JP3140157B2 - Ultrasonic flaw detection method for planar defects - Google Patents

Ultrasonic flaw detection method for planar defects

Info

Publication number
JP3140157B2
JP3140157B2 JP04089152A JP8915292A JP3140157B2 JP 3140157 B2 JP3140157 B2 JP 3140157B2 JP 04089152 A JP04089152 A JP 04089152A JP 8915292 A JP8915292 A JP 8915292A JP 3140157 B2 JP3140157 B2 JP 3140157B2
Authority
JP
Japan
Prior art keywords
probe
defect
wave
flaw detection
detection method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04089152A
Other languages
Japanese (ja)
Other versions
JPH05288722A (en
Inventor
裕之 松村
隆昌 緒方
英幸 平澤
武人 山川
豊 千田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP04089152A priority Critical patent/JP3140157B2/en
Publication of JPH05288722A publication Critical patent/JPH05288722A/en
Application granted granted Critical
Publication of JP3140157B2 publication Critical patent/JP3140157B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0428Mode conversion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、海洋構造物や陸上構
造物などの溶接構造物の溶接部肉厚方向に発生した割れ
や溶込み不良などの面状の欠陥を精度よく検出する超音
波探傷方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic wave detecting method for detecting a planar defect such as a crack or poor penetration in a welded portion of a welded structure such as an offshore structure or an onshore structure. Related to the flaw detection method.

【0002】[0002]

【従来技術とその課題】従来、肉厚方向に発生した縦割
れなどの面状の欠陥の検出には、図9に示すような一探
触子法が用いられることもある。図9中、1は検査対象
物、1aは探傷面、2は溶接部、2aは溶接線、3は欠
陥、4は斜角探触子を示す。しかし、一探触子法におけ
る超音波の受信音圧は、欠陥面に垂直な方向から超音波
が入射する場合に最も大きく得られるために、肉厚方向
に発生した面状の欠陥の場合には、欠陥面に垂直に超音
波を入射することが困難なために受信音圧が高く得られ
ないという欠点があった。尚、以下の図中の同一態様部
分は同一符号を用いて説明するものとする。
2. Description of the Related Art Conventionally, a one-probe method as shown in FIG. 9 is sometimes used for detecting a planar defect such as a vertical crack generated in a thickness direction. In FIG. 9, reference numeral 1 denotes an inspection object, 1a denotes a flaw detection surface, 2 denotes a welded portion, 2a denotes a welding line, 3 denotes a defect, and 4 denotes an oblique probe. However, the received sound pressure of the ultrasonic wave in the one-probe method is the largest when the ultrasonic wave is incident from the direction perpendicular to the defect surface. Has a drawback that it is not possible to obtain a high received sound pressure because it is difficult to make ultrasonic waves perpendicular to the defect surface. The same parts in the following drawings are described using the same reference numerals.

【0003】上記の一探触子法以外の方法として、特開
昭54−140586号公報発明のような送受信を分割
した方法があるが、垂直探触子では溶接部の余盛のため
に溶接金属中の縦割れなどの検出は困難であるという欠
点があった。
As a method other than the above-described one probe method, there is a method in which transmission and reception are divided as disclosed in Japanese Patent Application Laid-Open No. 54-140586. There is a drawback that it is difficult to detect a vertical crack or the like in metal.

【0004】従って、斜角探触子を用いた送受信を分割
した方法として、図10に示すタンデム探傷法が多く用
いられており、送信の探触子と受信の探触子を溶接線と
直交方向に同一線上に並べて配置して探傷を行ってい
る。
Therefore, as a method of dividing transmission and reception using an oblique probe, a tandem flaw detection method shown in FIG. 10 is often used, and a transmission probe and a reception probe are orthogonal to a welding line. The flaw detection is performed by arranging them on the same line in the direction.

【0005】しかしながら、このタンデム探傷法では、
図11に示すように、肉厚が薄い試験体では2個の探触
子同士が干渉するために、送受信位置を一定距離までし
か接近できず、従来のタンデム探傷の実施可能な検査対
象物の肉厚には限界があるという欠点があった。
However, in this tandem flaw detection method,
As shown in FIG. 11, in the case of a thin specimen, two probes interfere with each other, so that the transmission / reception position can be approached only to a certain distance. There was a disadvantage that the wall thickness was limited.

【0006】さらに、送受信の探触子配置を逆の位置に
設定したい場合には、探触子の前後走査だけでは設定が
不可能で、容易に前後の配置を逆転できない等の欠点が
あった。
Further, when it is desired to set the positions of the transmitting and receiving probes at the opposite positions, there is a drawback that the setting cannot be performed only by the front-back scanning of the probe, and the front-back arrangement cannot be easily reversed. .

【0007】また、オーステナイト系ステンレス鋼溶接
部、あるいは母材が9%Ni鋼で溶接部が約70%程度
のNiを含むような溶接部などのように、オーステナイ
ト組織の粗大な柱状晶が発生するような材料では、材料
中の超音波の減衰が大きいために、縦波が利用される。
この場合には、横波5aを使った従来のタンデム探傷法
が材料中の超音波の減衰が大きく有効でないために図1
2に示すような検査対象物の表面から送信された縦波5
が欠陥に当たった後に、裏面で縦波5から横波5aにモ
ード変換した波を受信する方法が考えられるが、この場
合には、タンデム探傷よりもより探触子が接近した配置
が必要であり、検査可能な範囲7が限定されてしまうと
いう欠点があった。
Further, coarse columnar crystals having an austenitic structure are generated, such as in an austenitic stainless steel weld or a weld in which the base metal is 9% Ni steel and the weld contains about 70% Ni. In such materials, longitudinal waves are used because ultrasonic waves in the material are greatly attenuated.
In this case, the conventional tandem flaw detection method using the shear wave 5a is not effective because the attenuation of the ultrasonic wave in the material is not so large.
Longitudinal wave 5 transmitted from the surface of the inspection object as shown in FIG.
After hitting a defect, a method of receiving a mode-converted wave from the longitudinal wave 5 to the transverse wave 5a on the back side can be considered, but in this case, the probe needs to be arranged closer than in tandem flaw detection. However, there is a disadvantage that the inspectable range 7 is limited.

【0008】一方、二振動子斜角探触子では、送受信を
左右に分割した構造となっているが、この探触子を用い
た探傷方法としては、直接欠陥から反射して来る欠陥エ
コーを観察する方法のみが実施されており、タンデム探
傷など送信から欠陥までの超音波の伝搬経路と欠陥から
受信部までの超音波の伝搬経路が異なる方法には適用さ
れていない。そのため、仮にタンデム探傷など欠陥まで
の往路と復路が異なる手法に二振動子探触子を適用しよ
うと考えても、送信部と受信部の振動子の配置が欠陥エ
コーの受信効率が高まるように配置してしないなどの欠
点があったと考えられる。
On the other hand, the two-transducer oblique angle probe has a structure in which transmission and reception are divided into right and left. The flaw detection method using this probe employs a defect echo directly reflected from a defect. Only the observation method is implemented, and it is not applied to a method such as tandem flaw detection in which the propagation path of the ultrasonic wave from transmission to the defect and the propagation path of the ultrasonic wave from the defect to the receiving unit are different. Therefore, even if you consider applying the dual element probe to a method in which the forward path and the return path to the defect such as tandem flaw detection are different, the arrangement of the transducers in the transmitting part and the receiving part will improve the reception efficiency of the defect echo. It is considered that there were drawbacks such as no arrangement.

【0009】あるいは、特開平02−63441号及び
特開平02−63442号に示すような、多数個の振動
子を縦横に配列して1個の振動素子群を形成した探触子
により立体的な情報を得ることを目的とした装置がある
が、この種のアレイ型探触子では、多くの振動子が必要
であり、かつ、対象とする欠陥寸法が小さい場合には1
個の振動子寸法を大きくできず、超音波の材料中の減衰
が大きな材料で充分な音圧レベルを送信できないか、振
動子の配置の自由度が低いか、あるいは採取データの高
度な信号処理などを必要とするために高コストの装置に
なってしまい、溶接部に対し広く適用できないという欠
点があった。
Alternatively, as described in Japanese Patent Application Laid-Open Nos. 02-63441 and 02-63442, a three-dimensional probe is formed by arranging a number of transducers vertically and horizontally to form one transducer element group. Although there is a device aimed at obtaining information, this type of array type probe requires a large number of transducers, and if the defect size to be targeted is small, one device is required.
The size of each transducer cannot be increased, and the material with high attenuation in ultrasonic waves cannot transmit a sufficient sound pressure level, the degree of freedom of transducer placement is low, or advanced signal processing of collected data And the like, the device becomes expensive and has a drawback that it cannot be widely applied to welds.

【0010】本発明の目的は、溶接部肉厚方向に発生し
た割れや溶込み不良などの面状欠陥を精度よく検出する
超音波探傷方法を提供することにある。
An object of the present invention is to provide an ultrasonic flaw detection method for accurately detecting a planar defect such as a crack or a poor penetration that has occurred in a thickness direction of a welded portion.

【0011】[0011]

【課題を解決するための手段】本発明による超音波探傷
方法は、検査対象物の表面に、送信用縦波探触子1個及
び受信用探触子1個からなる2個の斜角探触子を溶接線
の片側に溶接線と垂直な方向に対して同一線上にならな
いようにそれぞれ自由に走査可能なように左右に配置
し、該縦波斜角探触子から送信した縦波が肉厚方向の面
状欠陥にあたった後に前記検査対象物の裏面にあたり、
この裏面で縦波から横波にモード変換した波を上記斜角
探触子により受信することにより、しかも送信の探触子
と受信の探触子の超音波の送受信の方向を共に欠陥に向
けて、欠陥からの音圧が高く得られるように、溶接線に
対する超音波の入射角度と溶接線までの距離を調整し、
肉厚方向に発生した面状の欠陥を検出する方法である。
According to the ultrasonic flaw detection method of the present invention , a longitudinal wave probe for transmission is provided on a surface of an inspection object.
Bevel probe consisting of one probe and one receiving probe
On one side of the
Left and right so that each can be freely scanned
The longitudinal wave transmitted from the longitudinal wave oblique probe has a surface in the thickness direction.
After hitting the state defect, hit the back side of the inspection object,
The wave whose mode is changed from longitudinal wave to shear wave on the back side is
By receiving by the probe, and by transmitting the probe
The direction of transmission and reception of ultrasonic waves from the
In order to obtain high sound pressure from defects,
Adjust the angle of incidence of the ultrasonic wave and the distance to the welding line,
This is a method for detecting a planar defect generated in the thickness direction.

【0012】[0012]

【作用】本発明では、検査対象物の表面から送信された
縦波が欠陥に当たった後に、裏面で縦波から横波にモー
ド変換した波を受信する方法、あるいはタンデム探傷法
おいて、送信1個及び受信1個からなる2個の斜角探触
子を溶接線の片側に溶接線と垂直な方向に対して同一線
上にならないように配置するために、従来技術である2
個の探触子を前後に配置する場合よりも、図1と図12
の検査可能範囲の比較から明らかなように、検査可能な
範囲が広くとることができる。
According to the present invention, after the longitudinal wave transmitted from the front surface of the inspection object hits the defect, the mode-converted wave from the longitudinal wave to the transverse wave is received on the back surface, or the transmission is performed by the tandem flaw detection method. In order to dispose two angled probes consisting of a probe and a receiver so as not to be on the same line with respect to a direction perpendicular to the weld line on one side of the weld line, a conventional technique 2
1 and 12 compared to the case in which
As can be seen from the comparison of the testable range, the testable range can be widened.

【0013】特に、肉厚が薄い試験体では溶接線と垂直
な同一線上に前後に2個の探触子を配置した場合には、
2個の探触子同士が干渉するために、送受信位置を一定
距離までしか接近できないが、2個の探触子を前後では
なく左右方向に配置することで、実施可能な検査範囲を
広げることができる。
In particular, in the case of a thin specimen, when two probes are arranged in front and behind on the same line perpendicular to the welding line,
Because the two probes interfere with each other, the transmission / reception position can be approached only to a certain distance, but by arranging the two probes in the left-right direction instead of the front-back direction, the range of inspection that can be performed is expanded. Can be.

【0014】さらに、2つの探触子を前後に同一線上に
配置した場合には、送受信の探触子配置を逆の位置に容
易に設定が不可能であるが、2つの探触子を同一線上か
らずらして配置すると、探触子を溶接線方向に走査する
ことで、溶接線に対する前後の関係を容易に逆転でき
る。
Further, when the two probes are arranged on the same line in front and back, it is impossible to easily set the arrangement of the transmitting and receiving probes at the opposite positions. When the probe is displaced from the line, the probe can be scanned in the direction of the welding line, thereby easily reversing the front-back relationship with the welding line.

【0015】[0015]

【0016】また、同一線上に前後に配置していないた
めに、欠陥からの高い受信音圧を得るために探触子の片
方あるいは両方を自由に走査して、欠陥の検出能力を向
上させることが可能である。
Further, one or both of the probes are freely scanned in order to obtain a high received sound pressure from the defect because they are not arranged in front of and behind the same line, thereby improving the defect detection capability. Is possible.

【0017】さらに、斜角探触子を用いているために、
溶接金属の余盛上から探傷する垂直探傷法に比べて余盛
形状による表面の伝達損失の影響を受けることなく、高
い受信音圧が得られる。
Further, since the oblique probe is used,
As compared with the vertical flaw detection method in which flaws are detected from above the weld metal overlay, a higher received sound pressure can be obtained without being affected by the surface transmission loss due to the excess weld shape.

【0018】[0018]

【実施例】以下、本発明の実施例を図面を参照しながら
説明する。図1(a)(b)に示すように、検査対象物1の溶
接部2には、溶接線2a方向とほぼ平行に発生する縦割
れなどの肉厚方向の面状欠陥3が存在している。検査対
象物1の表面1aに縦波斜角探触子4aとこれと同一線
上から外れた位置に斜角探触子4aが配設されている。
本発明の探傷方法は、縦波斜角探触子4aから送信した
縦波5は、欠陥3にあたった後に裏面1bにあたり、裏
面1bで縦波5から横波5にモード変換される。この横
波5aを受信側の斜角探触子4bにより検出する二探触
子法である。つまり、送信1個及び受信1個からなる2
個の斜角探触子を溶接線2aの片側に溶接線2aと垂直
な方向に対して同一線上にならないように配置し、肉厚
方向に発生した面状の欠陥を検出する超音波探傷方法で
ある。
Embodiments of the present invention will be described below with reference to the drawings. As shown in FIGS. 1 (a) and 1 (b), the welded portion 2 of the inspection object 1 has a planar defect 3 in a thickness direction such as a vertical crack generated substantially in parallel with the welding line 2a. I have. A longitudinal wave oblique probe 4a is arranged on the surface 1a of the inspection object 1, and the oblique angle probe 4a is arranged at a position off the same line as the longitudinal wave oblique probe 4a.
In the flaw detection method of the present invention, the longitudinal wave 5 transmitted from the longitudinal wave oblique probe 4a hits the defect 3 and then strikes the back surface 1b, and the mode is converted from the longitudinal wave 5 to the transverse wave 5 on the back surface 1b. This is a two-probe method in which the transverse wave 5a is detected by the oblique probe 4b on the receiving side. In other words, 2 which consists of one transmission and one reception
An ultrasonic flaw detection method in which the angled probes are arranged on one side of the welding line 2a so as not to be on the same line with respect to a direction perpendicular to the welding line 2a, and a planar defect generated in a thickness direction is detected. It is.

【0019】検査可能範囲7の裏面側限界において、探
触子を溶接線2aと直角に同一線上に配置した場合に比
べて、2個の探触子が相互に干渉しないために、広く検
査範囲をとることが可能である(図1と図12を比較参
照)。つまり、図1(b) に示すように、縦波斜角探触子
4aは溶接ビードの止端位置Aまでもって来ても、ま
た、縦波5が裏面1bでの反射位置が溶接ビード止端に
くる位置Bまでもって来ても、2つの探触子が同一線上
にないため、受信用の探触子を送信用の探触子と無関係
に所定の位置にもってこれ、横波にモード変換された波
を受信できることによるものである。これによって面状
欠陥を精度よく検出できるようになる。尚、この際の振
動子寸法は、上下方向に長く左右方向に短い長方形型の
振動子寸法を採用しており、超音波の肉厚方向の指向性
を鋭く、左右方向の指向性を鈍くするなど指向性の設定
も可能である。
In the limit on the back side of the testable range 7, the two probes do not interfere with each other as compared with the case where the probes are arranged on the same line at right angles to the welding line 2a. (See FIG. 1 and FIG. 12 for comparison). That is, as shown in FIG. 1 (b), even if the longitudinal wave oblique probe 4a is brought to the toe position A of the weld bead, the longitudinal wave 5 is reflected at the back surface 1b at the weld bead stop position. Even when brought to the end position B, since the two probes are not on the same line, the receiving probe is placed at a predetermined position independently of the transmitting probe, and the mode is converted into a shear wave. This is because the received wave can be received. This makes it possible to accurately detect a planar defect. In this case, the size of the vibrator is a rectangular vibrator size that is long in the vertical direction and short in the horizontal direction, sharpens the directivity of the ultrasonic wave in the thickness direction, and reduces the directivity in the horizontal direction. For example, directivity can be set.

【0020】図2には、上記記載の送信及び受信用の探
触子4a、4bにおいて、送信部と受信部を一体枠6に
固定した構造の探触子を用いて、肉厚方向に発生した面
状の欠陥を検出する超音波探傷方法を示している。
FIG. 2 shows the transmission and reception probes 4a and 4b generated in the thickness direction by using a probe having a structure in which the transmission unit and the reception unit are fixed to the integral frame 6. 2 shows an ultrasonic flaw detection method for detecting a planar defect.

【0021】図3には、上記記載の探触子配置におい
て、送信の探触子4aと受信の探触子4bの超音波の送
受信の方向を共に欠陥3に向けて、欠陥3からの音圧が
高く得られるように、溶接線2aに対する超音波の入射
角度と溶接線2aまでの距離を調整し、肉厚方向に発生
した面状の欠陥3を検出する超音波探傷方法を示してい
る。
FIG. 3 shows that in the probe arrangement described above, the transmitting and receiving probes 4a and the receiving probe 4b are directed toward the defect 3 in both directions of transmitting and receiving ultrasonic waves, and the sound from the defect 3 is detected. The ultrasonic flaw detection method of detecting the planar defect 3 generated in the thickness direction by adjusting the incident angle of the ultrasonic wave with respect to the welding line 2a and the distance to the welding line 2a so as to obtain a high pressure is shown. .

【0022】図4には、上記記載の探触子配置におい
て、欠陥からの受信音圧が高く得られるように、受信側
4a及び送信側4b、あるいはどちらか一方の探触子を
溶接線と直角方向Xあるいは超音波入射方向Yに走査
し、肉厚方向に発生した面状の欠陥3を検出する超音波
探傷方法を示している。
FIG. 4 shows that, in the probe arrangement described above, the receiving side 4a and / or the transmitting side 4b are connected to the welding line so that a high receiving sound pressure from a defect can be obtained. An ultrasonic flaw detection method for scanning in the perpendicular direction X or the ultrasonic wave incident direction Y and detecting a planar defect 3 generated in the thickness direction is shown.

【0023】図5には、肉厚方向に発生した溶接割れな
どの面状の欠陥3の検出方法であるタンデム探傷法にお
いて、送信1個及び受信1個からなる2個の斜角探触子
4a、4bを溶接線2aの片側に溶接線と垂直な方向に
対して同一線上にならないように配置し、溶接線2aに
対する超音波の入射角度と溶接線までの距離を所定の値
に設定し、肉厚方向に発生した面状の欠陥3を検出する
超音波探傷方法を示している。
FIG. 5 shows two angle beam probes consisting of one transmission and one reception in a tandem flaw detection method for detecting a planar defect 3 such as a weld crack generated in a thickness direction. 4a and 4b are arranged on one side of the welding line 2a so as not to be on the same line in a direction perpendicular to the welding line, and the incident angle of the ultrasonic wave with respect to the welding line 2a and the distance to the welding line are set to predetermined values. 3 shows an ultrasonic flaw detection method for detecting a planar defect 3 generated in the thickness direction.

【0024】図6には、上記記載の送信及び受信用の探
触子4a、4bにおいて、送信部と受信部を一体枠6に
固定した構造の探触子を用いて、肉厚方向に発生した面
状の欠陥3を検出するようにした超音波探傷方法を示し
ている。
FIG. 6 shows the transmission and reception probes 4a and 4b generated in the thickness direction by using a probe having a structure in which the transmission unit and the reception unit are fixed to the integral frame 6. An ultrasonic flaw detection method for detecting a planar defect 3 is shown.

【0025】図7には、上記記載の探触子配置におい
て、送信の探触子4aと受信の探触子4bの超音波の送
受信の方向を共に欠陥3に向けて、欠陥からの音圧が高
く得られるように、溶接線2aに対する超音波の入射角
度と溶接線までの距離を調整し、肉厚方向に発生した面
状の欠陥3を検出する超音波探傷方法を示している。
FIG. 7 shows that in the probe arrangement described above, the transmitting and receiving probes 4a and the receiving probe 4b are directed toward the defect 3 in both directions of transmitting and receiving ultrasonic waves, and the sound pressure from the defect is changed. The ultrasonic flaw detection method of detecting the planar defect 3 generated in the thickness direction by adjusting the incident angle of the ultrasonic wave with respect to the welding line 2a and the distance to the welding line so as to obtain a high value.

【0026】図8には、上記記載の探触子配置におい
て、欠陥からの音圧が高く得られるように、受信側4a
及び送信側4b、あるいはどちらか一方の探触子を溶接
線2aと直角方向Xあるいは超音波入射方向Yに走査
し、肉厚方向に発生した面状の欠陥3を検出する超音波
探傷方法を示している。尚、本発明の態様は上記の態様
に限るものではないことは明かである。
FIG. 8 shows the receiving side 4a so as to obtain a high sound pressure from a defect in the probe arrangement described above.
An ultrasonic flaw detection method for scanning the probe 4b on the transmission side 4b or any one of them in the direction X perpendicular to the welding line 2a or in the ultrasonic wave incident direction Y and detecting a planar defect 3 generated in the thickness direction. Is shown. It is clear that aspects of the present invention are not limited to the above aspects.

【0027】[0027]

【発明の効果】 本発明では、検査対象物の表面から
送信された縦波が欠陥に当たった後に、裏面で縦波から
横波にモード変換した波を受信する方法、あるいはタン
デム探傷法おいて、送信1個及び受信1個からなる2個
の斜角探触子を溶接線の片側に溶接線と垂直な方向に対
して同一線上にならないように配置するために、従来技
術である2個の探触子を前後に配置する場合よりも、図
1と図12の検査可能範囲の比較から明らかなように、
検査可能な範囲を肉厚方向に広くとることができる。特
に、肉厚が薄い検査体では溶接線と垂直な同一線上に前
後に2個の探触子を配置した場合には、2個の探触子同
士が干渉するために、送受信位置を一定距離までしか接
近できないが、2個の探触子を前後ではなく左右方向に
配置することで、実施可能な検査範囲を広げることがで
きる。
According to the present invention, after a longitudinal wave transmitted from the front surface of an inspection object hits a defect, a method of receiving a mode-converted wave from a longitudinal wave to a transverse wave on the back surface, or a tandem flaw detection method, In order to dispose two bevel probes consisting of one transmitter and one receiver so as not to be on the same side with respect to a direction perpendicular to the weld line on one side of the weld line, two conventional angle beam probes are used. As is clear from the comparison of the testable range in FIG. 1 and FIG.
The inspectable range can be widened in the thickness direction. In particular, in the case of a thin-walled test object, if two probes are arranged before and after on the same line perpendicular to the weld line, the two probes interfere with each other, so the transmission / reception position must be a certain distance. Although the two probes can be approached only to each other, the practicable inspection range can be expanded by arranging the two probes in the left-right direction instead of the front-back direction.

【0028】 さらに、2つの探触子を前後に同一線
上に配置した場合には、送受信の探触子配置を逆の位置
に容易に設定が不可能であるが、2つの探触子を同一線
上からずらして配置すると、探触子を溶接線方向に走査
することで、溶接線に対する前後の関係を容易に逆転で
きる。
Further, when the two probes are arranged on the same line in front and back, it is impossible to easily set the arrangement of the transmitting and receiving probes to the opposite positions. When the probe is displaced from the line, the probe can be scanned in the direction of the welding line, thereby easily reversing the front-back relationship with the welding line.

【0029】 また、同一線上に前後に配置していな
いために、欠陥からの高い受信音圧を得るために探触子
の片方あるいは両方を自由に走査して、欠陥の検出能力
を向上させることが可能である。
Further, one or both of the probes are freely scanned in order to obtain a high received sound pressure from a defect because they are not arranged in front of and behind the same line, thereby improving the defect detection capability. Is possible.

【0030】 さらに、斜角探触子を用いているため
に、溶接金属の余盛上から探傷する垂直探傷法に比べて
余盛形状による表面の伝達損失の影響を受けることな
く、高い受信音圧が得られる。
Further, since the oblique probe is used, compared with the vertical flaw detection method in which flaws are inspected from above the weld metal, a higher received sound can be obtained without being affected by the surface transmission loss due to the extra metal shape. Pressure is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)(b)は本発明にかかる第1実施例の平面図と
断面図である。
FIGS. 1 (a) and 1 (b) are a plan view and a sectional view of a first embodiment according to the present invention.

【図2】(a)(b)は本発明にかかる第2実施例の平面図と
断面図である。
FIGS. 2A and 2B are a plan view and a cross-sectional view of a second embodiment according to the present invention.

【図3】(a)(b)は本発明にかかる第3実施例の平面図と
断面図である。
FIGS. 3 (a) and 3 (b) are a plan view and a sectional view of a third embodiment according to the present invention.

【図4】(a)(b)は本発明にかかる第4実施例の平面図と
断面図である。
FIGS. 4A and 4B are a plan view and a cross-sectional view of a fourth embodiment according to the present invention.

【図5】(a)(b)は本発明にかかる第5実施例の平面図と
断面図である。
FIGS. 5A and 5B are a plan view and a sectional view of a fifth embodiment according to the present invention.

【図6】(a)(b)は本発明にかかる第6実施例の平面図と
断面図である。
FIGS. 6 (a) and (b) are a plan view and a sectional view of a sixth embodiment according to the present invention.

【図7】(a)(b)は本発明にかかる第7実施例の平面図と
断面図である。
FIGS. 7A and 7B are a plan view and a sectional view of a seventh embodiment according to the present invention.

【図8】(a)(b)は本発明にかかる第8実施例の平面図と
断面図である。
8 (a) and 8 (b) are a plan view and a sectional view of an eighth embodiment according to the present invention.

【図9】従来の一探触子法の説明図である。FIG. 9 is an explanatory view of a conventional one probe method.

【図10】従来のタンデム探傷方法の説明図である。FIG. 10 is an explanatory diagram of a conventional tandem flaw detection method.

【図11】従来のいタンデム探傷方法において前後配置
にした場合に、前後の探触子が干渉して探傷ができない
ことの説明図である。
FIG. 11 is an explanatory view showing that when the conventional tandem flaw detection method is arranged in front and rear, the front and rear probes interfere with each other to make flaw detection impossible.

【図12】(a)(b)は縦波を用いた二探触子による探傷方
法の説明図で前後に探触子を配置しているために検査で
きる領域が限られてしまうことの説明図である。
FIGS. 12A and 12B are explanatory diagrams of a flaw detection method using two probes using longitudinal waves, and explain that an area that can be inspected is limited because probes are arranged in front and behind. FIG.

【符号の説明】[Explanation of symbols]

1…検査対象物 1a…探傷面 2…溶接部 2a…溶接線 3…欠陥 4…斜角探触子 4a…送信用斜角探触子 4b…受信用斜角探触子 5…縦波(超音波) 5a…横波(超音波) 6…一体枠 7…検査可能領域 DESCRIPTION OF SYMBOLS 1 ... Inspection object 1a ... Flaw detection surface 2 ... Weld part 2a ... Welding line 3 ... Defect 4 ... Bevel probe 4a ... Transmitting bevel probe 4b ... Receiving bevel probe 5 ... Longitudinal wave ( 5a: Transverse wave (ultrasonic wave) 6: Integrated frame 7: Inspectable area

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山川 武人 兵庫県加古郡播磨町新島8番地 川崎重 工業株式会社 播磨工場内 (72)発明者 千田 豊 兵庫県加古郡播磨町新島8番地 川崎重 工業株式会社 播磨工場内 (56)参考文献 特開 昭63−261156(JP,A) 特開 平1−191052(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 29/00 - 29/28 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Takehito Yamakawa 8 Harima-cho, Harima-cho, Kako-gun, Hyogo Kawasaki Heavy Industries, Ltd. Harima Plant (72) Inventor Yutaka Yuta 8 Shinima, Harima-cho, Kako-gun, Hyogo Kawasaki Heavy Industries Harima Factory Co., Ltd. (56) References JP-A-63-261156 (JP, A) JP-A-1-1901052 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01N 29 / 00-29/28

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 検査対象物の表面に、送信用縦波探触子
1個及び受信用探触子1個からなる2個の斜角探触子を
溶接線の片側に溶接線と垂直な方向に対して同一線上に
ならないようにそれぞれ自由に走査可能なように左右に
配置し、該縦波斜角探触子から送信した縦波が肉厚方向
の面状欠陥にあたった後に前記検査対象物の裏面にあた
り、この裏面で縦波から横波にモード変換した波を上記
斜角探触子により受信することにより、しかも、送信の
探触子と受信の探触子の超音波の送受信の方向を共に欠
陥に向けて、欠陥からの音圧が高く得られるように、溶
接線に対する超音波の入射角度と溶接線までの距離を調
整し、肉厚方向に発生した面状の欠陥を検出するように
したことを特徴とする面状欠陥の超音波探傷方法。
1. A method according to claim 1, wherein two oblique probes each composed of one longitudinal wave probe for transmission and one probe for reception are mounted on the surface of the object to be inspected at one side of the welding line and perpendicular to the welding line. Left and right so that they can be freely scanned so that they are not collinear with the direction
After the longitudinal wave transmitted from the longitudinal wave oblique probe hits the planar defect in the thickness direction , it hits the back surface of the inspection object, and the wave that has been mode-converted from longitudinal wave to shear wave on this back surface is The reception by the angle beam probe and the transmission
The ultrasonic transmission and reception directions of the probe and the receiving probe are both missing.
In order to obtain high sound pressure from the defect,
Adjust the incident angle of the ultrasonic wave to the tangent and the distance to the welding line.
To detect planar defects that occur in the thickness direction.
An ultrasonic flaw detection method for a planar defect.
JP04089152A 1992-04-09 1992-04-09 Ultrasonic flaw detection method for planar defects Expired - Lifetime JP3140157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04089152A JP3140157B2 (en) 1992-04-09 1992-04-09 Ultrasonic flaw detection method for planar defects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04089152A JP3140157B2 (en) 1992-04-09 1992-04-09 Ultrasonic flaw detection method for planar defects

Publications (2)

Publication Number Publication Date
JPH05288722A JPH05288722A (en) 1993-11-02
JP3140157B2 true JP3140157B2 (en) 2001-03-05

Family

ID=13962883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04089152A Expired - Lifetime JP3140157B2 (en) 1992-04-09 1992-04-09 Ultrasonic flaw detection method for planar defects

Country Status (1)

Country Link
JP (1) JP3140157B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101844824B1 (en) * 2014-09-02 2018-04-05 한국전력공사 Finger type root inspection apparatus

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1123613A (en) 1997-07-04 1999-01-29 Tokai Rika Co Ltd Sensor utilizing diaphragm type sensor chip
US6380516B1 (en) 1999-08-11 2002-04-30 Mitsubishi Heavy Industries, Ltd. Connecting clamp, connecting apparatus and connecting method
JP2013019715A (en) * 2011-07-08 2013-01-31 Non-Destructive Inspection Co Ltd Ultrasonic inspection method and ultrasonic inspection device
JP6026245B2 (en) * 2012-11-28 2016-11-16 非破壊検査株式会社 Ultrasonic inspection method and ultrasonic inspection apparatus
WO2020039850A1 (en) 2018-08-22 2020-02-27 国立大学法人東北大学 Method and device for evaluating bonding interface
JP7113428B2 (en) * 2018-10-02 2022-08-05 東海旅客鉄道株式会社 Nondestructive testing equipment for structures

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101844824B1 (en) * 2014-09-02 2018-04-05 한국전력공사 Finger type root inspection apparatus

Also Published As

Publication number Publication date
JPH05288722A (en) 1993-11-02

Similar Documents

Publication Publication Date Title
US5431054A (en) Ultrasonic flaw detection device
US4570487A (en) Multibeam satellite-pulse observation technique for characterizing cracks in bimetallic coarse-grained component
JP4910770B2 (en) Tubular ultrasonic inspection apparatus and ultrasonic inspection method
WO2007058391A1 (en) Pipe ultrasonic flaw detecting apparatus and ultrasonic flaw detecting method
JPH11183446A (en) Method and apparatus for ultrasonic flaw detection of weld
CN105004793A (en) Ultrasonic testing method used for composite material foaming structures
JP3140157B2 (en) Ultrasonic flaw detection method for planar defects
JP2002062281A (en) Flaw depth measuring method and its device
JP3671819B2 (en) Ultrasonic flaw detector for welded steel pipe
CN110687205A (en) Ultrasonic longitudinal wave reflection method and diffraction time difference method combined detection method and TOFD probe applied to method
JP2007178186A (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP3165888B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JPWO2020039850A1 (en) Bonding interface evaluation method and bonding interface evaluation device
JP3497984B2 (en) Ultrasonic flaw detector
JP3241519B2 (en) Ultrasonic flaw detection method and apparatus
JP4175762B2 (en) Ultrasonic flaw detector
卜阳光 et al. Research on ultrasonic phased array multi-mode total focusing inspection technology for nozzle fillet welds
JPH095304A (en) Ultrasonic flaw detection method in welded part between straight pipe and elbow
JP3612849B2 (en) C-scan ultrasonic flaw detection method and apparatus
JP2007263956A (en) Ultrasonic flaw detection method and apparatus
US6158285A (en) EMAT inspection of welds in thin steel plates of dissimilar thicknesses
JP4614219B2 (en) Inspection method and inspection apparatus for laser welded joint
JP2003057214A (en) Ultrasonic flaw detection method and apparatus in fillet welding section
JPH0521011Y2 (en)
Nageswaran et al. Evaluation of the phased array transmit-receive longitudinal and time-of-flight diffraction techniques for inspection of a dissimilar weld

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081215

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 12