つのP
偏光成分は光ファイバを含む同一のP偏光用の光伝送路
で、また二つのS偏光成分もS偏光用の同一光伝送路で
信号処理回路まで伝送される。
[Function] A medium in which incident light from two light sources having different wavelengths λ1 and λ2 has a magneto-optical effect in an optical transmission line using an optical fiber.
(Hereinafter referred to as a Faraday element) (magnetic field sensor). The first light wave of the wavelength λ1 is linearly polarized by the polarizer arranged at the incident end of the Faraday element, and then passes around the element so as to surround the current conductor to be measured, thereby performing Faraday rotation according to the current value. receive. On the other hand, the second light wave having the wavelength λ2 is branched at the incident end of the Faraday element so as not to pass through the Faraday element, and is not affected by the current to be measured.
Then, at the light emitting end from the Faraday element, (λ1
+ λ2) is divided into a P-polarized light component and an S-polarized light component that are orthogonal to each other, and the (λ1 + λ2) light component included in each of the P-polarized light component and the S-polarized light component is demultiplexed into each component. And four optical signal components, that is, a P-polarized component I of wavelength λ1
λ1p, S-polarized component Iλ1s, P-polarized component Iλ2 of wavelength λ2
The p and S polarization components Iλ2s are obtained. Two P obtained
The polarization component is transmitted to the same P-polarization optical transmission line including the optical fiber, and the two S-polarization components are also transmitted to the signal processing circuit through the same S-polarization optical transmission line.

【0009】ここで、Ip,Isを被測定電流導体に電流
が流れていないときに得られる波長λ1の光波のP偏光
成分及びS偏光成分とし、第1の波長λ1の光波による
ファラディ素子中でのファラディ回転角をΔφとする
と、上記の四つの光信号成分はそれぞれ次式で表わすこ
とができる。
Here, Ip and Is are defined as the P-polarized component and the S-polarized component of the light wave of wavelength λ1 obtained when no current flows through the current conductor to be measured, and are used in the Faraday element by the light wave of the first wavelength λ1. Is the Faraday rotation angle of Δφ, the above four optical signal components can be expressed by the following equations, respectively.

【0010】[0010]

【数1】波長λ1の光波のP偏光成分 Iλ1p=Ip
・(1−sinΔφ)
## EQU1 ## P-polarized light component of lightwave of wavelength λ1 Iλ1p = Ip
・ (1-sinΔφ)

【0011】[0011]

【数2】波長λ1の光波のS偏光成分 Iλ1s=Is
・(1+sinΔφ)
## EQU2 ## S-polarized light component of lightwave of wavelength λ1 Iλ1s = Is
・ (1 + sinΔφ)

【0012】[0012]

【数3】 波長λ2の光波のP偏光成分 Iλ2p=Ip′## EQU00003 ## P-polarized light component of lightwave having wavelength .lambda.2 I.lambda.2p = Ip '

【0013】[0013]

【数4】 波長λ2の光波のS偏光成分 Iλ2s=Is′ここ
で、
## EQU00004 ## S-polarized light component of lightwave having wavelength .lambda.2 I.lambda.2s = Is' where

【0014】[0014]

【数5】Kp=Ip/Ip′ Ks=Is/Is′ とおくと、波長λ1とλ2の光波のP偏光成分及びS偏光
成分はそれぞれ同一光伝送路をたどっているため、光源
を含む光伝送路で光量変動があってもKp,Ksは同一
割合で変動することになる。すなわち信号処理回路で
If Kp = Ip / Ip 'and Ks = Is / Is', the P-polarized light component and the S-polarized light component of the lightwaves of wavelengths .lambda.1 and .lambda.2 follow the same optical transmission path, respectively. Kp and Ks will fluctuate at the same rate even if the light amount fluctuates in the transmission path. That is, in the signal processing circuit

【0015】[0015]

【数6】K=Kp=Ks となるようにKpとKsを一度設定すれば、光源及び光
伝送路の途中で何らかの理由で光量変動がおきても、常
に一定のKとすることが可能となる。その結果、ファラ
ディ素子の出力は、P偏光成分をJp,S偏光成分をJ
sとすれば、それぞれ次式で表される。
## EQU6 ## If Kp and Ks are set once so that K = Kp = Ks, it is possible to always keep K constant even if the light amount fluctuates for some reason along the light source and the optical transmission line. Become. As a result, the output of the Faraday element is such that the P polarization component is Jp and the S polarization component is Jp.
Assuming that s, each is represented by the following equation.

【0016】[0016]

【数7】 (Equation 7)

【0017】[0017]

【数8】 (Equation 8)

【0018】これらの和と差をとり、除算すると、出力
Voutは、次のようになる。
When the sum and difference are taken and divided, the output Vout is as follows.

【0019】[0019]

【数9】 (Equation 9)

【0020】ここでΔφ≪1にすれば、 sinΔφ≒Δ
φ とおけるため、上記のような演算を行えば、たとえ
光源及び光伝送路の各部で光量変動があってもファラデ
ィ回転角Δφが正確に求められ、直流電流が広い範囲で
高精度に測定できるようになる。
If ΔφΔ1, sin ΔφΔΔ
Therefore, if the above calculation is performed, the Faraday rotation angle Δφ can be accurately obtained even if the light amount fluctuates in each part of the light source and the optical transmission line, and the DC current can be measured with high accuracy in a wide range. Become like

【0021】[0021]

【実施例】以下、本発明の第1の実施例を図面を参照し
て説明する。図1に示す、本発明に係る光応用電流変成
器は、異なる二つの波長λ1,λ2を発生する光源1,2
と、該光源1,2にそれぞれ接続された光ファイバ3,
4と、該光ファイバ3にプリズム16´及び偏光子5を
介して接続された磁気光学効果を有するファラディ素子
6と、該ファラディ素子6の光出口に接続された検光子
7と、該検光子7と前記光ファイバ4の間を接続するプ
リズム16と、前記検光子7の光出口に接続された光フ
ァイバ8,9と、該光ファイバ8,9にそれぞれ接続さ
れて入射光を波長λ1,λ2に二つに分離して出力する光
分波器10,11と、該光分波器10,11の出力側に
接続されて光電変換するフォトダイオード12,13,
14,15と、該フォトダイオード12,13,14,
15の出力側に接続された演算処理回路20とを含んで
構成されている。前記ファラディ素子6は被測定電流導
体21の周囲を囲んで形成され、該ファラディ素子に入
射した光は被測定電流導体21を周回したのち、前記検
光子7に入射するよう構成されている。前記フォトダイ
オード12,13,14,15と演算処理回路20とで
信号処理回路30を形成している。図2は、図1に示す
ファラディ素子6への波長λ1,λ2の光波の入射出部の
詳細を示す。波長λ2の光波は非偏光の光で、ファラデ
ー素子を通らず直接、検光子7に入射される構造となっ
ている。プリズム16′,16″は光の方向付のための
全反射プリズムである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to the drawings. The optical applied current transformer according to the present invention shown in FIG. 1 includes light sources 1 and 2 that generate two different wavelengths λ1 and λ2.
And optical fibers 3 connected to the light sources 1 and 2, respectively.
4, a Faraday element 6 having a magneto-optical effect connected to the optical fiber 3 via a prism 16 'and a polarizer 5, an analyzer 7 connected to a light exit of the Faraday element 6, and an analyzer A prism 16 for connecting between the optical fiber 7 and the optical fiber 4, optical fibers 8 and 9 connected to the light exit of the analyzer 7, and an incident light connected to the optical fibers 8 and 9 for wavelengths λ1, optical demultiplexers 10 and 11 for separating the light into two lights at λ2 and outputting the divided light, and photodiodes 12 and 13 connected to the output sides of the optical demultiplexers 10 and 11 for photoelectric conversion.
14, 15 and the photodiodes 12, 13, 14,.
15 and an arithmetic processing circuit 20 connected to the output side. The Faraday element 6 is formed so as to surround the current conductor 21 to be measured. The light incident on the Faraday element goes around the current conductor 21 to be measured, and then enters the analyzer 7. The photodiodes 12, 13, 14, 15 and the arithmetic processing circuit 20 form a signal processing circuit 30. FIG. 2 shows details of a part where light waves having wavelengths λ1 and λ2 enter and exit from the Faraday element 6 shown in FIG. The light wave of the wavelength λ2 is a non-polarized light, and has a structure to be directly incident on the analyzer 7 without passing through the Faraday element. The prisms 16 'and 16 "are total reflection prisms for directing light.

【0022】次に上記構成の装置における光波の流れを
説明する。光源1,2から波長λ1,λ2の異なる二つの
光波(以下、光波λ1,光波λ2という)が発光され、光波
λ1は光ファイバ3に、光波λ2は光ファイバ4に、それ
ぞれ入射される。このうちの光波λ1は偏光子5に導か
れ偏光されて直線偏光となり、その後ファラディ素子6
中を全反射しながら被測定電流導体21を周回通過す
る。光波λ1は被測定電流導体21を周回通過すること
で、上記被測定電流の大きさに比例したファラディ回転
を受け、検光子7に入射する。一方、光波λ2は光波λ1
とは別の光ファイバ4でファラディ素子入り口に導かれ
るものの、プリズム16によりファラディ素子6を通ら
ない様に分岐され、検光子7に直接入射する。検光子7
では、光波λ1,光波λ2とも二つの直交する偏光成分、
P偏光成分とS偏光成分に分けられる。この様に分けら
れた偏光成分のうち、光波λ1のP偏光成分及び光波λ2
のP偏光成分はファイバ8により、また光波λ1のS偏
光成分及び光波λ2のS偏光成分はファイバ9により、
それぞれ光分波器10,11に送られる。光分波器1
0,11ではP偏光成分とS偏光成分が、それぞれ二つ
の波長λ1,λ2の光信号に分離され、合計4個の信号と
なって信号処理回路30に伝送される。信号処理回路3
0に伝送される前記4個の光信号は、まずフォトダイオ
ード12,13,14,15により電気信号に変換され
たのち、演算処理回路20に伝達される。
Next, the flow of a light wave in the apparatus having the above configuration will be described. Two light waves having different wavelengths λ 1 and λ 2 (hereinafter referred to as light waves λ 1 and λ 2) are emitted from the light sources 1 and 2, and the light wave λ 1 is incident on the optical fiber 3 and the light wave λ 2 is incident on the optical fiber 4. The light wave λ1 is guided to the polarizer 5 and polarized to become linearly polarized light.
It passes around the measured current conductor 21 while being totally reflected inside. The light wave λ 1 circulates through the measured current conductor 21, undergoes Faraday rotation in proportion to the magnitude of the measured current, and enters the analyzer 7. On the other hand, the light wave λ2 is
Although it is guided to the entrance of the Faraday element by another optical fiber 4, it is branched by the prism 16 so as not to pass through the Faraday element 6, and directly enters the analyzer 7. Analyzer 7
Then, both the light wave λ1 and the light wave λ2 have two orthogonal polarization components,
It is divided into a P polarization component and an S polarization component. Among the polarized light components thus divided, the P-polarized light component of the lightwave λ1 and the lightwave λ2
And the S-polarized light component of the light wave λ1 and the S-polarized light component of the light wave λ2 by the fiber 8, respectively.
These are sent to the optical demultiplexers 10 and 11, respectively. Optical splitter 1
At 0 and 11, the P-polarized light component and the S-polarized light component are separated into optical signals of two wavelengths λ1 and λ2, respectively, and transmitted to the signal processing circuit 30 as a total of four signals. Signal processing circuit 3
The four optical signals transmitted to 0 are first converted into electric signals by the photodiodes 12, 13, 14, and 15, and then transmitted to the arithmetic processing circuit 20.

【0023】図3は、図1の演算処理回路20の実施例
構成を示したもので、フォトダイオード12,13,
14,15にそれぞれ接続された増幅器31,32,3
3,34と、該増幅器31,32の出力側に接続された
除算器35と、増幅器33,34の出力側に接続された
除算器36と、該除算器35,36両者の出力側にとも
に接続された加算器37と、同じく除算器35,36両
者の出力側にともに接続された減算器38と、前記加算
器37及び減算器38の出力側に接続された除算器39
とを含んで構成されている。
FIG. 3 shows an embodiment of the arithmetic processing circuit 20 of FIG.
And the photodiodes 12, 13,.
Amplifiers 31, 32, 3 connected to 14 and 15, respectively.
3, 34, a divider 35 connected to the output side of the amplifiers 31 and 32, a divider 36 connected to the output side of the amplifiers 33 and 34, and both of the output sides of the dividers 35 and 36. A connected adder 37, a subtractor 38 also connected to both outputs of the dividers 35 and 36, and a divider 39 connected to the outputs of the adder 37 and the subtractor 38.
It is comprised including.

【0024】光波λ1のP偏光成分Iλ1pはフォトダイ
オード12により、またS偏光成分Iλ1sはフォトダ
イオード14により、そして光波λ2のP偏光成分Iλ2
p,S偏光成分Iλ2sはそれぞれフォトダイオード1
3,15によりそれぞれ電気信号に変換され、増幅器3
1,32,33,34で増幅される。そして除算器3
5,36にてP,S偏光成分ごとの除算Iλ1p/Iλ2
p,Iλ1s/Iλ2sが行われる。さらに次段の加算回
路37でIλ1p/Iλ2p+Iλ1s/Iλ2sなる加算
が、減算回路38でIλ1p/Iλ2p−Iλ1s/Iλ2
sなる減算が行われた後、除算器39で次の数10に示
す出力信号Voutが得られる。
The P-polarized light component Iλ1p of the lightwave λ1 is output by the photodiode 12, the S-polarized light component Iλ1s is output by the photodiode 14, and the P-polarized light component Iλ2 of the lightwave λ2.
The p and S polarization components Iλ2s are
Are converted into electric signals by the amplifiers 3 and 15, respectively.
Amplified at 1,32,33,34. And divider 3
The division Iλ1p / Iλ2 for each P and S polarization component at 5,36
p, Iλ1s / Iλ2s is performed. Further, the addition of Iλ1p / Iλ2p + Iλ1s / Iλ2s is performed by the addition circuit 37 at the next stage, and the addition of Iλ1p / Iλ2p−Iλ1s / Iλ2 is performed by the subtraction circuit 38.
After the subtraction of s is performed, the divider 39 obtains the output signal Vout shown in the following Expression 10.

【0025】[0025]

【数10】 (Equation 10)

【0026】この出力信号は前記した如くファラディ回
転角に比例しており、光量変動の影響を受けないので、
高精度の直流電流測定が可能となる。
As described above, this output signal is proportional to the Faraday rotation angle, and is not affected by light quantity fluctuation.
Highly accurate DC current measurement is possible.

【0027】図4に本発明の参考例を示す。本参考例
前記第1の実施例と異なるのは、光源1,2から発光さ
れた異なる二つの波長λ1,λ2の光波は光合波器18に
導かれ、一本の光ファイバ19に入射されて偏光子5に
導かれる点と、該偏光子5で直線偏光された光波λ1,
λ2の光軸上にダイクロイック(以下光フィルタ17とい
う)が配置されている点である。偏光子5ではそれぞれ
の光波が直線偏光となるが、続いて設けられた光フィル
タ17で光波λ1はファラディ素子6の中に導かれ、全
反射しながら被測定電流導体21を周回したのち検光子
7に入射するものの、光波λ2は上記光フィルタ17の
作用でファラディ素子中を通らない様に分岐され、検光
子7に入射する。以下検光子7を通りP偏光成分とS偏
光成分とに分けられて伝送され、各種の信号処理を施さ
れる作用は、図1〜図3で述べたものと同様で、かつ同
一構成となっている。
FIG. 4 shows a reference example of the present invention. Present embodiment is different from the first embodiment, the two wavelengths λ1 different emitted from the light source 1, light waves λ2 is guided to the optical multiplexer 18, is incident on a single optical fiber 19 And a light wave λ1, linearly polarized by the polarizer 5,
The point is that a dichroic (hereinafter referred to as an optical filter 17) is arranged on the optical axis of λ2. In the polarizer 5, each light wave becomes a linearly polarized light, but the light wave λ1 is guided into the Faraday element 6 by the optical filter 17 provided subsequently, and goes around the current conductor 21 to be measured while being totally reflected. Although the light wave λ 2 enters the analyzer 7, the light wave λ 2 is branched by the action of the optical filter 17 so as not to pass through the Faraday element and enters the analyzer 7. After that, the light passes through the analyzer 7 and is transmitted after being divided into a P-polarized component and an S-polarized component, and various signal processing operations are performed in the same manner as those described with reference to FIGS. Have.

【0028】図5は、本発明の第2の実施例を示すもの
で、本実施例は前記第1の実施例とは、光源及び検光子
7を出たあとの信号の処理方式が異なる。本実施例にお
いて、光源1は波長λ1の第1の光波を発光するもので
構成され、光源2は波長λ1の光波に高周波を重畳させ
た第2の光波を発光するもので構成されている。また、
S偏光成分を伝送する光ファイバ9は光電変換器12A
に、P偏光成分を伝送する光ファイバ8は光電変換器1
4Aに、それぞれ接続されている。光電変換器12Aの
出力側には、さらに、ローパスフィルタLPF40A及
びハイパスフィルタHPF40Bが互いに並列に接続さ
れ、該ローパスフィルタLPF40Aの出力側は除算器
35に、ハイパスフィルタHPF40Bの出力側は平滑
回路を介して該除算器35に接続されている。光電変換
器14Aの出力側にも、ローパスフィルタLPF40C
及びハイパスフィルタHPF40Dが互いに並列に接続
され、該ローパスフィルタLPF40Cの出力側は除算
器36に、ハイパスフィルタHPF40Dの出力側は平
滑回路を介して該除算器36に接続されている。除算器
35,36の出力側は、和差回路39Aに接続されてい
る。
FIG. 5 shows a second embodiment of the present invention. This embodiment is different from the first embodiment in the processing method of the signal after leaving the light source and the analyzer 7. In this embodiment, the light source 1 is configured to emit a first lightwave having a wavelength λ1, and the light source 2 is configured to emit a second lightwave obtained by superimposing a high frequency on the lightwave having a wavelength λ1. Also,
The optical fiber 9 transmitting the S-polarized component is a photoelectric converter 12A.
The optical fiber 8 for transmitting the P-polarized light component is
4A. A low-pass filter LPF 40A and a high-pass filter HPF 40B are further connected in parallel to the output side of the photoelectric converter 12A. The output side of the low-pass filter LPF 40A is connected to the divider 35, and the output side of the high-pass filter HPF 40B is connected to a smoothing circuit. Connected to the divider 35. The low-pass filter LPF40C is also provided on the output side of the photoelectric converter 14A.
And the high-pass filter HPF 40D are connected in parallel with each other. The output side of the low-pass filter LPF 40C is connected to the divider 36, and the output side of the high-pass filter HPF 40D is connected to the divider 36 via a smoothing circuit. Output sides of the dividers 35 and 36 are connected to a sum-and-difference circuit 39A.

【0029】第1の光源から発光された第1の光波は前
記第1の実施例と同様、偏光子を経てファラディー素子
に入射され、高周波を重畳させた第2の光波はファラデ
ィー素子に入射することなく、直接検光子7に入射され
る。ファラディー素子を経て検光子に入射された第1の
光波と直接検光子7に入射された第2の光波は、ともに
検光子でP偏光成分とS偏光成分に分けられ、偏光成
分は光ファイバ9を経て光電変換器12Aに、偏光成
分は光ファイバ8を経て光電変換器14Aに、伝送され
る。
The first light wave emitted from the first light source enters the Faraday element via the polarizer similarly to the first embodiment, and the second light wave on which the high frequency is superimposed is applied to the Faraday element. The light is directly incident on the analyzer 7 without being incident. Second light wave incident on the first light wave and the direct analyzer 7 which is incident on the analyzer through the Faraday element is divided into a P-polarized component and S-polarized light component in both the analyzer, S-polarized component light The P- polarized component is transmitted to the photoelectric converter 12A via the optical fiber 8 and to the photoelectric converter 12A via the fiber 9.

【0030】今、光ファイバ8を経て光電変換器14A
に入射する光量をJp、光ファイバ9を経て光電変換器
12Aに入射する光量をJsとすると、Jp,Jsは次の
式で示される。
Now, through the optical fiber 8, the photoelectric converter 14A
The amount of light incident on the device is Jp, and the photoelectric converter passes through the optical fiber 9.
Assuming that the amount of light incident on 12A is Js, Jp and Js are expressed by the following equations.

【0031】[0031]

【数11】 Jp=〔Jo・ηA・ηB(1−Δφ)+ηc・(J1+dsinwt〕ηp Js=〔Jo・ηA・ηB(1+Δφ)+ηc・(J1+dsinwt〕ηs LPF40Aは、上記Jsの直流分を取り出し、HP
F40Bは、上記Jsの交流分を取り出す。同様にLP
F40Cは、上記Jpの直流分を取り出し、HPF40
Dは、上記Jpの交流分を取り出す。除算器35,36
は入力された直流分と交流分の比(直流分/交流分)を算
出し、次段の演算回路39Aに出力する。和差回路39
Aは、この入力信号を演算処理することによって被測定
電流、あるいは被測定磁界の大きさに比例した出力電圧
Eoutを次式により求める。(A′:和差回路の増幅
率)
## EQU11 ## Jp = [Jo.eta..eta.B (1-.DELTA..phi.) +. Eta.c. (J1 + dsinwt) .eta.p Js = [Jo.eta..eta.B (1 + .DELTA..phi.) +. Eta.c. (J1 + dsinwt) .eta.s , HP
F40B takes out the AC component of Js. Similarly LP
F40C takes out the DC component of the above Jp,
D takes out the alternating current of Jp. Dividers 35 and 36
Calculates the ratio of the input DC component and the AC component (DC component / AC component) and outputs the ratio to the arithmetic circuit 39A at the next stage. Sum difference circuit 39
A obtains the output voltage Eout proportional to the current to be measured or the magnitude of the magnetic field to be measured by the following equation by calculating the input signal. (A ': amplification factor of sum-difference circuit)

【0032】[0032]

【数12】 (Equation 12)

【0033】即ち、J1ηc/JoηA・ηB≪1とする
か、これらが変動しても、その影響が小さければ良い。
例えばJ1・ηc/Jo・ηA・ηB=0.1とすると、光量
10%変動に対してEoutの変動分は1%、1/2減に
対して9%程度の変動となる。
That is, J1ηc / JoηA · ηB≪1, or if these values fluctuate, it is sufficient if their effects are small.
For example, if J1.eta.c / Jo.eta.A.eta.B = 0.1, the variation of Eout is 1% for a 10% variation in light quantity, and about 9% for a 1/2 reduction.

【0034】[0034]

【発明の効果】本発明によれば、二つの異なる波長の光
波を用い、一方の光波を直線偏光させてファラディ素子
を通過させたのちP偏光成分とS偏光成分に分離し、他
方の光波をファラディ素子を除いて前記光波と同様の経
路を通過させたのちP偏光成分とS偏光成分に分離し、
これら4個の信号を演算処理してファラディ素子の回転
角に比例した信号を取り出すので、光源や各光信号伝送
などで光量変動があっても、それらの影響を排除した出
力が得られ、精度の良い直流電流が測定できる効果があ
る。
According to the present invention, two light waves having different wavelengths are used, one of the light waves is linearly polarized, passed through a Faraday element, separated into a P-polarized component and an S-polarized component, and the other light wave is separated. After passing through the same path as the lightwave except for the Faraday element, it is separated into a P-polarized component and an S-polarized component,
Since these four signals are subjected to arithmetic processing to extract a signal proportional to the rotation angle of the Faraday element, even if there is a fluctuation in light amount due to a light source or transmission of each optical signal, an output in which those influences are eliminated is obtained, and accuracy is obtained. There is an effect that a good direct current can be measured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例の要部構成を示すブロッ
ク図である。
FIG. 1 is a block diagram showing a configuration of a main part of a first embodiment of the present invention.

【図2】図1の実施例でのファラディ素子光入出射部の
詳細を示す断面図と一部側面図側面図である。
2A and 2B are a cross-sectional view and a side view, respectively, showing details of a Faraday element light input / output unit in the embodiment of FIG. 1;

【図3】図1の実施例での信号処理回路の構成例を示す
ブロック図である。
FIG. 3 is a block diagram illustrating a configuration example of a signal processing circuit in the embodiment of FIG. 1;

【図4】本発明の参考例を示すブロック図である。FIG. 4 is a block diagram showing a reference example of the present invention.

【図5】本発明の第2の実施例の要部構成を示すブロッ
ク図である。
FIG. 5 is a block diagram showing a main configuration of a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,2 光源 3,4 光ファイバ 5 偏光子 6 ファラディ素子 7 検光子 8,9 光ファイバ 10,11 光分波器 12,13,14,15 フォトダイオード 12A,14A 光電変換器 16′,16″ プリズム 17 ダイクロイック(光フィルタ) 18 光合波器 20 演算処理回路 30 信号処理回路 31,32,33,34 増巾器 35,36,39 除算器 37 加算回路 38 減算回路 39A 和差回路 40A,40C ローパスフィルタ 40B,40D ハイパスフィルタ 1, 2 light source 3, 4 optical fiber 5 polarizer 6 Faraday element 7 analyzer 8, 9 optical fiber 10, 11 optical demultiplexer 12, 13, 14, 15 photodiode 12A, 14A photoelectric converter 16 ', 16 " Prism 17 Dichroic (optical filter) 18 Optical multiplexer 20 Arithmetic processing circuit 30 Signal processing circuit 31, 32, 33, 34 Amplifier 35, 36, 39 Divider 37 Addition circuit 38 Subtraction circuit 39A Sum-difference circuit 40A, 40C Low-pass Filter 40B, 40D High-pass filter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 曽根 勇 茨城県日立市久慈町4026番地 株式会社 日立製作所 日立研究所内 (72)発明者 檜垣 勝 茨城県日立市久慈町4026番地 株式会社 日立製作所 日立研究所内 (72)発明者 森 悦紀 茨城県日立市国分町1丁目1番1号 株 式会社 日立製作所 国分工場内 (72)発明者 北 英三 大阪府大阪市北区中之島三丁目3番22号 関西電力株式会社内 (72)発明者 ▲葛▼坂 聡 大阪府大阪市北区中之島三丁目3番22号 関西電力株式会社内 (72)発明者 清水 誠 大阪府大阪市北区中之島三丁目3番22号 関西電力株式会社内 (72)発明者 中川 博人 大阪府大阪市北区中之島三丁目3番22号 関西電力株式会社内 (56)参考文献 特開 昭59−145972(JP,A) 特開 平2−143173(JP,A) 特公 昭44−12099(JP,B1) 特公 昭48−13288(JP,B1) (58)調査した分野(Int.Cl.7,DB名) G01R 15/24 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Isamu Sone 4026 Kuji-cho, Hitachi City, Ibaraki Prefecture Within Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Masaru Higaki 4026 Kuji-cho, Hitachi City, Ibaraki Prefecture Hitachi, Ltd. (72) Inventor Etsunori Mori 1-1-1, Kokubuncho, Hitachi City, Ibaraki Prefecture Inside of Kokubu Plant, Hitachi, Ltd. (72) Inventor Eizo Kita 3-2-2 Nakanoshima, Kita-ku, Osaka City, Osaka Prefecture Kansai Electric Power Co., Inc. (72) Inventor ▲ Kuzu ▼ Satoshi 3-2-2 Nakanoshima, Kita-ku, Osaka, Osaka Kansai Electric Power Co., Inc. (72) Makoto Shimizu 3-chome, Nakanoshima, Kita-ku, Osaka, Osaka No. 22 Kansai Electric Power Co., Inc. (72) Inventor Hiroto Nakagawa 3-22 Nakanoshima, Kita-ku, Osaka City, Osaka Prefecture Kansai Electric Power Co., Inc. (56) References JP Sho 59 145972 (JP, A) JP flat 2-143173 (JP, A) Tokuoyake Akira 44-12099 (JP, B1) Tokuoyake Akira 48-13288 (JP, B1) (58) investigated the field (Int.Cl. 7 , DB name) G01R 15/24

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一定の出力光を発生する光源と、該光源
から発せられた光を直線偏光させる偏光子と、磁気光学
効果を有し被測定電流導体の周囲に配置された媒質と、
検光子とこれから出射する光信号を電気信号に変換し、
演算・処理する信号処理回路を備えて成る光応用電流変
成器において、前記光源として波長λ1の光波を発する
光源と、波長λ2の光波を発する光源と、波長λ1の光波
と波長λ2の光波をそれぞれ別々に伝送する伝送路と、
前記伝送路で伝送された波長λ1の光波を該磁気光学効
果を有する媒質中を被測定電流導体を囲むように周回透
過させる手段と、前記伝送路で伝送された波長λ2の光
波を該媒質中を通過させることのないよう該媒質への入
射口で分岐させる手段と、前記媒質中を通過した波長λ
1の光波と前記媒質中を通過しない波長λ2の光波とを合
流させたのちP偏光成分及びS偏光成分に分離する手段
と、該P偏光成分及びS偏光成分をそれぞれ伝送する伝
送路と、該伝送されたP偏光成分及びS偏光成分をそれ
ぞれ波長λ1と波長λ2とに分離する手段と、この分離さ
れた光出力信号の和差演算処理により、被測定電流と同
極性の電気出力信号を得る信号処理回路とを備えてな
り、前記波長λ2の光波を分岐させる手段は、前記磁気
光学効果を有する媒質に接して配置されていることを特
徴とする光応用直流電流変成器。
1. A light source for generating a constant output light, a polarizer for linearly polarizing light emitted from the light source, a medium having a magneto-optical effect and arranged around a current conductor to be measured,
The analyzer and the optical signal emitted from it are converted into electrical signals,
An optical applied current transformer comprising a signal processing circuit for calculating and processing, wherein the light source emits a light wave having a wavelength of λ1, the light source emits a light wave having a wavelength of λ2, and the light wave having a wavelength of λ1.
And a transmission line for separately transmitting the light waves of wavelength λ2,
Means for transmitting the lightwave of wavelength λ1 transmitted through the transmission line in a medium having the magneto-optical effect so as to surround the current conductor to be measured , and transmitting the lightwave of wavelength λ2 transmitted through the transmission line in the medium. Means for branching at the entrance to the medium so as not to pass through, and a wavelength λ passing through the medium.
Means for combining the 1 light wave and the light wave of wavelength λ2 that does not pass through the medium, and then separating the light wave into a P-polarized component and an S-polarized component; a transmission path for transmitting the P-polarized component and the S-polarized component, respectively; Means for separating the transmitted P-polarized component and S-polarized component into wavelengths λ1 and λ2, respectively, and an electric output signal having the same polarity as the current to be measured is obtained by the sum difference operation of the separated optical output signals. I and a signal processing circuit
The means for splitting the light wave having the wavelength λ2 is
An optical applied DC current transformer, which is disposed in contact with a medium having an optical effect .
【請求項2】 波長λ1の光波1を発する光源と、波長
λ1の光波に高周波を重畳させた光波2を発する光源
と、 光波1を偏光子を通過させて偏光させたのち磁気光学効
果を有する媒質中を被測定電流導体を囲むように周回透
過させる手段と、 光波2を該媒質中を通過させることのないように該媒質
への入射口で分岐させる手段と、 前記媒質中を通過した光波1と前記媒質中を通過しない
光波2とを合流させたのちP偏光成分とS偏光成分に分
離する手段と、 前記分離されたP偏光成分とS偏光成分を光電変換する
光電変換手段と、 該光電変換手段の出力をそれぞれ直流分と交流分に分離
する分離手段と、 該分離手段の出力を演算処理する演算回路と、 を有してなる光応用直流電流変成器。
2. A light source for emitting a light wave 1 having a wavelength λ1, and a wavelength
A light source that emits a light wave 2 in which a high frequency is superimposed on a light wave of λ1
And the light wave 1 is polarized by passing through a polarizer,
Around the current conductor to be measured in the medium
Means for passing the light wave 2 through the medium so as not to pass through the medium.
Means for branching at the entrance to the light source, and the light wave 1 passing through the medium and not passing through the medium
After the light wave 2 is merged, the light wave 2 is separated into a P-polarized component and an S-polarized component.
Separating means for photoelectrically converting the separated P-polarized component and S-polarized component.
The photoelectric conversion means and the output of the photoelectric conversion means are separated into a DC component and an AC component, respectively.
An optical applied DC current transformer, comprising: a separating means for performing a calculation on an output of the separating means .
JP11759691A 1991-05-22 1991-05-22 Optical DC current transformer Expired - Lifetime JP3151672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11759691A JP3151672B2 (en) 1991-05-22 1991-05-22 Optical DC current transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11759691A JP3151672B2 (en) 1991-05-22 1991-05-22 Optical DC current transformer

Publications (2)

Publication Number Publication Date
JPH04344469A JPH04344469A (en) 1992-12-01
JP3151672B2 true JP3151672B2 (en) 2001-04-03

Family

ID=14715727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11759691A Expired - Lifetime JP3151672B2 (en) 1991-05-22 1991-05-22 Optical DC current transformer

Country Status (1)

Country Link
JP (1) JP3151672B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6518494B1 (en) 1995-08-22 2003-02-11 Matsushita Electric Industrial Co., Ltd. Silicon structure, method for producing the same, and solar battery using the silicon structure
US8877541B2 (en) 2005-08-22 2014-11-04 Q1 Nanosystems, Inc. Nanostructure and photovoltaic cell implementing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6518494B1 (en) 1995-08-22 2003-02-11 Matsushita Electric Industrial Co., Ltd. Silicon structure, method for producing the same, and solar battery using the silicon structure
US8877541B2 (en) 2005-08-22 2014-11-04 Q1 Nanosystems, Inc. Nanostructure and photovoltaic cell implementing same

Also Published As

Publication number Publication date
JPH04344469A (en) 1992-12-01

Similar Documents

Publication Publication Date Title
EP0088419B1 (en) Apparatus for optically measuring a current
JP4853474B2 (en) Photosensor and photocurrent / voltage sensor
CA2699017A1 (en) Optical fiber electric current measurement apparatus and electric current measurement method
JP2000501841A (en) Optical measuring method and optical measuring device for alternating current with normalized intensity
JP3151672B2 (en) Optical DC current transformer
US7095963B2 (en) Multi-channel optical receiver for processing tri-cell polarization diversity detector outputs
JP2010025670A (en) Optical signal sn ratio measuring apparatus
JP2002098719A (en) Device for measuring current by faraday effect
JP2000131193A (en) Device for measuring extinction ratio of light module
JP3011244B2 (en) Optical applied DC current transformer
JP3041637B2 (en) Optical applied DC current transformer
JPH01163675A (en) Multipoint measuring instrument by multiplexed wavelength
JP2638312B2 (en) Light sensor
JPS601582A (en) Measuring apparatus for both ac and dc magnetic fields
JPS599526A (en) Temperature measuring device
JPH10267756A (en) Optical spectrum analyzer
JPH0530217B2 (en)
JPS59159076A (en) Optical type magnetic field sensor
JPH05196707A (en) Optical magnetic-field sensor
JPH07306095A (en) Polarization-analysis evaluation method of polarization modulation optical signal
JPH08285690A (en) Depolarization device and light power measuring device using the depolarization device
JPS5988665A (en) Light applied magnetic field sensor
JPH0743397B2 (en) Optical DC transformer
JPH0534394A (en) Optical zero phase component/individual phase components detector
JPS5963513A (en) Optical fiber gyroscope

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080126

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080126

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090126

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090126

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 11