JPS5988665A - Light applied magnetic field sensor - Google Patents

Light applied magnetic field sensor

Info

Publication number
JPS5988665A
JPS5988665A JP19922782A JP19922782A JPS5988665A JP S5988665 A JPS5988665 A JP S5988665A JP 19922782 A JP19922782 A JP 19922782A JP 19922782 A JP19922782 A JP 19922782A JP S5988665 A JPS5988665 A JP S5988665A
Authority
JP
Japan
Prior art keywords
magnetic field
ratio
field sensor
determining
integrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19922782A
Other languages
Japanese (ja)
Inventor
Tadashi Sato
忠 佐藤
Genji Takahashi
高橋 源治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19922782A priority Critical patent/JPS5988665A/en
Publication of JPS5988665A publication Critical patent/JPS5988665A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/032Measuring direction or magnitude of magnetic fields or magnetic flux using magneto-optic devices, e.g. Faraday or Cotton-Mouton effect

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To always correct a detection error caused by temp. characteristics and change with the elapse of time to stably perform magnetic field measurement with high accuracy for a long period of time, by providing a calibration means equipped with a means for correcting an electric signal by using the ratio of each current component among detected electric signals. CONSTITUTION:Light emitted from a light emission part 1 is passed through an optical fiber 2 and photodiodes 11, 12 and converted to electric signals by converter amplifiers 13, 14. AC components among voltage signals V1, V2 are taken out by band pass filters 18, 19 and converted to DC currents by detectors 20, 21 to be integrated by gate integrators 22, 23. By this integration, noise influence can be reduced. When the output of the integrator 23 becomes smaller than that of the integrator 22 by temp. characteristics and change with the elapse of time of a converging lens 7 and the photodiode, the ratio thereof is calculated by a division device 24 and the calculated value is multiplied by the original signal by a multiplier 25 to correct an error.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は光応用磁界センサに係り、特に高電圧。[Detailed description of the invention] [Field of application of the invention] TECHNICAL FIELD The present invention relates to optical applied magnetic field sensors, particularly high voltage sensors.

大筒、流、高周波等の電磁雑音の大きい悪環境下で使用
するに好適なファラデー効果を応用した光応用磁界セン
サに関する。
The present invention relates to an optical magnetic field sensor that applies the Faraday effect and is suitable for use in adverse environments with large electromagnetic noise such as large cylinders, currents, and high frequencies.

〔従来技術〕[Prior art]

従来の光応用磁界センサは、例えば第1図に示すように
、発光部1、光ファイバー2、集光レンズ3、偏光子4
、鉛ガラス等の7アラデー効果を有する7アラデーロー
テーター51検光子6翫集光レンズ7.8、光ファイバ
ー9.10、フォトダイオード11,12、電流−電圧
変換増巾器13.14、アナログ加算器15、アナログ
減算器16、アナログ割算器17より成っている。
A conventional optical magnetic field sensor, for example, as shown in FIG.
, 7 Alladay rotator 51 analyzer 6-pole condenser lens 7.8 with Alladay effect made of lead glass, etc., optical fiber 9.10, photodiodes 11, 12, current-voltage conversion amplifier 13.14, analog addition 15, an analog subtracter 16, and an analog divider 17.

この様な光応用磁界センサにおいて、印加磁界がない状
態で、偏光子4を回転させ、検光子6によって2成分に
分解された光量が等しくなるように調節した後に、磁界
Hを印加すると)7ア2デー効果による偏波面の回転角
をθとし、電流−電圧変挨増巾器13.14の出力なV
、 、 V、とし、k′を定数として、理想的には次の
(11、(21式の値が得られる。
In such an optical magnetic field sensor, when there is no applied magnetic field, when the polarizer 4 is rotated and the amount of light decomposed into two components by the analyzer 6 is adjusted to be equal, the magnetic field H is applied. The rotation angle of the polarization plane due to the A2D effect is θ, and the output of the current-voltage amplifier 13.14 is V.
, , V, and k' is a constant, ideally the values of the following equations (11 and (21) can be obtained.

V、−に’(1+gtn2θ)    (11Vt −
k’  (1−sk 2θ)(2)したがって、アナロ
グ加算器15.アナログ減算器16.アナ四グ割算器1
7により、(S)式の演算を行えば、 th2θ−219の範囲で、ファラデー回転角θに比例
した出力、すなわち、印加磁界Hに比例した出力Vを得
ることができる。
V, -'(1+gtn2θ) (11Vt -
k' (1-sk 2θ) (2) Therefore, analog adder 15. Analog subtractor 16. Analog divider 1
7, by performing the calculation of equation (S), it is possible to obtain an output proportional to the Faraday rotation angle θ, that is, an output V proportional to the applied magnetic field H within the range of th2θ−219.

以下、これをより詳細に説明すると、光応用磁界センサ
では、直線偏波光がガラス等のファラデー効果を示す物
体中を通過した時、光路長と磁界成分の積に比例した量
だけ偏波面が回転する。偏波面の回転量の検出は、ウォ
ラストンプリズム、偏光ビームスプリッタ等の偏光ダリ
ズムを検光子として使用する。直@偏波光を作る偏光子
との相対的な角度を適切に選べば、検光子より出射した
2本の光は、前述の如く、7ア2デ一回転角θに対して
、kを光の伝送効率を示す定数として、k(1+df1
2θ)とk(1−tsn2θ)のエネルギーの光として
分離される。通常の使用では2θくlとなり、上記k(
1+出2θ)  、 k (1−sIn2θ)はそれぞ
れk (1+2θ)、k (1−2θ)とすることがで
きる。この2つの光エネルギーに比例した光エネルギー
P1−α+k(1+20)、P2−αzk (12θ)
(たタシ、CLs−(Lt#i比例定数)を光ファイバ
ー等により伝送し、フォトダイオードで電気信号に変換
することで、I、−G、blk (1+26) 、I、
−a、b、k(1−219)(ただし、bl、blは比
例定数)の光電流出力11.I。
To explain this in more detail below, in an optical magnetic field sensor, when linearly polarized light passes through an object exhibiting the Faraday effect, such as glass, the plane of polarization rotates by an amount proportional to the product of the optical path length and the magnetic field component. do. To detect the amount of rotation of the plane of polarization, a polarizer such as a Wollaston prism or a polarizing beam splitter is used as an analyzer. If the relative angle with the polarizer that creates directly polarized light is appropriately selected, the two lights emitted from the analyzer will be As a constant indicating the transmission efficiency of k(1+df1
2θ) and k(1-tsn2θ). In normal use, it becomes 2θ kl, and the above k(
1+out2θ) and k(1−sIn2θ) can be set to k(1+2θ) and k(1−2θ), respectively. Light energies proportional to these two light energies P1-α+k (1+20), P2-αzk (12θ)
By transmitting CLs-(Lt#i proportionality constant) through an optical fiber or the like and converting it into an electrical signal with a photodiode, I, -G, blk (1+26), I,
-a, b, k (1-219) (where bl, bl are proportional constants) photocurrent output 11. I.

が得られる。光ファイバーおよびフォトダイメートの特
性がまったく同一の理想的な場合には1α、−C2,b
l−b、となり、ファラデー回転量直(I+  It)
 / (It+工t)となるが、通常0重+αt 、b
l ’r b2となっているので、V+ −(LlJ 
C,k (1+ 20)、V! −CL2 b2 C2
k (1−20)(ただし、CI、CIは比例定数、■
1 # ■tは増巾器の出力)でc、 、 c、を調節
することにより、”+btC+ −a2b、c2トL/
、77 ラテ−回転量”(Vs−7g) / (V1+
Vt )として検出することができる。
is obtained. In an ideal case where the characteristics of the optical fiber and photodimate are exactly the same, 1α, -C2,b
lb, and the amount of Faraday rotation is directly (I + It)
/ (It + engineering t), but usually 0 weight + αt, b
Since l'r b2, V+ -(LlJ
C,k (1+20),V! -CL2 b2 C2
k (1-20) (where CI and CI are constants of proportionality, ■
1 #■t is the output of the amplifier) By adjusting c, , c, ``+btC+ -a2b, c2tL/
, 77 Latte rotation amount” (Vs-7g) / (V1+
Vt).

この検出方式では、比をとるために、送光部分の光量変
動の影響を受けない利点がある。しかし、集光レンズ7
、光ファイバー9、フォトダイオード11の送光部分と
、集光レンズ8、光ファイバー10、フォトダイオード
12の送光部分とで、湿度特性1経時変化等により光量
の伝送特性が変化してアンバランスが生じると、すなわ
ちcLIb、cl−a2b、C2となるようにcI h
 C2を調節したときがらCI bl  e cL!!
 blの値が変化すると、(L、llI C1%a2 
bl C1となり、ファラデー回転量の検出誤差が増加
する欠点があった。
Since this detection method takes a ratio, it has the advantage of not being affected by variations in the amount of light in the light transmitting section. However, condensing lens 7
, the light transmission characteristics of the optical fiber 9 and the photodiode 11 and the light transmission portion of the condenser lens 8, the optical fiber 10, and the photodiode 12 change due to changes in humidity characteristics 1 over time, resulting in imbalance. , that is, cLIb, cl-a2b, C2, cI h
When adjusting C2, CI ble cL! !
When the value of bl changes, (L, llI C1%a2
bl C1, and there was a drawback that the detection error of the amount of Faraday rotation increased.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記した従来技術の欠点をなくシ、高
精度の磁界測定を長期間にわたり安定して行なうことの
できる光応用磁界センサを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an optical magnetic field sensor that eliminates the above-mentioned drawbacks of the prior art and can stably measure magnetic fields with high precision over a long period of time.

〔発明の概要〕[Summary of the invention]

この目的を達成するため、本発明は、検出された各電気
信号のうちの各交流成分を求める手段と1これらの交流
成分の比を求める手段と、この比を用いて前記電気信号
を補正する手段とを備えた較正手段な設けることにより
、前記温度特性、経時変化等に起因する検出誤差を常時
補正するようにしたことを特徴とする。
To achieve this objective, the present invention provides: means for determining each alternating current component of each detected electrical signal; means for determining a ratio of these alternating components; and correcting the electrical signal using this ratio. The present invention is characterized in that detection errors caused by the temperature characteristics, changes over time, etc. are constantly corrected by providing a calibration means having a means.

すなわち、被測定磁界の強さ−Hva +)(AO(以
下、添字DoGi直流分、ム0は交流分を示す)とする
と、ファラデー回転量θ−ve” L ・(Hna +
Hao )(ただし、■eはヴエルデ定数、Lは光路長
)となり、V、 −a、1b、 C1k (1+2Ve
 @HDOeL+2Ve”HAOeL) 、v、 −α
2b!c、l((1−2Ve”HD□” L−ZVes
HA□*L)を得る。■1−αt bl C1k(1−
1−2Vea HDO* L ) +a、、b、c、k
s (2Ve−HAo ・LL v、−alb@c2k
(1−2Ve・Hp□ * L) −CLtbQ c2
k・(2Ve−HAO・L)と展開できることから、V
l、V、の右辺の第2項に注目すると、(LlbI C
1−(Z2 b2 C! と調節した後は、■1の交流
会−V、の交流会となるので、光ファイバーの劣化ある
いはフォトダイオードの劣化等により、CLIbl、C
L2b!が変化した時は、電気信号である■。
That is, if the strength of the magnetic field to be measured is −Hva +) (AO (hereinafter, the subscript DoGi indicates the DC component, and Mu0 indicates the AC component), then the amount of Faraday rotation θ−ve” L ・(Hna +
Hao ) (where ■e is the Weerde constant and L is the optical path length), and V, -a, 1b, C1k (1+2Ve
@HDOeL+2Ve”HAOeL) ,v, −α
2b! c, l((1-2Ve”HD□”L-ZVes
HA□*L) is obtained. ■1-αt bl C1k(1-
1-2Vea HDO*L) +a,,b,c,k
s (2Ve-HAo ・LL v, -alb@c2k
(1-2Ve・Hp□ *L) -CLtbQ c2
Since it can be expanded as k・(2Ve−HAO・L), V
If we pay attention to the second term on the right-hand side of l, V, (LlbI C
After adjusting 1-(Z2 b2 C!, it becomes the exchange meeting of ■1 -V), so due to optical fiber deterioration or photodiode deterioration, CLIbl, C
L2b! When changes, it is an electrical signal■.

の交流会および■2の交流会を検出し、■1の交流会−
■2の交流会となるようにC1,C2を調節することで
、常時光ファイバー、フォトダイオード等の劣化、濃度
特性、経時変化による誤差を補正できる。
Detect the social gathering and ■2 social gathering, ■1 social gathering-
(2) By adjusting C1 and C2 so as to obtain the exchange meeting of 2, it is possible to constantly correct errors caused by deterioration of optical fibers, photodiodes, etc., concentration characteristics, and changes over time.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第2図により説明する。光の
通過する順に、発光部11光ファイバー2、集光レンズ
3、偏光子4.7アラデーローテーター5、検光子6、
集光レンズ7.8、光ファイバー9,10、フォトダイ
オード11,12、電流−電圧変換増巾器i 3 、1
4 、/(ンドノくスフ22.23、アナ四グ割算器2
4、アナログ掛算器25、”rナログ減算器26、アナ
四グ加算器2人アナログvlI1w器28より構成され
ている。
An embodiment of the present invention will be described below with reference to FIG. In the order in which the light passes, a light emitting unit 11, an optical fiber 2, a condensing lens 3, a polarizer 4, 7, an Alladay rotator 5, an analyzer 6,
Condenser lens 7.8, optical fibers 9, 10, photodiodes 11, 12, current-voltage conversion amplifiers i3, 1
4 , / (dononokusufu 22.23, Ana 4G divider 2
4. It is composed of an analog multiplier 25, an analog subtracter 26, an analog four adder, and a two-person analog vlI1w unit 28.

発光部1では発光ダイオ−ドルレーザダイオード、レー
ザ等周知の手段で発光させ、一部の光を光ファイバー2
に導いた後、集光レン7:3で光の発散を防ぎ、偏光プ
リズム等周知の偏光子4で直線偏光した光をファラデー
ローチーター5に入射する。ファラデーローチーター5
に印加される磁界HK比例17てファラデー回転θが生
じる。ファラデー回転の角度θを検出するために、検光
子6で2本の光1/C分け、集光レンズ7#8で光7ア
イ/(−9,10に効率良く光を入射させ、フォトダイ
オード11.12で光エネルギーを光電流に変えNWi
気信号を得る。光電流を電流−電圧の変換増巾器13.
14にて電圧信号に変換する。この時の増巾率を調節す
ることで、αI bl cl−α! bl! C2とす
ることができる。バンドパスフィルター18゜19によ
り、電圧信号V2. V、のうちの交流会を取り出し、
検波器20.21で直流に変換後、ゲート積分器22.
23で積分する。この積分により、ノイズの影響等を低
減することが可能である。
The light emitting unit 1 emits light using a well-known means such as a light emitting diode, laser diode, laser, etc., and a part of the light is sent to the optical fiber 2.
After that, the light is prevented from divergence by a condenser lens 7:3, and the light is linearly polarized by a well-known polarizer 4 such as a polarizing prism, and then enters the Faraday low cheetah 5. faraday low cheetah 5
A Faraday rotation θ occurs due to the magnetic field HK proportional to 17 applied to the magnetic field HK. In order to detect the angle θ of Faraday rotation, the analyzer 6 separates two beams of 1/C, the condenser lens 7 #8 efficiently inputs the light 7 eyes/(-9, 10), and the photodiode 11. In 12, convert light energy into photocurrent NWi
Obtain a Qi signal. Photocurrent to current-voltage conversion amplifier 13.
14, it is converted into a voltage signal. By adjusting the amplification rate at this time, αI bl cl-α! bl! It can be C2. The voltage signal V2. V, took out the social gathering,
After converting to DC with detectors 20.21, gate integrator 22.
Integrate by 23. Through this integration, it is possible to reduce the influence of noise and the like.

集光レンズ8、光ファイバー10、フォトダイオード1
2あるいは集光レンズ7、光ファイバー9、フォトダイ
オード11等の温度特性、経時変化により、積分器23
の出力が積分□器22の出力より小さく Qると、その
比率を割算器24で算出し、掛算器25で元の信号に掛
けることにより、誤差を補正する。加算器26、減算器
27、割算器28v −■ はθ”−餐一1−クーでファラデー回転量を検出するた
めの周知の演算回路である。なお、積分器22と積分器
23の比が当初はけぼ1であったものが、片方の光7テ
イバーの結露あるいは断線等による異常により、1より
大きくずれることも考えられ、この値を監視することに
より、正常動作範囲からはずれた等の故障を診断するこ
ともできる。
Condenser lens 8, optical fiber 10, photodiode 1
2 or the integrator 23 due to the temperature characteristics and aging of the condenser lens 7, optical fiber 9, photodiode 11, etc.
If the output of Q is smaller than the output of the integrator 22, the ratio is calculated by the divider 24 and multiplied by the original signal by the multiplier 25, thereby correcting the error. The adder 26, the subtracter 27, and the divider 28v-■ are well-known arithmetic circuits for detecting the amount of Faraday rotation in θ''-1-1-ku.The ratio between the integrator 22 and the integrator 23 is Initially, the value was 1, but it may deviate from 1 due to an abnormality such as condensation or disconnection of one of the light 7 tabers. By monitoring this value, it is possible to determine whether it is out of the normal operating range, etc. It is also possible to diagnose malfunctions.

本実胛例によれば、すべてアナログの演算回路を使用し
ているので、較正速度が早い効果がある。
According to this example, since all analog arithmetic circuits are used, the calibration speed is fast.

第3図は本発明の他の実施例を示す。この実施例では、
第2図の実施例と同様にフォトダイオード11.12に
発生する電流信号を電流−1u圧変換増巾器13.14
にて電圧信号Ns、’lK変換i’l巾器]、3.14
にで?!!圧信号Vt、VzKf換した後、A/D変換
器29.30でディジタル信号v 、a 、 v、aに
変換し、これらの信号をマイクロプロセッサ−等のディ
ジタル信号処理器31 K入力して、ここで信号■、°
中からその交流成分vl’A Oと信号■2°中からそ
の交流成分v、 ’AOをそれぞれ取り出し、これらの
交流我分v1°人01■l’Ao  と信号V!′から
、Vt” −Vt’ X (V1’AO/ Vt’ha
 )をディジタル演算で求め、この■、′と信号V1′
からvo−(■1°−V、″) / (V+’ + V
2”)のディジタル演算を行ない、このVを光応用磁界
センサのディジタル出力とする。
FIG. 3 shows another embodiment of the invention. In this example,
Similar to the embodiment shown in FIG.
voltage signal Ns, 'lK conversion i'l width filter], 3.14
Nide? ! ! After converting the pressure signals Vt and VzKf, the A/D converters 29 and 30 convert them into digital signals v, a, v, a, and these signals are input to a digital signal processor 31K such as a microprocessor. Here the signal ■, °
Take out the alternating current component vl'A O and the signal ■2° from inside, respectively, and extract the alternating current components v and 'AO from inside, and these alternating current component v1°person01■l'Ao and the signal V! ', Vt''-Vt' X (V1'AO/Vt'ha
) is calculated by digital calculation, and this ■,' and signal V1'
From vo-(■1°-V, ″) / (V+' + V
2'') is performed, and this V is used as the digital output of the optical magnetic field sensor.

本実施例によれば、マイクロプロセッサ−を利用してい
るため、構成が著しく簡単になるとともに、デ・rジタ
ル演算により誤差が著しく小さくなって、高精度の磁界
センサを構成できる効果がある0 〔発明の効果〕 以上述べたように、本発明によれば、温度特性、経時変
化等に起因する検出誤差を常時補正することができるの
で、高精度の磁界測定を長期間にわたり安定に行ない得
る効果がある。
According to this embodiment, since a microprocessor is used, the configuration is extremely simple, and errors are significantly reduced by digital calculation, which has the effect of making it possible to configure a highly accurate magnetic field sensor. [Effects of the Invention] As described above, according to the present invention, detection errors caused by temperature characteristics, changes over time, etc. can be constantly corrected, so that highly accurate magnetic field measurements can be stably performed over a long period of time. effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光応用磁界センサを示す構成図、第2図
は本発明の一実鮨例に係る光応用磁界センサを示す構成
図、第3図は本発明の他の実絶例に係る光応用磁界セン
サを示す構成図である。 1・・・・・・発光W、、2 、9 、10・・・・・
・光ファイバー、3.7.8・・・・・・集光レンズ、
4・・・・:・偏光子、5・・・・・・ファラデーロー
チーター、6・・・・・・検光子、11゜12・・・・
・・フォトダイオード% 13.14・・・・・・電流
−電圧変換増巾器、18.19・・・・・・バンドパス
フィルター、20.21・・・・・・検波器、22.2
3・・・・・・積分器、24.28・・・・・・割算器
、25・・・・・・掛算器、26・・・・・・減算器、
27・・・・・・加算器、29.30・・・・・・A/
D変換器、31・・・・・・ディジタル信号処理器。 
 、 il1図 112図 ′LX43図
FIG. 1 is a configuration diagram showing a conventional optical magnetic field sensor, FIG. 2 is a configuration diagram showing an optical magnetic field sensor according to an example of the present invention, and FIG. 3 is a configuration diagram showing another example of the present invention. FIG. 2 is a configuration diagram showing such an optical magnetic field sensor. 1...Emission W, 2, 9, 10...
・Optical fiber, 3.7.8...Condensing lens,
4...: Polarizer, 5... Faraday low cheetah, 6... Analyzer, 11゜12...
...Photodiode% 13.14...Current-voltage conversion amplifier, 18.19...Band pass filter, 20.21...Detector, 22.2
3... Integrator, 24.28... Divider, 25... Multiplier, 26... Subtractor,
27...Adder, 29.30...A/
D converter, 31...Digital signal processor.
, il1 Figure 112 Figure 'LX43 Figure

Claims (1)

【特許請求の範囲】 から出射する少なくとも2つの光信号を各別の電いて、
前記各電気信号のうちの各交流成分を求める手段と、こ
れらの交流成分の比を求める手段とこの比を用いて前記
!偽信号を補正する手段とを備えた較正手段を設けたこ
とを特徴とVろ光応用磁界センサ。 λ 特許請求の範囲第1項において111汀記交流成分
を求める手段はバンドパスフィルタ、検波器及び積分器
からなり、前記比を求める手段は割算器からなり、前記
補正する手段は掛算器からなることを特徴とする光応用
磁界センサ。 3、 特許請求の範囲第1項において、前記較正手段は
アナログ信号である前記74を偽信号をディジタル信号
に変換する手段を備え、前記交流成分を求める手段、前
記比を求める手段及び前記補正する手段はディジタル信
号処理装置からなることを特徴とする光応用磁界センサ
[Claims] At least two optical signals emitted from the
Means for determining each alternating current component of each electric signal, means for determining a ratio of these alternating current components, and using this ratio, the above! A V-filtration applied magnetic field sensor, characterized in that it is provided with a calibration means having a means for correcting false signals. λ In Claim 1, the means for determining the alternating current component comprises a bandpass filter, a detector, and an integrator, the means for determining the ratio comprises a divider, and the means for correcting comprises a multiplier. An optical magnetic field sensor characterized by: 3. In claim 1, the calibration means includes means for converting the false signal of the analog signal 74 into a digital signal, and includes means for determining the alternating current component, means for determining the ratio, and correcting means. An optical magnetic field sensor characterized in that the means comprises a digital signal processing device.
JP19922782A 1982-11-13 1982-11-13 Light applied magnetic field sensor Pending JPS5988665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19922782A JPS5988665A (en) 1982-11-13 1982-11-13 Light applied magnetic field sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19922782A JPS5988665A (en) 1982-11-13 1982-11-13 Light applied magnetic field sensor

Publications (1)

Publication Number Publication Date
JPS5988665A true JPS5988665A (en) 1984-05-22

Family

ID=16404258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19922782A Pending JPS5988665A (en) 1982-11-13 1982-11-13 Light applied magnetic field sensor

Country Status (1)

Country Link
JP (1) JPS5988665A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59159076A (en) * 1983-03-02 1984-09-08 Hitachi Ltd Optical type magnetic field sensor
JPS6182178A (en) * 1984-09-29 1986-04-25 Toshiba Corp Measuring method of magnetic field
JPS6182179A (en) * 1984-09-29 1986-04-25 Toshiba Corp Measuring method of magnetic field

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59159076A (en) * 1983-03-02 1984-09-08 Hitachi Ltd Optical type magnetic field sensor
JPH0432991B2 (en) * 1983-03-02 1992-06-01 Hitachi Ltd
JPS6182178A (en) * 1984-09-29 1986-04-25 Toshiba Corp Measuring method of magnetic field
JPS6182179A (en) * 1984-09-29 1986-04-25 Toshiba Corp Measuring method of magnetic field

Similar Documents

Publication Publication Date Title
US4564754A (en) Method and apparatus for optically measuring a current
WO2006095620A1 (en) Photo-sensor and photo-current/voltage sensor
JP2000501841A (en) Optical measuring method and optical measuring device for alternating current with normalized intensity
JPS5988665A (en) Light applied magnetic field sensor
JPH0778526B2 (en) Optical magnetic field sensor
JP2000147021A (en) Light-receiving circuit for electro-optical sampling oscilloscope
CN108234019B (en) Method for testing additional noise power of erbium-doped fiber amplifier by dual-optical-path polarization balance
JPS59659A (en) Method and device for magnetooptic current measurement
JP2638312B2 (en) Light sensor
JPH07306095A (en) Polarization-analysis evaluation method of polarization modulation optical signal
JPH0432991B2 (en)
JP3011244B2 (en) Optical applied DC current transformer
JP3151672B2 (en) Optical DC current transformer
JP3704583B2 (en) Optical fiber type current sensor
JP3201729B2 (en) How to use the optical sensor system
JPH02143173A (en) Optical dc transformer
JP2649310B2 (en) Optical interference gyro with self-diagnosis function
JP3172649B2 (en) Interference correction method for infrared gas analyzer
JPH0743395B2 (en) Light current transformer
JPH0225127Y2 (en)
JP2580443B2 (en) Optical voltage sensor
JPH05119134A (en) Optical sensor
JPS601582A (en) Measuring apparatus for both ac and dc magnetic fields
JP3041637B2 (en) Optical applied DC current transformer
JPH0373821B2 (en)