JPH0530217B2 - - Google Patents

Info

Publication number
JPH0530217B2
JPH0530217B2 JP58022426A JP2242683A JPH0530217B2 JP H0530217 B2 JPH0530217 B2 JP H0530217B2 JP 58022426 A JP58022426 A JP 58022426A JP 2242683 A JP2242683 A JP 2242683A JP H0530217 B2 JPH0530217 B2 JP H0530217B2
Authority
JP
Japan
Prior art keywords
optical
signal
photodiode
components
photodiodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58022426A
Other languages
Japanese (ja)
Other versions
JPS59147273A (en
Inventor
Hisakatsu Nemoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP58022426A priority Critical patent/JPS59147273A/en
Publication of JPS59147273A publication Critical patent/JPS59147273A/en
Publication of JPH0530217B2 publication Critical patent/JPH0530217B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、光の偏光を利用した電気量測定装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrical quantity measuring device that uses polarized light.

この種の装置の従来例を第1図に示す。図にお
いて、10はレーザダイオード或いは発光ダイオ
ードよりなる光源、20は電気光学効果素子(又
は磁気光学効果素子)を用いて構成した公知の光
センサ、31,32はフオトダイオード、41,
42は電流・電圧変換機能を有する増幅器、51
は被測定の電気量に応じて変調された信号に比例
した電圧を取り出す演算を行う演算増幅器で構成
された減算器、52は光強度に比例した電圧を取
り出す演算を行う演算増幅器で構成された加算
器、60は出力端子である。光源10が出力する
一定の光パワーは光フアイバー11を介して光セ
ンサー20に入射される。フオトダイオード31
の出力は増幅器41を介して減算器51と加算器
52に接続され、フオトダイオード32の出力は
増幅器42を介して減算器51と加算器52に接
続されている。この構成の装置において、光源1
0の出力が光センサー20における偏光子21と
λ/4板22に与えられることにより円偏光とな
つた光ビームは、電気光学効果素子23を経るこ
とによつて被測定の電圧Eの値に比例した位相の
変化をうけて楕円偏光となる。その結果が検光子
24を介すことにより、特定の直交する2方向の
偏光成分に分解され、フオトダイオード31,3
2に入射される。その為、P0/2を光強度とし、
Sを光センサー20で変調された信号とすれば、
フオトダイオード31はP0/2×(1+S)で表
される信号を出力し、フオトダイオード32は
P0/2×(1−S)で表わされる信号を出力す
る。フオトダイオード31の出力は増幅器41を
介して減算器51と加算器52に与えられ、フオ
トダイオード32の出力は増幅器42を介して減
算器51と加算器52に与えられる。その結果減
算器51の出力はP0Sとなり、加算器52の出
力はP0となる。P0S信号は被測定の電気量Eの
値に応じて変調された信号に比例した電圧の値を
表わし、この電圧は出力端子60より取り出され
て測定される。一方P0信号は光強度に比例し、
この信号は光源10に与えられ、光源10の出力
光を一定値に制御する。このような構成の装置は
高安定なものとして本願出願人によつて既に提案
されているが、フオトダイオード31,32の出
力を直接増幅器41,42に与えるようにしてい
るので、光センサー20での変調度が低いとフオ
トダイオード31,32の出力に含まれるベース
成分のために増幅器41,42で十分な増幅が出
来ず、その為大きなS/N比がとれない欠点があ
つた。本発明はこのような欠点を改良する為にな
されたものでその実施例を第2図に示す。なお、
第2図において第1図と同一構成の部分は、第1
図と同一符号を付しそれらの再説明は省略する。
第2図において、100は光演算回路である。回
路100において、71,72は光分岐回路、8
1〜84は夫々フオトダイオードである。91,
92は夫々電圧・電流変換機能を有する増幅器、
93は演算増幅器、94は基準電圧源である。前
記した光センサー20より得られる2つの偏光成
分は夫々光フアイバー25,26を介して一方は
光分岐器71に入射され、他方は光分岐器72に
入射される。フオトダイオード81と82は互い
に逆極性となつて並列に接続され、光減算器85
が構成されている。フオトダイオード83と84
は互に同極性で並列に接続され、光加算器86が
構成されている。光減算器85は光分岐器71に
対向して配置され、光加算器86は光分岐器72
に対向して配置されている。光分岐器71は光セ
ンサー20からの光を1:1又は1:n(nは任
意の整数)で分岐し、分岐された光の一方は光減
算器85を構成するフオトダイオード81に、他
方の光は光加算器86を構成するフオトダイオー
ド84に入射される。光分岐器72も光センサ2
0からの光を1:1(又は1:n)で分岐し、分
岐された光の一方はフオトダイオード82に、他
方はフオトダイオード83に入射される。光減算
器85の出力は増幅器91を介して出力端子60
に接続されている。光加算器86の出力は増幅器
92と演算増幅器93の直列回路を介して光源1
0に接続されている。このような構成の装置の動
作を説明すると次の如くなる。
A conventional example of this type of device is shown in FIG. In the figure, 10 is a light source made of a laser diode or a light emitting diode, 20 is a known optical sensor configured using an electro-optic effect element (or magneto-optic effect element), 31 and 32 are photodiodes, 41,
42 is an amplifier having a current/voltage conversion function; 51
52 is a subtracter configured with an operational amplifier that performs a calculation to extract a voltage proportional to a signal modulated according to the electrical quantity to be measured, and 52 is constituted by an operational amplifier that performs a calculation to extract a voltage proportional to the light intensity. The adder 60 is an output terminal. A constant optical power output from the light source 10 is input to the optical sensor 20 via the optical fiber 11. Photodiode 31
The output of the photodiode 32 is connected to the subtracter 51 and the adder 52 via the amplifier 41, and the output of the photodiode 32 is connected to the subtracter 51 and the adder 52 via the amplifier 42. In the device with this configuration, the light source 1
The light beam, which has become circularly polarized by giving an output of 0 to the polarizer 21 and the λ/4 plate 22 in the optical sensor 20, changes to the value of the voltage E to be measured by passing through the electro-optic effect element 23. It undergoes a proportional phase change and becomes elliptically polarized light. The result is passed through the analyzer 24 and decomposed into polarization components in two specific orthogonal directions, and the photodiodes 31 and 3
2. Therefore, let P 0 /2 be the light intensity,
If S is the signal modulated by the optical sensor 20, then
The photodiode 31 outputs a signal expressed as P 0 /2×(1+S), and the photodiode 32 outputs a signal expressed as P 0 /2×(1+S).
A signal expressed as P 0 /2×(1-S) is output. The output of the photodiode 31 is applied to a subtracter 51 and an adder 52 via an amplifier 41, and the output of the photodiode 32 is applied to a subtracter 51 and an adder 52 via an amplifier 42. As a result, the output of the subtracter 51 becomes P 0 S, and the output of the adder 52 becomes P 0 . The P 0 S signal represents a voltage value proportional to a signal modulated according to the value of the electrical quantity E to be measured, and this voltage is taken out from the output terminal 60 and measured. On the other hand, the P 0 signal is proportional to the light intensity,
This signal is given to the light source 10 and controls the output light of the light source 10 to a constant value. A device with such a configuration has already been proposed by the applicant as a highly stable device, but since the outputs of the photodiodes 31 and 32 are given directly to the amplifiers 41 and 42, the optical sensor 20 When the degree of modulation is low, the base components contained in the outputs of the photodiodes 31 and 32 cannot be amplified sufficiently by the amplifiers 41 and 42, which has the disadvantage that a large S/N ratio cannot be achieved. The present invention has been made to improve these drawbacks, and an embodiment thereof is shown in FIG. In addition,
In Figure 2, the parts with the same configuration as in Figure 1 are the same as those in Figure 1.
The same reference numerals as those in the figures are given, and their re-explanation will be omitted.
In FIG. 2, 100 is an optical arithmetic circuit. In the circuit 100, 71 and 72 are optical branch circuits;
1 to 84 are photodiodes, respectively. 91,
92 is an amplifier each having a voltage/current conversion function;
93 is an operational amplifier, and 94 is a reference voltage source. One of the two polarized light components obtained from the above-mentioned optical sensor 20 is input to the optical splitter 71 and the other is input to the optical splitter 72 via the optical fibers 25 and 26, respectively. Photodiodes 81 and 82 are connected in parallel with opposite polarities, and an optical subtracter 85
is configured. Photodiodes 83 and 84
are connected in parallel with each other with the same polarity to form an optical adder 86. The optical subtracter 85 is placed opposite the optical splitter 71, and the optical adder 86 is placed opposite the optical splitter 72.
is placed opposite. The optical splitter 71 branches the light from the optical sensor 20 in a ratio of 1:1 or 1:n (n is an arbitrary integer), and one of the branched lights is sent to a photodiode 81 constituting an optical subtracter 85, and the other The light is incident on a photodiode 84 constituting an optical adder 86. The optical splitter 72 is also the optical sensor 2
The light from 0 is branched at a ratio of 1:1 (or 1:n), and one of the branched lights is incident on a photodiode 82 and the other is incident on a photodiode 83. The output of the optical subtracter 85 is sent to the output terminal 60 via the amplifier 91.
It is connected to the. The output of the optical adder 86 is sent to the light source 1 via a series circuit of an amplifier 92 and an operational amplifier 93.
Connected to 0. The operation of the device having such a configuration will be explained as follows.

光源10からの光は光センサー20に加えられ
て第1図で説明した如く被測定電気量Eに応じて
変調を受ける。その変調信号は第1図で説明した
如く(P0/2)×(1+S),(P0/2)×(1−S)
で表され、この信号は光フアイバ25,26を介
して光分岐器71,72に伝送される。光分岐器
71で1:1又は1:nで分岐された光のうち、
一方はフオトダイオード81に、他方はフオトダ
イオード84に入射される。又、光分岐器72で
1:1又は1:nで分岐された光のうち、一方は
フオトダイオード82に、他方はフオトダイオー
ド83に入射される。フオトダイオード81と8
2に入射された信号は減算が行なわれる。例え
ば、光分岐器71で1:1で分岐した場合、減算
器85では (P0/4)×(1+S)− (P0/4)×(1−S)=(P0/2)×S の演算が行なわれる。この演算結果は被測定の電
圧Eに比例したもので、増幅器91を介すことに
よつて電圧信号に変換され、出力端子60より取
り出される。
The light from the light source 10 is applied to the optical sensor 20 and is modulated according to the electrical quantity E to be measured, as explained in FIG. As explained in Figure 1, the modulation signal is (P 0 /2) x (1+S), (P 0 /2) x (1-S)
This signal is transmitted to optical splitters 71 and 72 via optical fibers 25 and 26. Of the lights branched 1:1 or 1:n by the optical splitter 71,
One side is inputted to a photodiode 81 and the other side is inputted to a photodiode 84. Also, of the lights split 1:1 or 1:n by the optical splitter 72, one enters the photodiode 82 and the other enters the photodiode 83. Photodiode 81 and 8
The signal input to 2 is subjected to subtraction. For example, when the optical splitter 71 branches at a ratio of 1:1, the subtracter 85 divides (P 0 /4) x (1 + S) - (P 0 /4) x (1 - S) = (P 0 /2) x The calculation of S is performed. The result of this calculation is proportional to the voltage E to be measured, is converted into a voltage signal via an amplifier 91, and is taken out from the output terminal 60.

一方、フオトダイオード83と84に入射され
た信号は加算演算が行なわれる。この場合も、光
分岐器72での分岐比を1:1に選定すれば、換
算器86では (P0/4)×(1+S)+ (P0/4)×(1−S)=P0/2 の演算が行なわれ、光強度信号が得られる。この
光強度信号は演算増幅器93を介して光源10に
フイードバツクされる。演算増幅器10には基準
電圧94が与えられており、その結果、光源10
の光出力は一定値に制御される。これにより、出
力端子60より取り出だされる信号は安定化され
る。
On the other hand, the signals input to photodiodes 83 and 84 are subjected to an addition operation. In this case as well, if the branching ratio in the optical splitter 72 is selected as 1:1, the converter 86 calculates (P 0 /4) x (1+S) + (P 0 /4) x (1-S) = P A calculation of 0/2 is performed and a light intensity signal is obtained. This optical intensity signal is fed back to the light source 10 via the operational amplifier 93. A reference voltage 94 is applied to the operational amplifier 10, so that the light source 10
The light output of is controlled to a constant value. Thereby, the signal taken out from the output terminal 60 is stabilized.

このように、本発明の装置においては、光減算
器85と光加算器を86を夫々光分岐器とフオト
ダイオードとで構成したので、減算器から取り出
される光信号のベース分は互に相殺され、その結
果変調度の低い信号成分でも増幅器で十分に増幅
することができ、第1図の装置よりはるかに大き
いS/N比の信号を得ることのできる装置が実現
できる。
As described above, in the device of the present invention, since the optical subtracter 85 and the optical adder 86 are each constructed of an optical branching device and a photodiode, the base portions of the optical signals taken out from the subtracter cancel each other out. As a result, even signal components with a low degree of modulation can be sufficiently amplified by the amplifier, and a device can be realized that can obtain a signal with a much larger S/N ratio than the device shown in FIG.

なお、第2図においては光センサ20に電気光
学効果素子を用い、電圧Eを測定する場合を例示
して説明したが、電気光学効果素子23に代えて
磁気光学効果素子を用れば電流を測定することが
できる。更に、電気光学効果素子と磁気光学効果
素子を併用すれば電力の測定も可能となる。
In addition, in FIG. 2, the case where an electro-optic effect element is used as the optical sensor 20 and the voltage E is measured is explained as an example, but if a magneto-optic effect element is used instead of the electro-optic effect element 23, the current can be measured. can be measured. Furthermore, if an electro-optic effect element and a magneto-optic effect element are used together, it becomes possible to measure electric power.

第3図は本発明の他の実施例の回路図である。
第1図においては、装置に設けた光コネクタ(図
示せず)の損失やフオトダイオードの感度のバラ
ツキノ補正をする必要がある。第3図において、
73〜76がその補正を行う光減衰器で、光分岐
器71,72と各フオトダイオードとの間に設け
られている。なお、他は第1図と同一であるので
説明は省略する。
FIG. 3 is a circuit diagram of another embodiment of the present invention.
In FIG. 1, it is necessary to correct for loss in an optical connector (not shown) provided in the device and variations in photodiode sensitivity. In Figure 3,
Optical attenuators 73 to 76 perform the correction, and are provided between the optical splitters 71 and 72 and each photodiode. Note that the other parts are the same as those in FIG. 1, so explanations will be omitted.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来装置の回路図、第2図及び第3図
はそれぞれ本発明の実施例の回路図である。 10……光源、20……光センサー、71,7
2……光分岐器、85……減算器、86……加算
器、60……出力端子。
FIG. 1 is a circuit diagram of a conventional device, and FIGS. 2 and 3 are circuit diagrams of an embodiment of the present invention. 10...Light source, 20...Light sensor, 71,7
2... Optical splitter, 85... Subtractor, 86... Adder, 60... Output terminal.

Claims (1)

【特許請求の範囲】 1 光源からの光が光センサで被測定電気量の値
に応じて変調を受けたのち2つの偏光成分に分け
られ、その両偏光成分の加算信号で前記光源の出
力を一定値に制御すると共に両偏光成分の減算信
号を被測定電気量の電気信号とする装置におい
て、 前記加算信号と減算信号を得る手段として、前
記2つの偏光成分が各別に入射され入射された偏
光成分をそれぞれ分岐する一対の光分岐器と、同
極性で並列に接続された一対のフオトダイオード
よりなり前記両光分岐器で分岐された各偏光成分
の内のそれぞれの一方の偏光成分がこの一対のフ
オトダイオードに各別に入射される光加算器と、
逆極性で並列に接続された一対のフオトダイオー
ドよりなり前記両光分岐器で分岐された各偏光成
分の内のそれぞれの他方の偏光成分がこの一対の
フオトダイオードに各別に入射される光減算器と
で構成したことを特徴とする電気量測定装置。
[Scope of Claims] 1. Light from a light source is modulated by an optical sensor according to the value of the quantity of electricity to be measured, and then divided into two polarized components, and the output of the light source is determined by the sum signal of both polarized components. In a device that controls the polarized light components to a constant value and uses a subtracted signal of both polarized light components as an electrical signal of the electrical quantity to be measured, the two polarized light components are separately incident and the incident polarized light is used as a means for obtaining the added signal and the subtracted signal. It consists of a pair of optical splitters that separate the components, and a pair of photodiodes with the same polarity and connected in parallel.One polarization component of each of the polarized light components split by the two optical splitters is an optical adder in which each photodiode is separately incident on the photodiode;
an optical subtracter comprising a pair of photodiodes connected in parallel with opposite polarities, and in which the other polarization component of each polarization component branched by the two optical splitters is separately incident on the pair of photodiodes; An electrical quantity measuring device characterized by comprising:
JP58022426A 1983-02-14 1983-02-14 Quantity of electricity measuring apparatus Granted JPS59147273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58022426A JPS59147273A (en) 1983-02-14 1983-02-14 Quantity of electricity measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58022426A JPS59147273A (en) 1983-02-14 1983-02-14 Quantity of electricity measuring apparatus

Publications (2)

Publication Number Publication Date
JPS59147273A JPS59147273A (en) 1984-08-23
JPH0530217B2 true JPH0530217B2 (en) 1993-05-07

Family

ID=12082358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58022426A Granted JPS59147273A (en) 1983-02-14 1983-02-14 Quantity of electricity measuring apparatus

Country Status (1)

Country Link
JP (1) JPS59147273A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4734576A (en) * 1986-05-01 1988-03-29 Tektronix, Inc. Electro-optic sampler
JPH0695109B2 (en) * 1987-05-30 1994-11-24 浜松ホトニクス株式会社 Voltage detector
JP6989852B2 (en) * 2019-01-22 2022-02-03 横河電機株式会社 Electric field sensor

Also Published As

Publication number Publication date
JPS59147273A (en) 1984-08-23

Similar Documents

Publication Publication Date Title
JP4853474B2 (en) Photosensor and photocurrent / voltage sensor
JPS58224333A (en) Coherent light receiver
CA2104978A1 (en) Optical Voltage-Electric Field Sensor
JP2000501841A (en) Optical measuring method and optical measuring device for alternating current with normalized intensity
JPH0530217B2 (en)
JPH052947B2 (en)
JPS59145972A (en) Electricity quantity measuring device
JPH01163675A (en) Multipoint measuring instrument by multiplexed wavelength
SU1137403A1 (en) Device for touch-free measuring of current
JP2625713B2 (en) Polarization plane controller
JPS5950369A (en) Electric quantity measuring device
JP2648431B2 (en) Optical temperature sensor
JPH01153924A (en) Coherent light measuring instrument
JP3410015B2 (en) Optical applied current transformer
JP2802390B2 (en) Optical frequency modulation characteristics measurement device
JPH11264766A (en) Optical application current transformer
JPH03257336A (en) Method and apparatus for measuring width of spectral line of laser beam source
JP3128037B2 (en) Optical IC displacement meter
JPH0517627Y2 (en)
JPH10197570A (en) Current measuring device with optical fiber
Martini et al. Spectral attenuation measurements of optical fibers: Design of an instrument based on a pulsed-light source
JPS61105529A (en) Polarization controller
JPS5950370A (en) Electric quantity measuring device
JPS61235719A (en) Fiber interferometer
JPS63256865A (en) Optical detector for phase voltage