JP2007178186A - Ultrasonic flaw detection method and ultrasonic flaw detection apparatus - Google Patents

Ultrasonic flaw detection method and ultrasonic flaw detection apparatus Download PDF

Info

Publication number
JP2007178186A
JP2007178186A JP2005375012A JP2005375012A JP2007178186A JP 2007178186 A JP2007178186 A JP 2007178186A JP 2005375012 A JP2005375012 A JP 2005375012A JP 2005375012 A JP2005375012 A JP 2005375012A JP 2007178186 A JP2007178186 A JP 2007178186A
Authority
JP
Japan
Prior art keywords
probe
ultrasonic
defect
flaw detection
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005375012A
Other languages
Japanese (ja)
Inventor
Masayoshi Nakai
正義 中井
Akihiro Kirito
章浩 切東
Seiichi Kawanami
精一 川浪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2005375012A priority Critical patent/JP2007178186A/en
Publication of JP2007178186A publication Critical patent/JP2007178186A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic flaw detection method capable of accurately detecting in a simple structure and in a short period the length and the depth of the flaw caused in a region, which has acoustic anisotropy like a welded part, the bending or attenuation of an ultrasonic wave and the noise such as an echo or the like returned from the boundary of a matrix part and a molten metal part; and to provide an ultrasonic flaw detection apparatus. <P>SOLUTION: A scanning mechanism is loaded with a structure, wherein a first ultrasonic probe, which has a first ultrasonic probe having single vibrators arranged therein and diffusing an ultrasonic wave at a fixed angle to perform reception and transmission, and a second ultrasonic probe, which is a fixed angle bundling type and receiving the ultrasonic wave emitted from a first probe to be reflected, are integrated and constituted so that an inspection target is subjected to reciprocal scanning in scanning width wherein the half value widths of the bundling diameter of a second probe are overlapped with each other and the presence of the flaw and length of flaw in the inspection target are detected on the basis of the reflected ultrasonic wave received by the first probe and the depth of the flaw is evaluated and detected on the basis of the ultrasonic wave received by the second probe. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は超音波探傷方法及び装置に係り、特に、被検体の溶接部に存在する欠陥を検出する超音波探傷方法及び装置に関するものである。   The present invention relates to an ultrasonic flaw detection method and apparatus, and more particularly to an ultrasonic flaw detection method and apparatus for detecting defects present in a welded portion of a subject.

鋼構造物の溶接部には各種の欠陥が発生する可能性がある。すなわち、機械的な応力や熱応力などがこういった鋼構造物にかかる場合、溶接部に歪みが生じて亀裂が生じ、また、溶接時に欠陥が有った場合、こういった応力によってその亀裂が広がってゆく可能性がある。   Various defects may occur in the welds of steel structures. In other words, when mechanical stress or thermal stress is applied to such a steel structure, the weld is distorted and cracks are formed, and when there is a defect during welding, the cracks are caused by such stress. May spread.

こういった物体内部、又はアクセスできない物体内面の傷やき裂等の欠陥の非破壊検査試験方法としては従来から、放射線透過法や超音波探傷法が用いられてきたが、放射線透過法は試験実施者に対する安全性を配慮する必要があり、また試験結果の表示に時間がかかるなどの問題点があった。   Conventionally, radiation transmission methods and ultrasonic flaw detection methods have been used as nondestructive inspection test methods for defects such as scratches and cracks inside such objects or on the inner surfaces of inaccessible objects. It was necessary to give consideration to the safety of the patient and it took time to display the test results.

一方、超音波探傷法(Ultrasonic Testing:UT)は、試験結果を即時に表示をすることができ、欠陥が検知された際に即座に対処できる可能性があるなど、効率よく試験を行うことが可能であるため、溶接欠陥や亀裂の検知を行う各種の非破壊検査方法では広く用いられている。   On the other hand, the ultrasonic testing (UT) can display the test result immediately, and can efficiently deal with a test when a defect is detected. Since it is possible, it is widely used in various nondestructive inspection methods for detecting welding defects and cracks.

この超音波探傷法では、物体の表面に配置したプローブ(探触子)内の振動子にパルス電圧を印加して超音波を発生させ、物体の表面から被検体の内部又は被検体内面に向けて照射して、反射してきた超音波をプローブで受信して解析することで、欠陥の大きさ、種類、位置等の状態を判断する。   In this ultrasonic flaw detection method, an ultrasonic wave is generated by applying a pulse voltage to a transducer in a probe (probe) arranged on the surface of an object, and is directed from the object surface to the inside of the subject or the inside of the subject. The state of the defect such as the size, type, and position is determined by receiving and analyzing the reflected ultrasonic wave with a probe.

こういったプローブとしては、例えば振動子を一列に配列したアレイ型プローブ、特許文献1に示されているように振動子をマトリクス状に配列したマトリクスプローブ、さらにアレイ型では超音波が拡散していくため、特許文献2に示されているように振動子を湾曲させて超音波が1点に集中するよう構成したポイントフォーカス型アレイプローブ、同様に特許文献3に示されているようにマトリクスを構成する振動子を湾曲させてポイントフォーカス型としたポイントフォーカス型マトリクスプローブなどがある。   As such a probe, for example, an array type probe in which transducers are arranged in a line, a matrix probe in which transducers are arranged in a matrix as shown in Patent Document 1, and in an array type, ultrasonic waves are diffused. Therefore, as shown in Patent Document 2, a point focus type array probe configured such that an ultrasonic wave is concentrated at one point by bending a vibrator, similarly, a matrix as shown in Patent Document 3 is used. There is a point focus type matrix probe which is a point focus type by bending a constituent vibrator.

しかしながら溶接部、特に、ステンレスあるいはインコネル合金溶接部では、材料特性で音速が変わるために超音波の屈曲、減衰があり、また、母材部と溶金部の境界から返ってくるエコーと欠陥から返ってくるエコーの判別が困難であるため、欠陥そのものの検出、および欠陥深さサイジングが難しいという問題がある。   However, in welded parts, especially stainless steel or Inconel alloy welded parts, the speed of sound changes depending on the material characteristics, so there is bending and attenuation of ultrasonic waves, and echoes and defects returned from the boundary between the base metal part and the molten metal part Since it is difficult to discriminate the returning echo, there is a problem that it is difficult to detect the defect itself and to determine the defect depth.

そのためこういった部位では、例えば図7(A)、(C)に欠陥81を長さ方向から見た断面図を、図7(B)、(D)に欠陥を長さ方向に対して直角の方向から見た断面図を示したように、超音波ビームの拡がりが拡散するタイプの通常型超音波探触子80を用い、き裂(欠陥)の根元部の角部からのエコーの有無を広範囲に検査して欠陥81の検出と長さの検査を行い、超音波ビームが任意の点に集束するタイプのポイントフォーカス型(集束型)探触子85でき裂先端からの微弱なエコーの有無を検査して欠陥81の深さ検査を実施する、ということが行われている(以下従来技術と称す)。なおこの図8で、82は溶接部を示し、83は通常型超音波探触子80の走査順序を、86はポイントフォーカス型(集束型)超音波探触子85の走査順序を示す。   Therefore, in such a part, for example, FIGS. 7A and 7C are cross-sectional views of the defect 81 viewed from the length direction, and FIGS. 7B and 7D are perpendicular to the length direction of the defect. As shown in the cross-sectional view from the direction of, the presence or absence of echo from the corner of the base of the crack (defect) using the normal type ultrasonic probe 80 of the type in which the spread of the ultrasonic beam diffuses A point focus type (focusing type) probe 85 of a type in which the ultrasonic beam is focused to an arbitrary point, and a weak echo from the crack tip is detected. The depth inspection of the defect 81 is performed by inspecting the presence / absence (hereinafter referred to as a conventional technique). In FIG. 8, reference numeral 82 denotes a welded portion, 83 denotes a scanning order of the normal type ultrasonic probe 80, and 86 denotes a scanning order of the point focus type (focusing type) ultrasonic probe 85.

また、欠陥深さ検査には図8に示したように、90と91で示した2個の探触子を用い、溶接部82のき裂81の先端からのエコーを捉えるようにした超音波探傷装置装置もある。   In addition, as shown in FIG. 8, two probes indicated by 90 and 91 are used for defect depth inspection, and an ultrasonic wave that captures an echo from the tip of the crack 81 of the welded portion 82. There are also flaw detector devices.

すなわち、例えば特許文献4には、溶接部の探傷を行うため、探傷角度と深度を変えて焦点距離を制御しながら超音波を発する探触子と、受信用探触子とを所定の間隔を保って配設し、検査位置としての焦点位置を順次移動させて欠陥端部を焦点位置として探傷する探傷装置が示されている。   That is, for example, in Patent Document 4, in order to perform flaw detection on a welded portion, a predetermined interval is provided between a probe that emits ultrasonic waves while changing a flaw detection angle and depth and controlling a focal length, and a reception probe. There is shown a flaw detection device that is arranged so as to be inspected and flaw detection is performed with a defect end portion as a focal position by sequentially moving a focal position as an inspection position.

さらに特許文献5には、欠陥に近い位置に受信探触子を、受信探触子の位置にくらべて相対的に前記欠陥に遠い位置に送信探触子として可変角超音波探触子を置き、送信探触子から被検査体表面への超音波入射点を変化させ、溶接部の探傷を行う超音波探傷装置が示されている。   Further, in Patent Document 5, a reception probe is placed at a position close to a defect, and a variable angle ultrasonic probe is placed as a transmission probe at a position relatively far from the defect compared to the position of the reception probe. There is shown an ultrasonic flaw detector that performs flaw detection of a welded portion by changing the ultrasonic incident point from the transmission probe to the surface of an object to be inspected.

また、特許文献6には、アレイ構造とした超音波探触子が出力する超音波の送出タイミングを順次遅延させ、送出する超音波ビームを収束させるとともにスキャニングさせ、受信側も同様の構成として、受信側超音波探触部の反射超音波の受信のタイミングを送信側超音波探触部と同期させて順次遅延させることで、送信側超音波探触部が送出した超音波ビームを受信探触子で同時に受信するようにした超音波探傷装置が示されている。   Further, Patent Document 6 sequentially delays the transmission timing of ultrasonic waves output by an ultrasonic probe having an array structure, converges and scans the transmitted ultrasonic beam, and the receiving side has the same configuration. The reception ultrasonic probe emits the ultrasonic beam sent by the transmission-side ultrasonic probe by sequentially delaying the reflected ultrasonic reception timing of the reception-side ultrasonic probe in synchronization with the transmission-side ultrasonic probe. An ultrasonic flaw detector that is simultaneously received by a child is shown.

特開昭59−137862号公報JP 59-137862 A 特開平10−185881号公報JP-A-10-158881 特開2004−340809号公報JP 2004-340809 A 特開2001−228128号公報JP 2001-228128 A 特開平11−248690号公報Japanese Patent Laid-Open No. 11-248690 特開2001−228126号公報JP 2001-228126 A

しかしながら、前記従来技術では、探触子が異なるために欠陥検出と欠陥深さ検査を別々に2度行う必要があり、探傷に時間がかかっていた。また、特許文献4乃至6に示された技術では、前記したように溶接部、特に、ステンレスあるいはインコネル合金の溶接部では、材料特性で音速が変わるために超音波の屈曲、減衰があり、また、母材部と溶金部の境界から返ってくるエコーと欠陥から返ってくるエコーの判別が困難で、欠陥そのものの検出、および欠陥深さサイジングが難しいという問題がある。   However, in the prior art, since the probes are different, it is necessary to separately perform defect detection and defect depth inspection twice, and it takes time for flaw detection. In the techniques disclosed in Patent Documents 4 to 6, as described above, the welded portion, particularly the welded portion of stainless steel or Inconel alloy, has a bending and attenuation of ultrasonic waves because the sound speed changes depending on the material characteristics. However, there is a problem that it is difficult to discriminate between an echo returned from the boundary between the base metal part and the molten metal part and an echo returned from the defect, and it is difficult to detect the defect itself and to size the defect depth.

特に、特許文献6のように、2個の点収束型フェーズドアレイ探触子を同期させて用いる場合、送信超音波を所望の集束点に集束するよう制御しても、音響異方性のため音波が曲がって集束性が悪くなり、所望の場所とは異なった位置に集束して深さが正確に検査できない、といった問題もある。   In particular, as in Patent Document 6, when two point-focusing type phased array probes are used in synchronization, even if control is performed to focus the transmission ultrasonic wave to a desired focusing point, acoustic anisotropy is caused. There is also a problem that the sound wave is bent and the focusing property is deteriorated, and the depth cannot be accurately inspected by focusing on a position different from a desired place.

そのため本発明においては、簡単な構成でしかも短時間で、溶接部のように音響異方性があって超音波の屈曲や減衰があり、さらに母材部と溶金部の境界から返ってくるエコー等の雑音がある部位に生じた欠陥の長さ、深さを、正確に探傷できる超音波探傷方法及び装置を提供することが課題である。   Therefore, in the present invention, it has a simple structure and in a short time, there is acoustic anisotropy like a welded portion, there is bending and attenuation of ultrasonic waves, and it returns from the boundary between the base metal part and the molten metal part. An object of the present invention is to provide an ultrasonic flaw detection method and apparatus capable of accurately flaw-detecting the length and depth of a defect generated in a site with noise such as echo.

上記課題を解決するため本発明になる超音波探傷方法は、
第1の超音波探触子と第2の超音波探触子とを一体とした構造体を走査機構に搭載して用意し、溶接部を含む被検体を超音波探傷する超音波探傷方法において、
前記第1の探触子は単一の振動子が配列され、超音波を固定角で拡散させて送受信をおこない、前記第2の探触子は固定角の集束型で、前記第1の探触子から発せられて反射した超音波を受信し、前記走査機構により前記被検体を、前記第2の探触子における集束径の半値幅が重なる走査幅で往復動走査させ、前記第1の探触子が受けた反射超音波で被検体における欠陥の有無と欠陥の長さを、前記第2の探触子が受けた反射超音波で欠陥の深さを評価して探傷することを特徴とする。
In order to solve the above problems, the ultrasonic flaw detection method according to the present invention is as follows.
In an ultrasonic flaw detection method in which a structure in which a first ultrasonic probe and a second ultrasonic probe are integrated is prepared by mounting on a scanning mechanism, and an object including a welded portion is subjected to ultrasonic flaw detection. ,
In the first probe, a single transducer is arranged to transmit and receive by diffusing ultrasonic waves at a fixed angle, and the second probe is a fixed-angle focusing type, and the first probe. The reflected ultrasonic wave emitted from the probe is received, and the object is reciprocally scanned by the scanning mechanism with a scanning width in which the half-value widths of the focusing diameters of the second probe overlap. Flaw detection is performed by evaluating the presence / absence of a defect in the object and the length of the defect with the reflected ultrasonic wave received by the probe, and evaluating the depth of the defect with the reflected ultrasonic wave received by the second probe. And

また、この超音波探傷方法を実施する装置は、
第1の超音波探触子と第2の超音波探触子とを一体とした構造体と、該構造体を搭載し、溶接部を含む被検体を走査する走査機構とからなる超音波探傷装置において、
前記第1の探触子は超音波が固定角で拡散して送受信する単一の振動子が配列され、前記第2の探触子は固定角の集束型で前記第1の探触子から発せられて反射した超音波を受信し、前記走査機構は前記第2の探触子における集束径の半値幅が重なる走査幅で前記被検体を往復動走査して、前記第1の探触子が受信した反射超音波で被検体における欠陥の有無と欠陥の長さを、前記第2の探触子が受信した反射超音波で欠陥の深さをそれぞれ評価する評価回路を備えたことを特徴とする。
An apparatus for carrying out this ultrasonic flaw detection method is
Ultrasonic flaw detection comprising: a structure in which a first ultrasonic probe and a second ultrasonic probe are integrated; and a scanning mechanism that mounts the structure and scans a subject including a welded portion In the device
The first probe is arranged with a single transducer for transmitting and receiving ultrasonic waves diffused at a fixed angle, and the second probe is a fixed angle focusing type from the first probe. The emitted ultrasonic wave is received, and the scanning mechanism reciprocates and scans the subject with a scanning width that overlaps the half-value width of the focusing diameter of the second probe, and the first probe. And an evaluation circuit for evaluating the presence / absence of a defect and the length of the defect with the reflected ultrasonic wave received by the second probe and the depth of the defect with the reflected ultrasonic wave received by the second probe. And

このようにすることにより、超音波が拡散する探触子では広範囲に超音波が拡散するから確実に欠陥の有無と欠陥長さを探傷でき、また、この広範囲に広がった超音波が欠陥で反射した超音波を固定角の集束型探触子で受けることで、例えば溶接部のように音響異方性があって超音波の屈曲や減衰があり、さらに母材部と溶金部の境界から返ってくるエコー等の雑音があっても、それらに影響されずに欠陥の深さを正確に探傷でき、かつ、欠陥の有無と長さ、欠陥の深さを一度で検査するから短時間で探傷できる超音波探傷方法及び装置を提供することができる。   By doing so, the ultrasonic diffused probe can spread the ultrasonic wave over a wide area, so that the presence or absence of the defect and the length of the defect can be reliably detected, and the ultrasonic wave spreading over the wide area is reflected by the defect. By receiving a focused ultrasonic wave with a fixed-angle focusing probe, for example, there is acoustic anisotropy such as a welded part, and there is bending and attenuation of the ultrasonic wave, and further from the boundary between the base metal part and the molten metal part Even if there is noise such as returning echo, it is possible to accurately detect the depth of the defect without being affected by it, and the presence and length of the defect and the depth of the defect are inspected at a time, so in a short time An ultrasonic flaw detection method and apparatus capable of flaw detection can be provided.

そして、前記第2の探触子を、集束位置を前記被検体表面に対して略高さ方向に変更可能なフェーズドアレイ型とし、高さ方向に集束位置を移動させながら前記走査機構による被検体の往復動走査を行って探傷し、そのために、前記第2の探触子は、集束位置を前記被検体表面に対して略高さ方向に変更可能なフェーズドアレイ型であり、該第2の探触子における集束位置を高さ方向に変更する各振動子の超音波受信間隔算出用遅延時間算出手段を備えることで、受信探触子の集束位置を高さ方向に制御できるため、欠陥先端からのエコー検出精度が向上し、欠陥深さの測定精度を向上できる。   Then, the second probe is a phased array type in which the focusing position can be changed in a substantially height direction with respect to the subject surface, and the subject by the scanning mechanism is moved while moving the focusing position in the height direction. For this purpose, the second probe is a phased array type in which the focusing position can be changed in a substantially vertical direction with respect to the subject surface. By providing a delay time calculating means for calculating the ultrasonic reception interval of each transducer that changes the focusing position in the probe in the height direction, the focusing position of the receiving probe can be controlled in the height direction. The accuracy of echo detection from the sound is improved, and the measurement accuracy of the defect depth can be improved.

また、前記第2の探触子として、集束位置を、高さ方向と前記第1の探触子における振動子の配列方向との両方向に変更可能なマトリクスフェーズドアレイ型とし、該第2の探触子における集束位置を、高さ方向に集束径の半値幅だけずらしながら前記第1の探触子における振動子の配列方向へ往復動走査し、かつ、前記走査機構により、前記第1の探触子における振動子径の半値幅で被検体を往復動走査して探傷し、そのために、前記第2の探触子を、集束位置が高さ方向と前記第1の探触子における振動子の配列方向の両方向に変更可能なマトリクスフェーズドアレイ型で構成し、該第2の探触子における集束位置を、高さ方向に集束径の半値幅だけずらしながら前記第1の探触子における振動子の配列方向へ往復動走査させる各振動子の超音波受信間隔算出用遅延時間算出手段と、前記第1の探触子が受けた反射超音波で被検体における欠陥の有無と欠陥の長さを、前記第2の探触子が受けた反射超音波で欠陥の深さを評価する評価回路とを備え、前記走査機構は、前記第1の探触子における振動子径の半値幅で被検体を走査して探傷するようにしたことで、マトリクスフェーズドアレイ型の探触子は集束位置を広範囲に変化させて欠陥先端からのエコーの有無を精査できるため、欠陥深さの測定精度のさらなる向上と、マトリクスフェーズドアレイ型の探触子の電子走査が高速なため、走査機構が第1の探触子における振動子径の半値幅で被検体を走査することと相俟って、高速な探傷が可能となる。   Further, the second probe is a matrix phased array type in which the focusing position can be changed in both the height direction and the transducer arrangement direction in the first probe. The focusing position on the transducer is reciprocated in the direction of transducer arrangement in the first probe while shifting the half-width of the focusing diameter in the height direction, and the first probe is scanned by the scanning mechanism. The object is reciprocated and scanned with a half-value width of the transducer diameter in the probe to detect flaws. For this purpose, the second probe is connected to the transducer in the height direction and the first probe. Of the first probe while shifting the focusing position of the second probe by a half-value width of the focusing diameter in the height direction. Each transducer that reciprocates in the direction of the array Reflection received by the second probe is the presence / absence of a defect in the subject and the length of the defect by the reflected ultrasound received by the first probe and the delay time calculating means for calculating the ultrasonic reception interval. An evaluation circuit that evaluates the depth of the defect with ultrasonic waves, and the scanning mechanism scans the subject with a half-value width of the transducer diameter in the first probe to detect flaws. Matrix phased array type probes can change the focusing position over a wide range to examine the presence or absence of echoes from the defect tip, further improving the measurement accuracy of the defect depth, and the electron of the matrix phased array type probe Since scanning is fast, coupled with the scanning mechanism scanning the subject with the full width at half maximum of the transducer diameter in the first probe, high-speed flaw detection becomes possible.

また、上記課題を解決するため本発明になる超音波探傷方法は、
第1の超音波探触子と第2の超音波探触子とを一体とした構造体を走査機構に搭載して用意し、溶接部を含む被検体を超音波探傷する超音波探傷方法において、
前記第1と第2の探触子は超音波の集束位置が前記被検体表面に対して略高さ方向に変更可能なフェーズドアレイ型とし、前記第1の探触子は超音波を送受信し、前記第2の探触子は、前記第1の探触子から送られる超音波の集束点を中心として第2の探触子における前記変更可能な高さ方向の範囲を走査しながら反射超音波を受信し、前記走査機構により被検体を、前記第1と第2の探触子における集束径の半値幅が重なる走査幅で往復動走査させて、前記第1の探触子が受けた反射超音波で被検体における欠陥の有無と欠陥の長さを、前記第2の探触子が受けた反射超音波で欠陥の深さを評価して探傷することを特徴とする。
In addition, the ultrasonic flaw detection method according to the present invention to solve the above problems is
In an ultrasonic flaw detection method in which a structure in which a first ultrasonic probe and a second ultrasonic probe are integrated is prepared by mounting on a scanning mechanism, and an object including a welded portion is subjected to ultrasonic flaw detection. ,
The first and second probes are of a phased array type in which the ultrasonic focusing position can be changed in a substantially height direction with respect to the subject surface, and the first probe transmits and receives ultrasonic waves. The second probe scans the range of the changeable height direction of the second probe around the focal point of the ultrasonic wave sent from the first probe, while reflecting the ultrasonic wave. The first probe receives the sound wave, reciprocally scans the subject by the scanning mechanism with a scanning width in which the half widths of the focusing diameters of the first and second probes overlap. The present invention is characterized in that the presence or absence of a defect in the subject and the length of the defect are evaluated by reflected ultrasound, and the depth of the defect is evaluated by reflected ultrasound received by the second probe.

そして、この超音波探傷方法を実施する装置は、
第1の超音波探触子と第2の超音波探触子とを一体とした構造体と、該構造体を搭載し、溶接部を含む被検体を走査する走査機構とからなる超音波探傷装置において、
前記第1と第2の探触子は超音波の集束位置が前記被検体表面に対して略高さ方向に変更可能なフェーズドアレイ型であり、前記第1の探触子は超音波を送受信し、前記第2の探触子は、前記第1の探触子から送られる超音波の集束点を中心として第2の探触子における前記変更可能な高さ方向の範囲を走査しながら反射超音波を受信し、前記走査機構は前記第1と第2の探触子における集束径の半値幅が重なる走査幅で往復動走査して、前記第1と第2の探触子における集束位置を高さ方向に変更する各振動子の超音波発信間隔算出用遅延時間算出手段と、前記第1の探触子が受けた反射超音波で被検体における欠陥の有無と欠陥の長さを、前記第2の探触子が受けた反射超音波で欠陥の深さを評価する評価回路とを備えたことを特徴とする。
And the apparatus which implements this ultrasonic flaw detection method is
Ultrasonic flaw detection comprising: a structure in which a first ultrasonic probe and a second ultrasonic probe are integrated; and a scanning mechanism that mounts the structure and scans a subject including a welded portion In the device
The first and second probes are of a phased array type in which the ultrasonic focusing position can be changed in a substantially height direction with respect to the subject surface, and the first probe transmits and receives ultrasonic waves. The second probe reflects while scanning the range of the changeable height direction of the second probe around the focal point of the ultrasonic wave sent from the first probe. The ultrasonic wave is received, and the scanning mechanism performs reciprocating scanning with a scanning width in which the half-value widths of the focusing diameters of the first and second probes overlap, and the focusing positions of the first and second probes. The ultrasonic transmission interval calculation delay time calculating means for each transducer that changes the height of the object, the presence or absence of defects in the subject and the length of the defects in the reflected ultrasound received by the first probe, And an evaluation circuit for evaluating the depth of the defect with the reflected ultrasonic wave received by the second probe. .

このように、第1と第2の探触子として、超音波の集束位置が前記被検体表面に対して略高さ方向に変更可能なフェーズドアレイ型を用いることで、第1の探触子による送信超音波の集束と、第2の探触子による、第1の探触子から送られる超音波の集束点を中心とした高さ方向の走査によって、例え溶接部のように音響異方性があって超音波の屈曲や減衰があり、さらに母材部と溶金部の境界から返ってくるエコー等の雑音があっても、それらに影響されずに欠陥の深さを正確に高精度で探傷でき、かつ、欠陥の有無と長さ、欠陥の深さを一度で検査するから短時間で探傷できる、超音波探傷方法及び装置を提供することができる。   Thus, as the first and second probes, the first probe is obtained by using a phased array type in which the ultrasonic focusing position can be changed in a substantially height direction with respect to the subject surface. The acoustic anisotropy, such as a welded part, is obtained by focusing the transmitted ultrasonic wave with the second probe and scanning the height direction around the focal point of the ultrasonic wave sent from the first probe by the second probe. Even if there is noise such as echo returning from the boundary between the base metal part and the molten metal part, the depth of the defect can be accurately increased without being affected by it. It is possible to provide an ultrasonic flaw detection method and apparatus capable of flaw detection with high accuracy and capable of flaw detection in a short time since the presence / absence and length of a defect and the depth of the defect are inspected at a time.

ただ、この場合は、受信データが点集束の精査結果であるためデータ量が膨大となるが、前記第1と第2の探触子が検出した前記被検体の各走査断面における各集束位置に対する反射超音波データを記憶手段に記憶し、該記憶した受信データから、欠陥の長さ方向における欠陥深さ方向の反射超音波強さが最大となる値を各断面毎に抽出し、該抽出した断面毎の反射超音波強さが最大となる値を重ね合わせて欠陥深さの分布を演算手段により算出し、欠陥深さ分布を算出し、そのために、前記第1と第2の探触子が検出した前記被検体の各走査断面における各集束位置に対する反射超音波データを記憶する記憶手段と、該記憶手段に記憶した受信データから、欠陥の長さ方向における欠陥深さ方向の反射超音波強さが最大となる値を各断面毎に抽出し、該抽出した断面毎の反射超音波強さが最大となる値を重ね合わせて欠陥深さの分布を算出する演算手段とを設け、該演算出段により欠陥深さ分布を算出することで、例え膨大なデータであっても高速に処理することができ、欠陥深さの評価の高速化を達成することができる。   However, in this case, the amount of data becomes enormous because the received data is the result of the point focusing examination, but for each focusing position in each scanning section of the subject detected by the first and second probes. The reflected ultrasonic data is stored in the storage means, and a value that maximizes the reflected ultrasonic strength in the defect depth direction in the length direction of the defect is extracted for each cross section from the stored received data. By superimposing values that maximize the reflected ultrasonic intensity for each cross section, the defect depth distribution is calculated by the calculation means, and the defect depth distribution is calculated. For this purpose, the first and second probes are used. Storage means for storing reflected ultrasound data for each focused position in each scanning section of the subject detected by the sensor, and reflected ultrasound in the defect depth direction in the defect length direction from the received data stored in the storage means For each cross section, the value with the maximum strength And calculating means for calculating the defect depth distribution by superimposing the extracted values that maximize the reflected ultrasonic intensity for each cross section, and calculating the defect depth distribution by the calculation step. Thus, even a huge amount of data can be processed at high speed, and the speed of defect depth evaluation can be increased.

また、上記課題を解決するため本発明になる超音波探傷方法は、
第1の超音波探触子と第2の超音波探触子とを一体とした構造体を走査機構に搭載して用意し、余盛がある溶接部を含む被検体を超音波探傷する超音波探傷方法において、
前記第1の探触子は単一の振動子が配列され、超音波を固定角で拡散させて送受信をおこない、前記第2の探触子は、集束位置を前記被検体表面に対して高さ略方向及び前記第1の探触子における振動子の配列方向の両方向に変更可能なマトリクスフェーズドアレイ型で、前記第1の探触子から発せられて反射した超音波を受信し、前記走査機構は、前記構造体における前記第1の超音波探触子と第2の超音波探触子の配置を前記余盛方向とし、前記第1の探触子における振動子径の半値幅で余盛方向に往復動走査して、前記第1の探触子が受けた反射超音波で被検体における欠陥の有無と欠陥の長さを、前記第2の探触子が受けた反射超音波で欠陥の深さを評価しながら探傷することを特徴とする。
In addition, the ultrasonic flaw detection method according to the present invention to solve the above problems is
A structure in which a first ultrasonic probe and a second ultrasonic probe are integrated is prepared by mounting on a scanning mechanism, and an ultrasonic inspection is performed on an object including a welded portion with surplus. In the acoustic flaw detection method,
In the first probe, a single transducer is arranged, and ultrasonic waves are diffused at a fixed angle to transmit and receive, and the second probe has a high focusing position with respect to the subject surface. A matrix phased array type that can be changed in both the approximate direction and the direction in which the transducers are arranged in the first probe, receives the reflected ultrasonic waves emitted from the first probe, and performs the scanning The mechanism is configured such that the arrangement of the first ultrasonic probe and the second ultrasonic probe in the structure is the extra-strip direction, and a surplus with a half-value width of a vibrator diameter in the first probe. The presence or absence of a defect in the subject and the length of the defect with the reflected ultrasonic wave received by the first probe by reciprocating scanning in the ascending direction are determined with the reflected ultrasonic wave received by the second probe. It is characterized by flaw detection while evaluating the depth of the defect.

そして、この超音波探傷方法を実施する装置は、
第1の超音波探触子と第2の超音波探触子とを一体とした構造体と、該構造体を搭載し、余盛がある溶接部を含む被検体を走査する走査機構とからなる超音波探傷装置において、
前記第1の探触子は超音波が固定角で拡散して送受信する単一の振動子が配列され、前記第2の探触子は、集束位置を前記被検体表面に対して高さ略方向及び前記第1の探触子における振動子の配列方向の両方向に変更可能で、前記第1の探触子から発せられて反射した超音波を受信するマトリクスフェーズドアレイ型であり、前記走査機構は、前記構造体における前記第1の超音波探触子と第2の超音波探触子の配置を前記余盛方向として、前記第1の探触子における振動子径の半値幅で余盛方向に往復動走査し、前記第2の探触子における集束位置を、高さ方向に集束径の半値幅だけずらしながら前記第1の探触子における振動子の配列方向へ往復動走査させる各振動子の超音波受信間隔算出用遅延時間算出手段と、前記第1の探触子が受けた反射超音波で被検体における欠陥の有無と欠陥の長さを、前記第2の探触子が受けた反射超音波で欠陥の深さを評価する評価回路とを備えたことを特徴とする。
And the apparatus which implements this ultrasonic flaw detection method is
From the structure which integrated the 1st ultrasonic probe and the 2nd ultrasonic probe, and the scanning mechanism which mounts this structure and scans the subject containing the welding part with surplus In the ultrasonic flaw detector
The first probe is arranged with a single transducer that transmits and receives an ultrasonic wave diffused at a fixed angle, and the second probe has a focusing position that is approximately the height of the subject surface. The scanning mechanism is of a matrix phased array type that receives the ultrasonic waves emitted from the first probe and reflected from the first probe. Is a surplus with a half-value width of the transducer diameter in the first probe, with the arrangement of the first and second ultrasonic probes in the structure as the surplus direction. Reciprocatingly scanning in the direction, and reciprocatingly scanning in the arrangement direction of the transducers in the first probe while shifting the focusing position in the second probe by a half-value width of the focusing diameter in the height direction. A delay time calculating means for calculating an ultrasonic wave reception interval of the vibrator, and the first probe; And an evaluation circuit for evaluating the presence / absence of a defect in the subject with the reflected ultrasonic wave and the length of the defect, and the depth of the defect with the reflected ultrasonic wave received by the second probe. .

溶接部に余盛があると、第1の超音波探触子と第2の超音波探触子とを一体とした場合は余盛部に構造体が乗り上げてしまうために走査ができない。また、例え探触子が乗り上げても、走査機構による走査だけは可能であったとしても、超音波探傷用の超音波は空気中を伝わらないため、余盛部分の探傷が難しくなるが、このように超音波が固定角で拡散する第1の探触子と、マトリクスフェーズドアレイ型の第2の探触子を余盛方向に配置することでそういった問題が生ぜず、かつ、マトリクスフェーズドアレイ型の探触子は集束位置を広範囲に変化させて欠陥先端からのエコーの有無を精査できるため、欠陥の深さの測定精度が良く、また、探触子の電子走査が高速なため、走査機構が第1の探触子における振動子径の半値幅で被検体を走査することと相俟って、高速な探傷が可能となる。   If there is surplus in the welded portion, when the first ultrasonic probe and the second ultrasonic probe are integrated, the structure will ride on the surplus portion and scanning is not possible. In addition, even if the probe is mounted, even if only scanning by the scanning mechanism is possible, since ultrasonic waves for ultrasonic flaw detection do not travel in the air, it is difficult to flaw the surplus portion. In this way, the first probe in which the ultrasonic wave diffuses at a fixed angle and the second probe of the matrix phased array type are arranged in the extra direction, and such a problem does not occur, and the matrix phased array type Since the probe of this type can change the focusing position over a wide range and examine the presence or absence of echoes from the tip of the defect, the defect depth measurement accuracy is good, and the probe's electronic scanning is fast, so the scanning mechanism However, coupled with scanning the subject with the half-width of the transducer diameter in the first probe, high-speed flaw detection becomes possible.

以上記載のごとく本発明になる超音波探傷方法及び装置は、非常に簡単な構成で、しかも短時間で、溶接部のように音響異方性があって超音波の屈曲や減衰があり、さらに母材部と溶金部の境界から返ってくるエコー等の雑音がある部位に生じた欠陥の長さ、深さを、高精度で探傷することができる。   As described above, the ultrasonic flaw detection method and apparatus according to the present invention have a very simple configuration, and in a short time, there is acoustic anisotropy like a welded portion, and there is bending and attenuation of ultrasonic waves. It is possible to detect the length and depth of a defect generated in a portion having noise such as an echo returning from the boundary between the base material portion and the molten metal portion with high accuracy.

以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。   Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.

図1は、本発明になる超音波探傷装置の実施例1の概略構成図であり、(A)は使用する探触子とその超音波の広がりを説明するための図、(B)は探傷実施のための構成ブロック図である。   1A and 1B are schematic configuration diagrams of an ultrasonic flaw detection apparatus according to a first embodiment of the present invention. FIG. 1A is a diagram for explaining a probe to be used and the spread of the ultrasonic wave, and FIG. It is a block diagram for implementation.

図中、1は超音波が3で示したように、固定角で拡散しながら送受信を行う単一の振動子が配列された第1の探触子たる通常の探触子、2は8で示したように固定角の例えば4で示した位置を集束位置とし、前記第1の探触子1から発せられて反射してきた超音波を受信する第2の探触子、5は被検体に設けられた溶接部の断面で、溶接部5は図上、図面に垂直な方向に走っている。6は母材部と溶接部5に跨って生じた欠陥、7は第1の探触子1から第2の探触子2の収束位置4へ向かい、第2の探触子2によって受信される反射超音波、9は第1の探触子1から発して第1の探触子1へ戻る超音波、10は探傷制御装置、11は超音波送信回路、12は反射超音波受信回路、13は反射超音波から欠陥を抽出する反射超音波の評価回路、14は第1の探触子1と第2の探触子2を一体とした構造体を、図1(A)に16で示したように第2の探触子2における集束径の半値幅Rが重なる程度の走査幅で、被検体を往復動走査するための走査機構である。   In the figure, reference numeral 1 denotes a normal probe as a first probe in which a single transducer that performs transmission and reception while diffusing at a fixed angle is arranged as indicated by 3, and 2 is 8. As shown, the second probe 5 for receiving the ultrasonic wave emitted from the first probe 1 and reflected from the position indicated by a fixed angle, for example, 4 is used as a focusing position. In the cross section of the welded portion provided, the welded portion 5 runs in the direction perpendicular to the drawing in the figure. Reference numeral 6 denotes a defect that occurs between the base material portion and the welded portion 5, and reference numeral 7 denotes a convergence position 4 of the second probe 2 from the first probe 1 and is received by the second probe 2. Reflected ultrasonic waves, 9 is an ultrasonic wave emitted from the first probe 1 and returns to the first probe 1, 10 is a flaw detection control device, 11 is an ultrasonic transmission circuit, 12 is a reflected ultrasonic reception circuit, Reference numeral 13 denotes a reflected ultrasonic evaluation circuit for extracting defects from the reflected ultrasonic wave, 14 denotes a structure in which the first probe 1 and the second probe 2 are integrated, and FIG. As shown, this is a scanning mechanism for reciprocatingly scanning the subject with a scanning width such that the full width at half maximum R of the focusing diameter in the second probe 2 overlaps.

この実施例1の超音波探傷装置は、固定角で拡散しながら超音波3の送受信を行う単一の振動子が配列された探触子1と、固定角の例えば4で示した位置を集束位置とした第2の探触子2とを一体とした構造体を、被検体を往復動走査する走査機構14に搭載し、16で示したように第2の探触子2における集束径の半値幅Rが重なる程度の走査幅で往復動しながら探触子1と探触子2で被検体を走査して、探傷するものである。   The ultrasonic flaw detection apparatus according to the first embodiment focuses a probe 1 on which a single transducer that transmits and receives ultrasonic waves 3 while diffusing at a fixed angle is arranged, and a position indicated by a fixed angle, for example, 4. A structure integrated with the second probe 2 positioned is mounted on a scanning mechanism 14 that reciprocates and scans the subject, and as shown by 16, the focusing diameter of the second probe 2 is adjusted. The object is scanned by the probe 1 and the probe 2 while reciprocating with a scanning width such that the half-value width R overlaps, and flaw detection is performed.

すなわち、欠陥の大きさや長さは、集束型の探触子で検査すると精度は高くなるが集束径が非常に小さいために時間がかかる。そのため、単に欠陥があることや、その欠陥がどの程度の長さを持つかは拡散型の第1の探触子1で検査する方が効率がよい。しかし、5のような溶接部を持つ被検体では、前記したようにこの溶接部5の存在によって音響異方性が生じ、超音波が屈曲したり減衰したり、さらに母材部と溶金部5の境界からエコーが返って雑音となるなど、深さ方向の探傷はこの拡散型の探触子1では難しい。   In other words, the size and length of the defect increases the accuracy when inspected by a focusing probe, but takes a long time because the focusing diameter is very small. Therefore, it is more efficient to inspect with the diffusion type first probe 1 simply whether there is a defect or how long the defect has. However, in an object having a welded portion such as 5, acoustic anisotropy occurs due to the presence of the welded portion 5 as described above, and the ultrasonic wave is bent or attenuated, and further, the base material portion and the molten metal portion. It is difficult for this diffusion type probe 1 to detect flaws in the depth direction, for example, echoes return from the boundary of 5 and become noise.

しかし、第1の探触子1と第2の探触子2とが溶接部5を跨いで相対し、また深さ方向の探傷に、このように固定角の集束型の第2の探触子2を使うことで、例え溶接部5の存在によって第1の探触子1から発した超音波が屈曲や減衰、母材部と溶接部5との境界からのエコーなどがあっても、第1の探触子1の探傷結果と合わせることでこういった探傷を困難にする要因に影響を受けることなく、正確な探傷を行うことができると共に、一度の探傷で欠陥のすべての検査ができるから、探傷を短時間で行える超音波探傷方法及び装置を提供することができる。   However, the first probe 1 and the second probe 2 are opposed to each other across the welded portion 5, and the fixed-angle focusing type second probe is used for the flaw detection in the depth direction. By using the child 2, even if the ultrasonic wave emitted from the first probe 1 is bent or attenuated due to the presence of the welded portion 5, there is an echo from the boundary between the base material portion and the welded portion 5, etc. By combining with the results of the flaw detection of the first probe 1, accurate flaw detection can be performed without being affected by factors that make such flaw detection difficult, and all inspections for defects can be performed with a single flaw detection. Therefore, it is possible to provide an ultrasonic flaw detection method and apparatus capable of performing flaw detection in a short time.

次に図1(B)を用いてこの実施例1の超音波探傷装置の動作を説明すると、探傷制御装置10は、第1の探触子1と第2の探触子2とが搭載された構造体を、走査機構14によって第2の探触子2における集束径の半値幅が重なる程度の走査幅で被検体を往復動走査させながら、超音波送信回路11に、第1の探触子1を構成する振動子に超音波を送るよう指示する。   Next, the operation of the ultrasonic flaw detection apparatus according to the first embodiment will be described with reference to FIG. 1B. The flaw detection control apparatus 10 includes the first probe 1 and the second probe 2 mounted thereon. The ultrasonic transmission circuit 11 is caused to scan the subject with the scanning mechanism 14 so that the half-width of the focusing diameter of the second probe 2 overlaps with the scanning mechanism 14, and the ultrasonic probe circuit 11 makes the first probe. An instruction to send ultrasonic waves to the vibrator constituting the child 1 is given.

そのため第1の探触子1からは図1(A)に3で示したように拡散する超音波が発射され、被検体内部に例えば9、7のように入ってゆく。いま、図1(B)に示したように、構造体を構成する第1の探触子1と第2の探触子2とが、被検体における溶接部5を跨ぐように位置している場合、第1の探触子1から発した超音波3は、図1(B)に9で示したように被検体の底面や欠陥6などで反射して第1の探触子1に戻ったり、また、7で示した経路に発した超音波は欠陥6の角部で反射され、8の経路で第2の探触子2に達する。   Therefore, the first probe 1 emits an ultrasonic wave that diffuses as indicated by 3 in FIG. 1A, and enters the subject as in 9 and 7, for example. Now, as shown in FIG. 1B, the first probe 1 and the second probe 2 constituting the structure are positioned so as to straddle the welded portion 5 in the subject. In this case, the ultrasonic wave 3 emitted from the first probe 1 is reflected by the bottom surface of the subject, the defect 6 or the like and returned to the first probe 1 as indicated by 9 in FIG. In addition, the ultrasonic wave emitted in the path indicated by 7 is reflected by the corner of the defect 6 and reaches the second probe 2 in the path 8.

そのため探傷制御装置10は、反射超音波受信回路12にこれら反射超音波を受信した第1の探触子1と第2の探触子2からの信号を取得させ、そのデータを評価回路13に送る。この評価回路13は、第1の探触子1と第2の探触子2からの信号により、それぞれの超音波の発射から受信までの時間長さを算出し、それによって第1の探触子1から発した超音波がどの深さから反射してきたものであるかを評価する。   Therefore, the flaw detection control apparatus 10 causes the reflected ultrasonic receiving circuit 12 to acquire signals from the first probe 1 and the second probe 2 that have received these reflected ultrasonic waves, and causes the evaluation circuit 13 to receive the data. send. The evaluation circuit 13 calculates the length of time from emission to reception of each ultrasonic wave based on signals from the first probe 1 and the second probe 2, and thereby the first probe. It is evaluated from which depth the ultrasonic wave emitted from the child 1 is reflected.

そしてその評価結果を基に、まず、第1の探触子1からの反射信号の中の9で示したような底面からの反射波を除き、それよりも短時間で反射してきた超音波により、被検体における欠陥6、または母材部と溶接部5との境界からの反射超音波を抽出する。また、第2の探触子2が反射超音波を受信しているかどうかを確認し、受信していない場合は、探傷制御装置10が前記したように第2の探触子2における集束径の半値幅Rが重なる程度の走査幅で、16で示したように被検体を往復動させながら走査を続けるよう走査機構14に指示する。   Based on the evaluation result, first, the reflected wave from the bottom surface as indicated by 9 in the reflected signal from the first probe 1 is removed, and the ultrasonic wave reflected in a shorter time than that is used. Then, the reflected ultrasonic wave from the defect 6 in the subject or the boundary between the base material portion and the welded portion 5 is extracted. Also, it is confirmed whether or not the second probe 2 has received the reflected ultrasonic wave. If not, the flaw detection control device 10 determines the focal diameter of the second probe 2 as described above. The scanning mechanism 14 is instructed to continue scanning while reciprocating the subject as indicated by 16 with a scanning width such that the half width R overlaps.

そして、第2の探触子2が反射超音波を受信している場合、評価回路13は、探傷制御装置10を介して送られてくる走査機構14からの信号により、第1の探触子1と第2の探触子2の位置を確認し、また、第1の探触子1が欠陥6からの反射超音波を受信しているかどうかを確認して、これらの情報から、第2の探触子2が受信した反射超音波が欠陥6からのものかどうかを評価する。   When the second probe 2 receives the reflected ultrasonic wave, the evaluation circuit 13 uses the signal from the scanning mechanism 14 sent via the flaw detection control device 10 to output the first probe. The positions of the first probe 2 and the second probe 2 are confirmed, and whether or not the first probe 1 has received the reflected ultrasonic wave from the defect 6 is determined based on these information. It is evaluated whether or not the reflected ultrasonic wave received by the probe 2 is from the defect 6.

そして、第1の探触子1が欠陥6からの反射超音波を受信していると評価された場合はその位置により、第2の探触子2が受信した反射超音波は欠陥6からのものと判断でき、評価回路13は、それによってこの値を欠陥6の深さと評価する。   If it is evaluated that the first probe 1 is receiving the reflected ultrasonic wave from the defect 6, the reflected ultrasonic wave received by the second probe 2 depends on the position from the defect 6. Therefore, the evaluation circuit 13 evaluates this value as the depth of the defect 6.

このようにすることにより、第2の探触子2による受信ビーム径が小さいために集束効果が生じ、前記したように溶接部のような音響異方性があって超音波の屈曲や減衰があり、さらに母材部と溶金部の境界から返ってくるエコー等の雑音があっても、それらに影響されずに欠陥からの反射超音波を識別できて深さを正確に評価でき、かつ、欠陥の有無と長さ、欠陥の深さを一度で検査するから短時間で探傷できる超音波探傷方法及び装置を提供することができる。   By doing so, the receiving beam diameter by the second probe 2 is small, so that a focusing effect is produced. As described above, there is acoustic anisotropy as in the welded portion, and bending and attenuation of the ultrasonic waves are caused. Furthermore, even if there is noise such as echo returning from the boundary between the base metal part and the molten metal part, the reflected ultrasonic waves from the defect can be identified without being affected by them, and the depth can be accurately evaluated, and In addition, since the presence / absence and length of defects and the depth of defects are inspected at a time, an ultrasonic flaw detection method and apparatus capable of flaw detection in a short time can be provided.

なお、この図1に示した実施例で用いた第2の探触子2としての固定角の集束型探触子は、欠陥6の角部の深さがちょうど集束位置にある場合は深さ方向のサイジングが正確にできるが、それ以外の深さでは集束位置から離れるに従って確度が落ちていく。そのため、第2の探触子として、集束位置を高さ方向(被検体表面に対して略高さ方向)に変更可能なフェーズドアレイ型探触子を用いると、こういった問題が解決できる。それを示したのが図2である。   The fixed-angle focusing probe as the second probe 2 used in the embodiment shown in FIG. 1 has a depth when the depth of the corner of the defect 6 is just at the focusing position. The sizing of the direction can be performed accurately, but at other depths, the accuracy decreases as the distance from the focusing position increases. Therefore, if a phased array type probe that can change the focusing position in the height direction (substantially in the height direction with respect to the subject surface) is used as the second probe, these problems can be solved. This is shown in FIG.

この図2において、(A)は使用する探触子とその超音波の広がりを説明するための図、(B)は探傷実施のための構成ブロック図である。図中、図1と同様な構成要素には同一番号が付してあり、1は第1の探触子たる前記図1の場合と同じ通常の探触子、20は第1の探触子1から発せられて反射してきた超音波を、21で示したように集束位置を高さ方向に変更可能に22のように集めるフェーズドアレイ型の第2の探触子、5は被検体に設けられた溶接部の断面で、溶接部5は図上、図面に垂直な方向に走っている。6は母材部と溶接部5に跨って生じた欠陥、7は第1の探触子1から第2の探触子20の収束位置21へ向かい、第2の探触子20によって受信される反射超音波、9は第1の探触子1から発して被検体の底面から反射し、第1の探触子1へ戻る超音波、23は探傷制御装置、24は超音波送信回路、25は反射超音波受信回路、26は反射超音波から欠陥を抽出する反射超音波の評価回路、27は第1の探触子1と第2の探触子20を一体とした構造体を、図2(A)に29で示したように第2の探触子20における集束径の半値幅R1が重なる程度の走査幅で、被検体を往復動走査するための走査機構、28は第2の探触子2の集束位置を21のように変更するため、超音波受信間隔を遅延させるための超音波受信間隔算出用遅延時間算出回路である。   In FIG. 2, (A) is a diagram for explaining the probe to be used and the spread of the ultrasonic wave, and (B) is a block diagram for performing flaw detection. In the figure, the same components as those in FIG. 1 are denoted by the same reference numerals, 1 is the same normal probe as in FIG. 1 as the first probe, and 20 is the first probe. A second probe of the phased array type that collects the ultrasonic waves emitted from 1 and reflected as indicated by 21 as indicated by 21 so that the focusing position can be changed in the height direction is provided on the subject. In the cross section of the welded portion, the welded portion 5 runs in the direction perpendicular to the drawing. Reference numeral 6 denotes a defect that occurs between the base material portion and the welded portion 5, and reference numeral 7 denotes a first probe 1 that travels toward the convergence position 21 of the second probe 20 and is received by the second probe 20. Reflected ultrasound, 9 is emitted from the first probe 1, reflected from the bottom surface of the subject and returned to the first probe 1, 23 is a flaw detection control device, 24 is an ultrasonic transmission circuit, 25 is a reflected ultrasound receiving circuit, 26 is a reflected ultrasound evaluation circuit for extracting defects from the reflected ultrasound, 27 is a structure in which the first probe 1 and the second probe 20 are integrated, As shown by 29 in FIG. 2A, the scanning mechanism for reciprocatingly scanning the subject with a scanning width such that the full width at half maximum R1 of the focusing diameter in the second probe 20 overlaps, In order to change the focusing position of the probe 2 to 21 as shown in FIG. It is a circuit.

この図2に示した超音波探傷装置は、固定角で拡散しながら超音波3の送受信を行う単一の振動子が配列された探触子1と、集束位置を21で示したように高さ方向(被検体の表面に略垂直な方向)に変更可能なフェーズドアレイ型の第2の探触子20とを一体とした構造体を、被検体を往復動走査する走査機構27に搭載し、29で示したように第2の探触子20における集束径の半値幅R1が重なる程度の走査幅で往復動しながら探触子1と探触子20で被検体を走査して、探傷するものである。   The ultrasonic flaw detection apparatus shown in FIG. 2 includes a probe 1 in which a single transducer that transmits and receives ultrasonic waves 3 while diffusing at a fixed angle is arranged, and a high focusing position as indicated by 21. A structure united with a phased array type second probe 20 that can be changed in the vertical direction (direction substantially perpendicular to the surface of the subject) is mounted on a scanning mechanism 27 that reciprocally scans the subject. 29, while scanning the subject with the probe 1 and the probe 20 while reciprocating with a scanning width such that the half width R1 of the focusing diameter of the second probe 20 overlaps, the flaw detection To do.

このように、第2の探触子20として集束位置を21で示した高さ方向に変更可能なフェーズドアレイ型の探触子を用いることで、図1に示した実施例における欠陥6の深さが集束位置から離れるに従って確度が落ちていくという問題は、第2の探触子20の集束位置を高さ方向に変更して探傷することで解消され、高精度に深さのサイジングができる。また前記したように、溶接部5の存在によって超音波が屈曲や減衰し、母材部と溶接部5との境界からのエコーなどがあっても、こういった探傷を困難にする要因に影響を受けることなく、正確な探傷を行うことができると共に、一度の探傷で欠陥のすべての検査ができ、探傷を短時間で行える超音波探傷方法及び装置を提供することができる。   Thus, by using a phased array type probe that can change the focusing position in the height direction indicated by 21 as the second probe 20, the depth of the defect 6 in the embodiment shown in FIG. The problem that accuracy decreases as the distance from the focusing position is solved by changing the focusing position of the second probe 20 in the height direction and performing flaw detection, and depth sizing can be performed with high accuracy. . In addition, as described above, even if there is an echo from the boundary between the base material portion and the welded portion 5 due to the presence or absence of the welded portion 5, the ultrasonic wave is bent or attenuated. Thus, it is possible to provide an ultrasonic flaw detection method and apparatus that can perform accurate flaw detection without being subjected to inspection, can inspect all defects with one flaw detection, and can perform flaw detection in a short time.

次に図2(B)を用いてこの超音波探傷装置の動作を説明すると、探傷制御装置23は、第1の探触子1と第2の探触子20とが搭載された構造体を、29で示したように走査機構27によって第2の探触子20における集束径の半値幅R1が重なる走査幅で被検体を往復動走査させながら、超音波送信回路24に、第1の探触子1を構成する振動子に超音波を送るよう指示する。   Next, the operation of this ultrasonic flaw detector will be described with reference to FIG. 2B. The flaw detector control device 23 is a structure on which the first probe 1 and the second probe 20 are mounted. 29, the scanning mechanism 27 causes the ultrasound probe circuit 24 to reciprocate and scan the subject with a scanning width where the half-value width R1 of the converging diameter of the second probe 20 overlaps. An instruction to send ultrasonic waves to the vibrator constituting the touch element 1 is given.

そのため第1の探触子1からは図2(A)に3で示したように拡散する超音波が発射され、被検体内部に例えば図2(B)に9、7で示したように入ってゆく。いま、構造体を構成する第1の探触子1と第2の探触子20とが、図2(B)に示したように被検体における溶接部5を跨ぐように位置している場合、第1の探触子1から発した超音波3は、図2(B)に9で示したように被検体の底面や欠陥6などで反射して第1の探触子1に戻ったり、また、7で示した経路に発した超音波は欠陥6の角部で反射され、22の経路で第2の探触子20に達する。   Therefore, the first probe 1 emits an ultrasonic wave that diffuses as indicated by 3 in FIG. 2A, and enters the inside of the subject, for example, as indicated by 9 and 7 in FIG. 2B. Go. Now, when the first probe 1 and the second probe 20 constituting the structure are positioned so as to straddle the welded portion 5 in the subject as shown in FIG. The ultrasonic wave 3 emitted from the first probe 1 is reflected by the bottom surface of the subject, the defect 6 or the like and returned to the first probe 1 as indicated by 9 in FIG. In addition, the ultrasonic wave emitted in the path indicated by 7 is reflected at the corner of the defect 6 and reaches the second probe 20 in the path 22.

そのため探傷制御装置23は、反射超音波受信回路25にこれら反射超音波を受信した第1の探触子1と第2の探触子20からの信号を取得させ、そのデータを評価回路26に送るが、このとき遅延時間算出回路28は、反射超音波受信回路25に、第2の探触子20の集束位置を高さ方向に変更させるための超音波受信遅延時間を算出して与え、それによって第2の探触子20における集束位置は、図2(A)に21で示したように高さ方向に変化する。従って、第2の探触子20からの反射超音波の受信信号は、図2(B)に6で示した欠陥の角部が集束位置となったときに一番強くなる。   Therefore, the flaw detection control device 23 causes the reflected ultrasonic receiving circuit 25 to acquire signals from the first probe 1 and the second probe 20 that have received these reflected ultrasonic waves, and causes the evaluation circuit 26 to receive the data. At this time, the delay time calculation circuit 28 calculates and gives an ultrasonic reception delay time for changing the focusing position of the second probe 20 in the height direction to the reflected ultrasonic reception circuit 25, As a result, the focusing position on the second probe 20 changes in the height direction as indicated by 21 in FIG. Therefore, the reception signal of the reflected ultrasonic wave from the second probe 20 becomes the strongest when the corner of the defect indicated by 6 in FIG.

そのため、第1の探触子1と第2の探触子20から反射超音波受信回路25を介して反射超音波データを受け取った評価回路26は、それぞれの超音波の発射から受信までの時間長さを算出し、それによって第1の探触子1から発した超音波がどの深さから反射してきたものであるかを評価する。   Therefore, the evaluation circuit 26 that has received the reflected ultrasound data from the first probe 1 and the second probe 20 via the reflected ultrasound receiving circuit 25 is the time from emission to reception of each ultrasound. The length is calculated, thereby evaluating from which depth the ultrasonic wave emitted from the first probe 1 is reflected.

そしてその評価結果を基に、まず、第1の探触子1からの反射信号の中の9で示したような底面からの反射波を除き、それよりも短時間で反射してきた超音波により、被検体における欠陥6、または母材部と溶接部5との境界からの反射超音波を抽出する。また、第2の探触子20が反射超音波を受信しているかどうかを確認し、受信していない場合は第2の探触子20の集束位置の高さ方向の変更による走査が終了した後、探傷制御装置23が前記したように第2の探触子20における集束径の半値幅R1が重なる程度の走査幅で、29で示したように被検体を往復動させながら走査を続けるよう走査機構27に指示する。   Based on the evaluation result, first, the reflected wave from the bottom surface as indicated by 9 in the reflected signal from the first probe 1 is removed, and the ultrasonic wave reflected in a shorter time than that is used. Then, the reflected ultrasonic wave from the defect 6 in the subject or the boundary between the base material portion and the welded portion 5 is extracted. In addition, it is confirmed whether or not the second probe 20 has received the reflected ultrasonic wave. If not, scanning by changing the height direction of the focusing position of the second probe 20 has been completed. Thereafter, the flaw detection control device 23 continues scanning while reciprocating the subject as indicated by 29 with a scanning width such that the full width at half maximum R1 of the converging diameter in the second probe 20 overlaps as described above. The scanning mechanism 27 is instructed.

そして、第2の探触子20が反射超音波を受信している場合、評価回路26は、探傷制御装置23を介して送られてくる走査機構27からの信号により、第1の探触子1と第2の探触子20の位置を確認し、また、第1の探触子1が欠陥6からの反射超音波を受信しているかどうかを確認して、これらの情報から、第2の探触子20が受信した反射超音波が欠陥6からのものかどうかを評価する。   When the second probe 20 receives the reflected ultrasonic wave, the evaluation circuit 26 uses the signal from the scanning mechanism 27 sent via the flaw detection control device 23 to output the first probe. The positions of the first probe 20 and the second probe 20 are confirmed, and whether the first probe 1 is receiving the reflected ultrasonic wave from the defect 6 is determined based on these information. It is evaluated whether or not the reflected ultrasonic wave received by the probe 20 is from the defect 6.

すなわち、第1の探触子1が欠陥6からの反射超音波を受信していると評価された場合は、その位置により、第2の探触子20が受信した反射超音波は欠陥6からのものと判断でき、評価回路26は、第2の探触子20の集束位置の高さ方向の変更によって生じる反射超音波の大きさの変化により、最も反射超音波が大きくなった位置を欠陥6の深さと評価する。   That is, when it is evaluated that the first probe 1 has received the reflected ultrasonic wave from the defect 6, the reflected ultrasonic wave received by the second probe 20 depends on the position from the defect 6. The evaluation circuit 26 determines that the position where the reflected ultrasonic wave is the largest due to the change in the size of the reflected ultrasonic wave caused by the change in the height direction of the focusing position of the second probe 20 is a defect. Evaluate with a depth of 6.

このようにすることにより、第2の探触子20による受信ビーム径が小さいために集束効果が生じ、前記したように溶接部のような音響異方性があって超音波の屈曲や減衰があり、さらに母材部と溶金部の境界から返ってくるエコー等の雑音があっても、それらに影響されずに欠陥6からの反射超音波を識別できる。さらに、第2の探触子20の集束位置の高さ方向の変更で欠陥6の深さを正確に評価でき、かつ、欠陥の有無と長さ、欠陥の深さを一度で検査するから短時間で探傷できる超音波探傷方法及び装置を提供することができる。   By doing so, the receiving beam diameter by the second probe 20 is small, so that a focusing effect is produced. As described above, there is acoustic anisotropy as in the welded portion, and bending and attenuation of the ultrasonic waves are caused. In addition, even if there is noise such as an echo returning from the boundary between the base material portion and the molten metal portion, the reflected ultrasonic waves from the defect 6 can be identified without being affected by them. Further, the depth of the defect 6 can be accurately evaluated by changing the height of the focusing position of the second probe 20, and the presence / absence and length of the defect and the depth of the defect are inspected at a time. An ultrasonic flaw detection method and apparatus capable of flaw detection in time can be provided.

しかしながら、以上説明してきた図1、図2に示した実施例では、第2の探触子2、20の集束径が小さいため、走査機構14、27による被検体の走査は、第2の探触子2、20の集束径の半値幅が重なる程度の走査幅という非常に小さな幅での走査となり、走査に時間がかかっていた。そのため、第2の探触子として、集束位置を高さ方向(被検体表面に対して略垂直方向)と、第1の探触子における振動子の配列方向との両方向に変更可能なマトリクスフェーズドアレイ型探触子を用い、この問題を解決したのが図3である。   However, in the embodiment shown in FIGS. 1 and 2 described above, since the focusing diameters of the second probes 2 and 20 are small, the scanning of the subject by the scanning mechanisms 14 and 27 is the second probe. The scanning was performed with a very small width, ie, a scanning width such that the full width at half maximum of the focusing diameters of the touch elements 2 and 20 overlapped, and the scanning took time. Therefore, as the second probe, the matrix phased that can change the focusing position in both the height direction (substantially perpendicular to the surface of the subject) and the direction in which the transducers are arranged in the first probe. FIG. 3 solves this problem by using an array type probe.

この図3において、(A)は使用する探触子とその超音波の広がりを説明するための図、(B)は探傷実施のための構成ブロック図である。図中、図1、図2と同様な構成要素には同一番号が付してあり、1は第1の探触子たる前記図1、図2の場合と同じ通常の探触子、30は第1の探触子1から発せられて反射してきた超音波を、集束位置31を高さ方向と第1の探触子1における振動子の配列方向との両方向に33のように変更しながら32のように集めるマトリクスフェーズドアレイ型の第2の探触子、5は被検体に設けられた溶接部の断面で、溶接部5は図上、図面に垂直な方向に走っている。6は母材部と溶接部5に跨って生じた欠陥、7は第1の探触子1から第2の探触子30の収束位置31へ向かい、第2の探触子30によって受信される反射超音波、9は第1の探触子1から発して被検体の底面から反射し、第1の探触子1へ戻る超音波、34は探傷制御装置、35は超音波送信回路、36は反射超音波受信回路、37は反射超音波から欠陥を抽出する反射超音波の評価回路、38は第1の探触子1と第2の探触子30を一体とした構造体を、図3(A)に301で示したように第1の探触子1における振動子径の半値幅R2で被検体を往復動走査するための走査機構、39は第2の探触子30の集束位置を33のように変更するため、第2の探触子30を構成する振動子の受信間隔を遅延させるための遅延時間算出回路である。   In FIG. 3, (A) is a diagram for explaining the probe to be used and the spread of the ultrasonic wave, and (B) is a block diagram of the configuration for performing flaw detection. In the figure, the same components as those in FIGS. 1 and 2 are denoted by the same reference numerals, 1 is the same normal probe as in FIGS. 1 and 2 as the first probe, and 30 is the same. The ultrasonic wave emitted from the first probe 1 and reflected is changed while the focusing position 31 is changed to 33 in both the height direction and the arrangement direction of the transducers in the first probe 1. The matrix phased array type second probe collected as shown in 32 is a section of a welded portion provided on the subject, and the welded portion 5 runs in a direction perpendicular to the drawing in the figure. Reference numeral 6 denotes a defect that occurs between the base material portion and the welded portion 5, and reference numeral 7 denotes that the second probe 30 is received from the first probe 1 toward the convergence position 31 of the second probe 30. Reflected ultrasound, 9 is emitted from the first probe 1, reflected from the bottom surface of the subject and returned to the first probe 1, 34 is a flaw detection control device, 35 is an ultrasonic transmission circuit, 36 is a reflected ultrasound receiving circuit, 37 is a reflected ultrasound evaluation circuit for extracting defects from the reflected ultrasound, 38 is a structure in which the first probe 1 and the second probe 30 are integrated, As indicated by 301 in FIG. 3 (A), a scanning mechanism 39 for reciprocatingly scanning the subject with the full width at half maximum R2 of the transducer diameter in the first probe 1, 39 is the second probe 30. This is a delay time calculation circuit for delaying the reception interval of the transducers constituting the second probe 30 in order to change the focusing position to 33. .

この図3に示した超音波探傷装置は、固定角で拡散しながら超音波3の送受信を行う単一の振動子が配列された探触子1と、集束位置を33で示したように、高さ方向(被検体の表面に略垂直な方向)に集束径の半値幅だけずらしながら、第1の探触子1における振動子径の半値幅を往復動走査するようにしたマトリクスフェーズドアレイ型の第2の探触子30とを一体とした構造体を、被検体を往復動走査する走査機構38に搭載し、第1の探触子1における振動子径の半値幅R2の走査幅で、301で示したように往復動しながら探触子1と探触子30で被検体を走査し、探傷するものである。   The ultrasonic flaw detector shown in FIG. 3 has a probe 1 in which single transducers that transmit and receive the ultrasonic wave 3 while diffusing at a fixed angle, and a focusing position indicated by 33, A matrix phased array type in which the half-value width of the transducer diameter in the first probe 1 is reciprocally scanned while being shifted by a half-value width of the focusing diameter in the height direction (a direction substantially perpendicular to the surface of the subject). The structure in which the second probe 30 is integrated is mounted on a scanning mechanism 38 that reciprocally scans the subject, and the first probe 1 has a scanning width of the full width at half maximum R2 of the transducer diameter. , 301 scans the subject with the probe 1 and the probe 30 while reciprocating, and detects flaws.

このように、第2の探触子30として集束位置を、33で示したように高さ方向と第1の探触子1における振動子の配列方向の両方に変更可能なマトリクスフェーズドアレイ型の探触子を用いることで、図1、図2に示した被検体の走査に時間がかかる問題を解決でき、また前記したように、溶接部5の存在によって超音波が屈曲や減衰し、母材部と溶接部5との境界からのエコーなどがあっても、こういった探傷を困難にする要因に影響を受けることなく、正確な探傷を行うことができると共に、一度の探傷で欠陥のすべての検査ができ、かつ、走査機構38による走査幅が第1の探触子1における振動子径の半値幅となって大きくなるから、探傷を短時間で行える超音波探傷方法及び装置を提供することができる。   In this way, the focusing position of the second probe 30 is a matrix phased array type that can be changed in both the height direction and the transducer arrangement direction in the first probe 1 as indicated by 33. By using the probe, it is possible to solve the problem that it takes a long time to scan the subject shown in FIGS. 1 and 2, and as described above, the ultrasonic wave is bent or attenuated by the presence of the welded portion 5, and the mother Even if there is an echo from the boundary between the material part and the welded part 5, it is possible to carry out accurate flaw detection without being affected by the factors that make such flaw detection difficult, Provided is an ultrasonic flaw detection method and apparatus that can perform all inspections and can perform flaw detection in a short time because the scanning width by the scanning mechanism 38 becomes a half-value width of the transducer diameter in the first probe 1 and becomes large. can do.

次に図3(B)を用いてこの超音波探傷装置の動作を説明すると、探傷制御装置34は、第1の探触子1と第2の探触子30とが搭載された構造体を、301で示したように走査機構38によって第1の探触子1における振動子径の半値幅R2の走査幅で被検体を往復動走査させながら、超音波送信回路35に、第1の探触子1を構成する振動子に超音波を送るよう指示する。   Next, the operation of this ultrasonic flaw detector will be described with reference to FIG. 3 (B). The flaw detection control device 34 has a structure on which the first probe 1 and the second probe 30 are mounted. 301, the scanning mechanism 38 causes the ultrasound probe circuit 35 to reciprocate and scan the subject with the scanning width of the half-value width R2 of the transducer diameter in the first probe 1. An instruction to send ultrasonic waves to the vibrator constituting the touch element 1 is given.

そのため、第1の探触子1からは図3(A)に3で示したように拡散する超音波が発射され、被検体内部に例えば図3(B)に9、7で示したように入ってゆく。いま、構造体を構成する第1の探触子1と第2の探触子30とが、図3(B)に示したように被検体における溶接部5を跨ぐように位置している場合、第1の探触子1から発した超音波3は、図3(B)に9で示したように被検体の底面や欠陥6などで反射して第1の探触子1に戻ったり、また、7で示した経路に発した超音波は欠陥6の角部で反射され、32の経路で第2の探触子30に達する。   Therefore, the first probe 1 emits an ultrasonic wave that diffuses as indicated by 3 in FIG. 3 (A), and for example, as indicated by 9 and 7 in FIG. Enter. Now, when the first probe 1 and the second probe 30 constituting the structure are positioned so as to straddle the welded portion 5 in the subject as shown in FIG. The ultrasonic wave 3 emitted from the first probe 1 is reflected by the bottom surface of the subject, the defect 6 or the like and returned to the first probe 1 as indicated by 9 in FIG. Further, the ultrasonic wave emitted in the path indicated by 7 is reflected by the corner of the defect 6 and reaches the second probe 30 in the path 32.

そのため探傷制御装置34は、反射超音波受信回路36にこれら反射超音波を受信した第1の探触子1と第2の探触子30からの信号を取得させ、そのデータを評価回路37に送るが、このとき遅延時間算出回路39は、反射超音波受信回路36に、第2の探触子30の集束位置を、高さ方向に集束径の半値幅が重なる程度だけずらしながら、第1の探触子1における振動子径の半値幅を往復動走査させるための遅延時間を算出して与え、それによって第2の探触子20における集束位置は、図3(A)に33で示したように高さ方向と第1の探触子1における振動子の配列方向に変化してゆく。従って、第2の探触子30からの反射超音波の受信信号は、図3(B)に6で示した欠陥の、図上高さ方向にある角部が集束位置となったときに一番強くなる。   Therefore, the flaw detection control device 34 causes the reflected ultrasonic receiving circuit 36 to acquire signals from the first probe 1 and the second probe 30 that have received these reflected ultrasonic waves, and causes the evaluation circuit 37 to receive the data. At this time, the delay time calculation circuit 39 shifts the focusing position of the second probe 30 to the reflected ultrasound receiving circuit 36 while shifting the focusing position of the second probe 30 in the height direction to the extent that the half width of the focusing diameter overlaps. 3 is calculated and given a delay time for reciprocating scanning, and the focusing position in the second probe 20 is indicated by 33 in FIG. As described above, it changes in the height direction and in the direction in which the transducers are arranged in the first probe 1. Therefore, the reflected ultrasonic wave reception signal from the second probe 30 is one when the corner of the defect indicated by 6 in FIG. Become stronger.

そのため、第1の探触子1と第2の探触子30から反射超音波受信回路36を介して反射超音波データを受け取った評価回路37は、それぞれの超音波の発射から受信までの時間長さを算出し、それによって第1の探触子1から発した超音波がどの深さから反射してきたものであるかを評価する。   Therefore, the evaluation circuit 37 that has received the reflected ultrasound data from the first probe 1 and the second probe 30 via the reflected ultrasound receiver circuit 36 requires time from the emission of each ultrasound to the reception thereof. The length is calculated, thereby evaluating from which depth the ultrasonic wave emitted from the first probe 1 is reflected.

そしてその評価結果を基に、まず、第1の探触子1からの反射信号の中の9で示したような底面からの反射波を除き、それよりも短時間で反射してきた超音波により、被検体における欠陥6、または母材部と溶接部5との境界からの反射超音波を抽出する。また、第2の探触子30が反射超音波を受信しているかどうかを確認し、受信していない場合は第2の探触子30の集束位置の高さ方向と第1の探触子1における振動子の配列方向の変更による33のような走査が終了した後、探傷制御装置34が前記したように第1の探触子1における振動子径の半値幅R2の走査幅で、301で示したように被検体を往復動させながら走査を続けるよう走査機構38に指示する。   Based on the evaluation result, first, the reflected wave from the bottom surface as indicated by 9 in the reflected signal from the first probe 1 is removed, and the ultrasonic wave reflected in a shorter time than that is used. Then, the reflected ultrasonic wave from the defect 6 in the subject or the boundary between the base material portion and the welded portion 5 is extracted. In addition, it is confirmed whether or not the second probe 30 has received the reflected ultrasonic wave. If not, the height direction of the focusing position of the second probe 30 and the first probe are determined. After the scanning like 33 due to the change in the arrangement direction of the transducers in 1 is completed, the flaw detection control device 34 has the scanning width of the full width at half maximum R2 of the transducer diameter in the first probe 1 as described above. The scanning mechanism 38 is instructed to continue scanning while reciprocating the subject as shown in FIG.

そして、第2の探触子30が反射超音波を受信している場合、評価回路37は、探傷制御装置34を介して送られてくる走査機構38からの信号により、第1の探触子1と第2の探触子1、30の位置を確認し、また、第1の探触子1が欠陥6からの反射超音波を受信しているかどうかを確認して、これらの情報から、第2の探触子30が受信した反射超音波が欠陥6からのものかどうかを評価する。   When the second probe 30 receives the reflected ultrasonic wave, the evaluation circuit 37 uses the signal from the scanning mechanism 38 sent via the flaw detection control device 34 to output the first probe. The positions of the first and second probes 1 and 30 are confirmed, and whether or not the first probe 1 is receiving the reflected ultrasonic wave from the defect 6 is determined. It is evaluated whether the reflected ultrasonic wave received by the second probe 30 is from the defect 6.

すなわち、第1の探触子1が欠陥6からの反射超音波を受信していると評価された場合は、その位置により、第2の探触子30が受信した反射超音波は欠陥6からのものと判断でき、評価回路37は、第2の探触子30の集束位置の高さ方向と第1の探触子1における振動子の配列方向の変更によって生じる反射超音波の大きさの変化により、最も反射超音波が大きくなった位置を欠陥6の深さと評価する。   That is, when it is evaluated that the first probe 1 is receiving the reflected ultrasonic wave from the defect 6, the reflected ultrasonic wave received by the second probe 30 depends on the position from the defect 6. The evaluation circuit 37 determines the magnitude of the reflected ultrasound generated by the change in the height direction of the focusing position of the second probe 30 and the arrangement direction of the transducers in the first probe 1. The position where the reflected ultrasonic wave becomes the largest due to the change is evaluated as the depth of the defect 6.

このようにすることにより、第2の探触子30による受信ビーム径が小さいために集束効果が生じ、前記したように溶接部のような音響異方性があって超音波の屈曲や減衰があり、さらに母材部と溶金部の境界から返ってくるエコー等の雑音があっても、それらに影響されずに欠陥6からの反射超音波を識別でき、さらに、第2の探触子30の集束位置の高さ方向と第1の探触子1における振動子の配列方向の変更で欠陥6の深さを正確に評価でき、かつ、欠陥の有無と長さ、欠陥の深さを一度で検査すると共に、走査機構38による走査幅が第1の探触子1における振動子径の半値幅となって大きくなるから、短時間で探傷できる超音波探傷方法及び装置を提供することができる。   By doing so, the receiving beam diameter by the second probe 30 is small, so that a focusing effect is produced. As described above, there is acoustic anisotropy as in the welded portion, and bending and attenuation of the ultrasonic waves are caused. Furthermore, even if there is noise such as an echo returning from the boundary between the base metal part and the molten metal part, the reflected ultrasonic wave from the defect 6 can be identified without being affected by them, and the second probe. The depth of the defect 6 can be accurately evaluated by changing the height direction of the 30 focusing positions and the arrangement direction of the transducers in the first probe 1, and the presence / absence and length of the defect and the depth of the defect can be determined. It is possible to provide an ultrasonic flaw detection method and apparatus capable of performing a flaw detection in a short time since inspection is performed once and the scanning width by the scanning mechanism 38 becomes a half-value width of the vibrator diameter in the first probe 1 and becomes large. it can.

図4は、本発明になる超音波探傷方法及び装置の実施例2の、(A)は使用する探触子とその超音波の広がりを説明するための図、(B)は探傷実施のための構成ブロック図である。以上説明してきた図1、図2、図3に示した実施例1では、第1の探触子1として、超音波を固定角で拡散させて送受信をおこなう探触子を用いていたが、この実施例2では、第1と第2の探触子として、図2の実施例で説明した第2の探触子20と同様、超音波の集束位置を高さ方向に変更しながら送受信できる、フェーズドアレイ型の探触子を用いたものである。   4A is a diagram for explaining the probe used and the spread of the ultrasonic wave, and FIG. 4B is a diagram for carrying out the flaw detection in the second embodiment of the ultrasonic flaw detection method and apparatus according to the present invention. FIG. In the first embodiment shown in FIGS. 1, 2, and 3 described above, a probe that transmits and receives ultrasonic waves by diffusing ultrasonic waves at a fixed angle is used as the first probe 1. In the second embodiment, the first and second probes can be transmitted and received while changing the ultrasonic focusing position in the height direction, like the second probe 20 described in the embodiment of FIG. A phased array type probe is used.

そして、第2の探触子による集束位置を、第1の探触子から送られる超音波の集束点を中心とした高さ方向に走査することで、第1の探触子による送信超音波の集束と、第2の探触子による高さ方向の走査によって、前記したように例え溶接部のように音響異方性があって超音波の屈曲や減衰があるため超音波の集束位置が変わったり、さらに母材部と溶金部の境界から返ってくるエコー等の雑音があっても、それらに影響されずに欠陥の深さを正確に高精度で探傷でき、かつ、欠陥の有無と長さ、欠陥の深さを一度で検査するから短時間で探傷できる、超音波探傷方法及び装置を提供することができる。   Then, the ultrasonic wave transmitted by the first probe is scanned by scanning the focal position of the second probe in the height direction around the focal point of the ultrasonic wave transmitted from the first probe. And the scanning in the height direction by the second probe, as described above, there is acoustic anisotropy as in the welded portion, and there is bending and attenuation of the ultrasonic wave. Even if there are noises such as echoes returning from the boundary between the base metal part and the molten metal part, the depth of the defect can be detected accurately and accurately without being affected by it, and the presence or absence of a defect Therefore, it is possible to provide an ultrasonic flaw detection method and apparatus capable of flaw detection in a short time since the length and the depth of the defect are inspected at a time.

但し、このように第1と第2の探触子を両方とも集束型とした場合、精度は高くなるが集まるデータは膨大なものになり、演算時間も多くなる。そのため、この実施例4では、第1と第2の探触子が検出した被検体の各走査断面における各集束位置に対する反射超音波データを記憶手段に記憶し、記憶した受信データから、欠陥の長さ方向における欠陥深さ方向の反射超音波強さが最大となる値を各断面毎に抽出し、その抽出した断面毎の反射超音波強さが最大となる値を重ね合わせて欠陥深さの分布を演算手段により算出することで、欠陥深さ分布を表示できるようにし、こういった問題をも解決できるようにしたものである。   However, when both the first and second probes are focused, the accuracy is high, but the collected data becomes enormous and the calculation time increases. For this reason, in the fourth embodiment, the reflected ultrasonic data for each focus position in each scanning section of the subject detected by the first and second probes is stored in the storage means, and the defect data is stored from the stored received data. The value that maximizes the reflected ultrasonic strength in the direction of the defect depth in the length direction is extracted for each cross section, and the value that maximizes the reflected ultrasonic intensity for each cross section is overlapped to obtain the defect depth. The defect depth distribution can be displayed by calculating the above distribution by the calculation means, and these problems can be solved.

この図4において、図中、図1、図2、図3と同様な構成要素には同一番号が付してあり、40は送信した41のような超音波における高さ方向の集束位置を53のように変更できる集束型の第1の探触子、42は第1の探触子40から発せられて反射してきた超音波を、高さ方向の集束位置を52のように第1の探触子40による集束位置を中心に変更しながら、43のように集める集束型の第2の探触子、5は被検体に設けられた溶接部の断面で、溶接部5は図上、図面に垂直な方向に走っている。6は母材部と溶接部5に跨って生じた欠陥、41は第1の探触子40の収束位置へ向かう超音波、43は第2の探触子42によって受信される反射超音波、44は探傷制御装置、45は超音波送信回路、46は反射超音波受信回路、47は第1の探触子40と第2の探触子42とを一体とした構造体を、図4(A)に52で示したように、第1または第2の探触子40、42における集束径の半値幅R3で被検体を往復動走査できるようにする走査機構、48は第2の探触子42の集束位置を52のように変更するため、第2の探触子42の受信間隔を遅延させるための遅延時間算出回路、49は反射超音波受信回路46が受信した反射超音波データを記憶する受信データ記憶装置、50は演算回路、51は表示装置である。   In FIG. 4, the same components as those in FIGS. 1, 2, and 3 are denoted by the same reference numerals, and reference numeral 40 denotes a focusing position in the height direction in ultrasonic waves such as 41 transmitted. The first focusing probe 42 that can be changed as shown in FIG. 2 is a first probe 42 that reflects the ultrasonic wave emitted from the first probe 40 and reflected in the height direction as indicated by 52. A focusing type second probe that collects like 43 while changing the focusing position by the contact 40 as the center, 5 is a cross section of the welded portion provided on the subject, and the welded portion 5 is illustrated in the drawing. Running in a direction perpendicular to 6 is a defect generated across the base material portion and the welded portion 5, 41 is an ultrasonic wave toward the convergence position of the first probe 40, 43 is a reflected ultrasonic wave received by the second probe 42, 44 is a flaw detection control device, 45 is an ultrasonic transmission circuit, 46 is a reflected ultrasonic reception circuit, 47 is a structure in which the first probe 40 and the second probe 42 are integrated, FIG. As indicated by 52 in A), the scanning mechanism 48 enables the subject to reciprocately scan with the half-value width R3 of the converging diameter in the first or second probe 40, 42, and the reference numeral 48 denotes the second probe. In order to change the focusing position of the child 42 to 52, a delay time calculation circuit for delaying the reception interval of the second probe 42, 49 is the reflected ultrasound data received by the reflected ultrasound receiving circuit 46 A received data storage device for storing, 50 an arithmetic circuit, and 51 a display device.

この図4に示した超音波探傷装置は、図4(A)に示したように、超音波を41を集束させ、その集束位置を53のように高さ方向に変更可能として送受信を行うフェーズドアレイ型の第1の探触子40と、集束位置を52で示したように高さ方向に変更できる第2のフェーズドアレイ型探触子42とを一体とした構造体を、被検体を往復動走査する走査機構47に搭載し、図4(A)に52で示したように、第1、または第2の探触子40、42における集束幅の半値幅R3が重なる幅で往復動しながら、探触子40と探触子42とで被検体を走査して探傷するものである。   The ultrasonic flaw detection apparatus shown in FIG. 4 focuses the ultrasonic wave 41 as shown in FIG. 4A, and performs phased transmission / reception such that the focusing position can be changed in the height direction as shown in 53. A structure in which the array-type first probe 40 and the second phased array-type probe 42 whose focusing position can be changed in the height direction as indicated by 52 is integrated with the subject. It is mounted on a scanning mechanism 47 that performs dynamic scanning, and as shown by 52 in FIG. 4 (A), it reciprocates with a width that overlaps the half-value width R3 of the focusing width in the first or second probe 40,. On the other hand, the probe 40 and the probe 42 scan the subject to detect flaws.

このように、第1と第2の探触子40、42として、超音波の集束位置が前記被検体表面に対して略高さ方向に変更可能なフェーズドアレイ型を用いることで、第1の探触子40による送信超音波の集束と、第2の探触子42による、第1の探触子40から送られる超音波の集束点を中心とした高さ方向の走査によって、例え溶接部のように音響異方性があって超音波の屈曲や減衰があり、さらに母材部と溶金部の境界から返ってくるエコー等の雑音があっても、それらに影響されずに欠陥の深さを正確に高精度で探傷でき、かつ、欠陥の有無と長さ、欠陥の深さを一度で検査するから短時間で探傷できる、超音波探傷方法及び装置を提供することができる。   As described above, as the first and second probes 40 and 42, by using a phased array type in which the focal position of the ultrasonic waves can be changed in a substantially height direction with respect to the subject surface, For example, the welded portion is obtained by focusing the ultrasonic wave transmitted by the probe 40 and scanning the height direction around the focal point of the ultrasonic wave transmitted from the first probe 40 by the second probe 42. In this way, there is acoustic anisotropy, bending and attenuation of ultrasonic waves, and even noise such as echoes returning from the boundary between the base metal part and the molten metal part. It is possible to provide an ultrasonic flaw detection method and apparatus capable of flaw detection with a high degree of accuracy, and capable of flaw detection in a short time since the presence / absence and length of a defect and the depth of a defect are inspected at a time.

次に図4(B)を用いてこの超音波探傷装置の動作を説明する。探傷制御装置44は、遅延時間算出回路48に指示して第1の探触子40から発する超音波が、高さ方向に53のように集束位置を移動して被検体を走査するよう遅延時間を算出させ、また、第2の探触子42が、第1の探触子40による超音波の集束位置を中心に高さ方向に52のように集束位置を変更するための遅延時間を算出させる。そしてこれらの遅延時間によって、超音波送信回路45に第1の探触子40から超音波を送るよう指示し、被検体を走査させながら、第1と第2の探触子40、42が搭載された構造体を、図4(A)に52で示したように、走査機構47によって超音波の集束径の半値幅R3が重なる程度の幅で往復動走査させる。   Next, the operation of this ultrasonic flaw detector will be described with reference to FIG. The flaw detection control device 44 instructs the delay time calculation circuit 48 to delay the ultrasonic wave emitted from the first probe 40 so as to scan the subject by moving the focusing position as indicated by 53 in the height direction. In addition, the second probe 42 calculates a delay time for changing the focusing position as indicated by 52 in the height direction around the focusing position of the ultrasonic wave by the first probe 40. Let Based on these delay times, the ultrasonic transmission circuit 45 is instructed to transmit ultrasonic waves from the first probe 40, and the first and second probes 40 and 42 are mounted while scanning the subject. As shown by 52 in FIG. 4 (A), the resulting structure is reciprocally scanned by the scanning mechanism 47 with a width that overlaps the half-value width R3 of the focused diameter of the ultrasonic waves.

そのため、第1の探触子40から発した超音波が、図4(A)、(B)に41で示したように被検体内部に入ってゆく。いま、構造体を構成する第1の探触子40と第2の探触子42とが、図4(B)に示したように被検体における溶接部5を跨ぐように位置している場合、第1の探触子40から発した超音波が、図4(B)に41で示した経路に進むと、欠陥6の角部で反射されて43の経路で第2の探触子42に達し、同時に経路41を戻って第1の探触子40にも達する。   Therefore, the ultrasonic wave emitted from the first probe 40 enters the subject as indicated by 41 in FIGS. 4 (A) and 4 (B). When the first probe 40 and the second probe 42 constituting the structure are positioned so as to straddle the welded portion 5 in the subject as shown in FIG. 4B. When the ultrasonic wave emitted from the first probe 40 travels along the path indicated by 41 in FIG. 4B, it is reflected by the corner of the defect 6 and is reflected by the second probe 42 along the path 43. At the same time, the path 41 is returned and the first probe 40 is reached.

そのため探傷制御装置44は、被検体を走査している間、反射超音波受信回路46にこれら反射超音波を受信した第1の探触子40と第2の探触子42からの信号を取得させ、そのデータを受信データ記憶装置49に送って記憶させる。   Therefore, the flaw detection control device 44 acquires signals from the first probe 40 and the second probe 42 that have received the reflected ultrasonic waves in the reflected ultrasonic receiving circuit 46 while scanning the subject. The data is sent to the received data storage device 49 for storage.

そして探傷制御装置44は、このように被検体の走査によって受信データ記憶手段49に記憶された、反射超音波受信回路46からの第1の探触子40と第2の探触子42からの反射信号を走査断面毎に演算回路50に読み出し、欠陥の長さ方向における欠陥深さ方向の反射超音波強さが最大となる値を例えば図5(A)のように抽出させる。なお、この図5(A)において、70は一走査断面を表し、そのなかの*マークは欠陥深さ方向の反射超音波強さが最大となる値がある位置を示している。   Then, the flaw detection control device 44 receives the data from the first probe 40 and the second probe 42 from the reflected ultrasonic wave reception circuit 46 stored in the reception data storage means 49 by scanning the subject as described above. The reflected signal is read out to the arithmetic circuit 50 for each scanning section, and a value that maximizes the reflected ultrasonic intensity in the defect depth direction in the defect length direction is extracted as shown in FIG. In FIG. 5A, reference numeral 70 represents one scanning section, and the mark * indicates a position where the reflected ultrasonic intensity in the defect depth direction has a maximum value.

そしてさらに、前記した走査機構38による、第1または第2の探触子40、42における集束幅の半値幅が重なる幅での走査毎に、図5(B)に示したようにそれぞれの断面70、71、72、……の、欠陥の長さ方向における欠陥深さ方向の反射超音波強さが最大となる値を抽出させる。こうして走査機構38による走査が終了したら、探傷制御装置44は演算回路50に指示して、この図5(B)に示した各断面70、71、72、……における、反射超音波強さが最大となる値を図5(C)のように1つの面75に重ね合わさせ、さらに、その重ね合わせた結果から、図5(D)に76で示したように、欠陥深さの分布を算出させて、それを表示装置51に表示させる。   Further, as shown in FIG. 5 (B), each cross section of the first or second probe 40, 42 by the scanning mechanism 38 is scanned at a width where the full width at half maximum overlaps, as shown in FIG. 70, 71, 72,... Are extracted so that the reflected ultrasonic intensity in the defect depth direction in the defect length direction is maximized. When scanning by the scanning mechanism 38 is thus completed, the flaw detection control device 44 instructs the arithmetic circuit 50 to determine the reflected ultrasonic intensity at each of the cross sections 70, 71, 72,... Shown in FIG. The maximum value is superimposed on one surface 75 as shown in FIG. 5C, and the defect depth distribution is calculated from the result of the superposition as indicated by 76 in FIG. 5D. Then, it is displayed on the display device 51.

このように反射超音波データを処理することで、例え膨大なデータであっても高速に処理することができ、欠陥深さの評価の高速化を達成することができる。また、第1と第2の探触子40、42として、超音波の集束位置が前記被検体表面に対して略垂直方向に変更可能なフェーズドアレイ型を用いたことで、両探触子のビーム径が小さいために集束効果が生じ、前記したように溶接部のような音響異方性があって超音波の屈曲や減衰があり、さらに母材部と溶金部の境界から返ってくるエコー等の雑音があっても、それらに影響されずに欠陥6からの反射超音波を識別できる。さらに、第2の探触子30の集束位置を、高さ方向と第1の探触子1における振動子の配列方向との両方に変更できることで、超音波の屈曲があっても第1の探触子40の集束位置が異なってしまっても欠陥6の深さを正確に評価でき、かつ、欠陥の有無と長さ、欠陥の深さを一度で検査すると共に、走査機構38による走査幅が第1の探触子1における振動子径の半値幅となって大きくなるから、短時間で探傷できる超音波探傷方法及び装置を提供することができる。   By processing the reflected ultrasonic data in this way, even a huge amount of data can be processed at high speed, and the speed of defect depth evaluation can be increased. Further, as the first and second probes 40 and 42, a phased array type in which the ultrasonic focusing position can be changed in a direction substantially perpendicular to the subject surface is used. Since the beam diameter is small, a focusing effect is produced. As described above, there is acoustic anisotropy like a welded portion, there is bending and attenuation of ultrasonic waves, and it returns from the boundary between the base metal part and the molten metal part. Even if there is noise such as echo, the reflected ultrasonic waves from the defect 6 can be identified without being affected by them. Furthermore, the focusing position of the second probe 30 can be changed in both the height direction and the arrangement direction of the transducers in the first probe 1, so that the first probe can be used even when there is bending of the ultrasonic wave. Even if the focusing position of the probe 40 is different, the depth of the defect 6 can be accurately evaluated, the presence / absence and length of the defect and the depth of the defect are inspected at a time, and the scanning width by the scanning mechanism 38 Becomes a half-value width of the vibrator diameter in the first probe 1 and becomes large, so that it is possible to provide an ultrasonic flaw detection method and apparatus capable of flaw detection in a short time.

なお、以上説明してきた実施例では、第1の探触子と第2の探触子が被検体における溶接部と母材部を跨ぐような配置となる場合を説明してきたが、溶接部に被検体表面から盛り上がっている余盛がある場合、第1の超音波探触子と第2の超音波探触子とを一体とした場合は余盛部に構造体が乗り上げてしまうために走査ができない。また、例え探触子が乗り上げても、走査機構による走査だけは可能であったとしても、超音波探傷用の超音波は空気中を伝わらないため、余盛部分の探傷が難しくなる。そのため、この問題を解決したのが図6に示した実施例3である。   In the embodiment described above, the case where the first probe and the second probe are arranged so as to straddle the welded portion and the base material portion in the subject has been described. If there is an extraordinary swell from the surface of the object, the first ultrasonic probe and the second ultrasonic probe are integrated with each other, so that the structure rides on the extraneous portion. I can't. Even if the probe is mounted, even if only scanning by the scanning mechanism is possible, since ultrasonic waves for ultrasonic flaw detection do not travel in the air, flaw detection in the surplus portion becomes difficult. Therefore, the third embodiment shown in FIG. 6 solves this problem.

この図6に示した実施例3は、構成自体は前記図3に示した第1の探触子として超音波が固定角で拡散して送受信する単一の振動子が配列された探触子を用い、第2の探触子として、集束位置を高さ方向と、第1の探触子における振動子の配列方向との両方向に変更可能なマトリクスフェーズドアレイ型探触子を用いた、超音波探傷装置と全く同じである。   In the third embodiment shown in FIG. 6, the structure itself is the first probe shown in FIG. 3, in which a single transducer for transmitting and receiving ultrasonic waves diffused at a fixed angle is arranged. And the second probe uses a matrix phased array probe that can change the focusing position in both the height direction and the transducer arrangement direction in the first probe. It is exactly the same as an acoustic flaw detector.

しかしこの実施例3では、構造体に搭載した第1の超音波探触子と第2の超音波探触子との配列方向を、溶接部の余盛方向と一致するようにして、第1の探触子における振動子径の半値幅だけ移動させながら余盛方向に往復動走査して探傷するようにしたものである。   However, in the third embodiment, the first ultrasonic probe and the second ultrasonic probe mounted on the structure are arranged in the first direction so that the arrangement direction of the first ultrasonic probe and the second ultrasonic probe coincides with the extra direction of the welded portion. In this probe, flaw detection is performed by reciprocating scanning in the extra-strip direction while moving by the half width of the transducer diameter.

このようにすることにより、例え溶接部に余盛があっても、そういった問題が生ぜず、かつ、マトリクスフェーズドアレイ型の探触子は集束位置を広範囲に変化させて欠陥先端からのエコーの有無を精査できるため、欠陥の検出精度が良く、また、探触子の電子走査が高速なため、走査機構が第1の探触子における振動子径の半値幅で被検体を走査することと相俟って、高速な探傷が可能となる。   By doing so, even if there is a surplus in the weld, such a problem does not occur, and the matrix phased array type probe changes the focusing position over a wide range to check whether there is an echo from the tip of the defect. Since the defect detection accuracy is high and the electronic scanning of the probe is fast, the scanning mechanism is compatible with scanning the subject with the half width of the transducer diameter in the first probe. As a result, high-speed flaw detection is possible.

そのため図6(A)に、使用する探触子とその超音波の広がりを説明するための図、(B)に探傷実施のための構成ブロック図を示したように、図中61で示した第1の探触子から発する超音波を溶接部5内に進入するように広範囲に送信し、第2の探触子60による集束位置も、溶接部5内に進入するように走査したものである。   Therefore, FIG. 6 (A) is a diagram for explaining the probe to be used and the spread of the ultrasonic wave, and FIG. 6 (B) is a configuration block diagram for flaw detection. The ultrasonic wave emitted from the first probe is transmitted over a wide range so as to enter the welded portion 5, and the focused position by the second probe 60 is also scanned so as to enter the welded portion 5. is there.

図6において、前記図3と同様な構成要素には同一番号が付してあり、61は超音波が63で示したように固定角で拡散して送受信する単一の振動子が配列された第1の探触子、60は第1の探触子61から発せられて反射してきた超音波を、集束位置64を高さ方向と第1の探触子61における振動子の配列方向との両方向に65のように変更しながら62のように集めるマトリクスフェーズドアレイ型の第2の探触子、5は被検体に設けられた溶接部の断面で、溶接部5は図上、図面に垂直な方向に走っている。6は母材部と溶接部5に跨って生じた欠陥、63は第1の探触子61から第2の探触子60の収束位置64へ向かい、62のように反射して第2の探触子60によって受信される超音波、63は第1の探触子61から発して被検体の底面から反射し、第1の探触子61へ戻る超音波、34は探傷制御装置、35は超音波送信回路、36は反射超音波受信回路、37は反射超音波から欠陥を抽出する反射超音波の評価回路、38は第1の探触子61と第2の探触子60を一体とした構造体を、図6(A)に68で示したように、第1の探触子61における振動子径の半値幅R4で被検体を往復動走査するための走査機構、39は第2の探触子60の集束位置を65のように変更するため、第2の探触子60を構成する振動子の受信間隔を遅延させるための遅延時間算出回路、66は溶接部5の余盛部である。   In FIG. 6, the same components as those in FIG. 3 are given the same numbers, and 61 is arranged with a single transducer that transmits and receives ultrasonic waves with a fixed angle as indicated by 63. The first probe 60, the ultrasonic wave emitted from the first probe 61 and reflected, has a focusing position 64 in the height direction and the arrangement direction of the transducers in the first probe 61. A matrix phased array type second probe that collects as 62 while changing to 65 in both directions, 5 is a cross section of the welded portion provided on the subject, and the welded portion 5 is perpendicular to the figure and the drawing. Running in any direction. 6 is a defect generated across the base material portion and the welded portion 5, and 63 is directed from the first probe 61 to the convergence position 64 of the second probe 60, reflected as 62, and the second An ultrasonic wave received by the probe 60, 63 is an ultrasonic wave emitted from the first probe 61, reflected from the bottom surface of the subject, and returned to the first probe 61, 34 is a flaw detection control device, 35 Is an ultrasonic transmission circuit, 36 is a reflection ultrasonic reception circuit, 37 is a reflection ultrasonic evaluation circuit for extracting a defect from the reflection ultrasonic wave, and 38 is a first probe 61 and a second probe 60 integrated. As shown by 68 in FIG. 6A, a scanning mechanism for reciprocatingly scanning the subject with the full width at half maximum R4 of the transducer diameter in the first probe 61 is shown in FIG. In order to change the focusing position of the second probe 60 to 65, the reception interval of the transducers constituting the second probe 60 is delayed. Delay time calculation circuit because, 66 is excess weld portion of the welded portion 5.

この図6に示した超音波探傷装置は、前記したように、第1の超音波探触子61と第2の超音波探触子60との配列方向を、溶接部5の余盛66の方向と一致するようにして、第1の探触子61における振動子径の半値幅R4だけ移動させながら図6(A)に68で示したように、余盛方向に往復動走査して探傷する以外は、前記図3で説明した超音波探傷装置と同じである。   In the ultrasonic flaw detector shown in FIG. 6, as described above, the arrangement direction of the first ultrasonic probe 61 and the second ultrasonic probe 60 is set to the extent of the surplus 66 of the welded portion 5. As indicated by 68 in FIG. 6 (A), the flaw detection is performed by reciprocating scanning in the extra-strip direction while moving by the half-value width R4 of the transducer diameter in the first probe 61 so as to coincide with the direction. Except for this, it is the same as the ultrasonic flaw detector described in FIG.

そのため、図6(B)を用いてこの超音波探傷装置の動作を簡単に説明すると、探傷制御装置34は、第1の探触子61と第2の探触子60とが搭載された構造体を、走査機構38によって第1の探触子61における振動子径の半値幅の走査幅で被検体を往復動走査させながら、超音波送信回路35に、第1の探触子1を構成する振動子に超音波を送るよう指示する。   Therefore, the operation of this ultrasonic flaw detector will be briefly described with reference to FIG. 6B. The flaw detection controller 34 has a structure in which the first probe 61 and the second probe 60 are mounted. The first probe 1 is configured in the ultrasonic transmission circuit 35 while the body is reciprocatingly scanned by the scanning mechanism 38 with the scanning width of the half width of the transducer diameter in the first probe 61 by the scanning mechanism 38. Instruct the transducer to send ultrasonic waves.

そのため、第1の探触子1からは図6(A)に63で示したように拡散する超音波が発射され、被検体内部に例えば図6(B)に63で示したように入ってゆく。この実施例3では、構造体を構成する第1の探触子61と第2の探触子60とが、図6(B)に示したように被検体における溶接部5の余盛部方向と同じ方向に位置しているから、第1の探触子61から発した超音波63は、被検体の底面で反射されて第1の探触子61で受信される超音波と、溶接部5側に向かって欠陥6の角部で反射し、第1の探触子61と第2の探触子60の両方で受信されるものが存在する。   For this reason, the first probe 1 emits an ultrasonic wave that diffuses as indicated by 63 in FIG. 6A, and enters the inside of the subject, for example, as indicated by 63 in FIG. 6B. go. In Example 3, the first probe 61 and the second probe 60 constituting the structure are arranged in the direction of the extra portion of the welded portion 5 in the subject as shown in FIG. Therefore, the ultrasonic wave 63 emitted from the first probe 61 is reflected by the bottom surface of the subject and received by the first probe 61, and the welded portion. Some of them are reflected by the corners of the defect 6 toward the side 5 and received by both the first probe 61 and the second probe 60.

そのため探傷制御装置34は、反射超音波受信回路36にこれら反射超音波を受信した第1の探触子1と第2の探触子30からの信号を取得させ、そのデータを評価回路37に送るが、このとき遅延時間算出回路39は、反射超音波受信回路36に、第2の探触子60の集束位置を、高さ方向に集束径の半値幅だけずらしながら、第1の探触子61における振動子径の半値幅を往復動走査させるための遅延時間を算出して与え、それによって第2の探触子60における集束位置は、図6(A)に65で示したように高さ方向と第1の探触子61における振動子の配列方向に変化してゆく。従って、第2の探触子60からの反射超音波の受信信号は、図6(B)に6で示した欠陥の、図上垂直方向にある角部が集束位置となったときに一番強くなる。   Therefore, the flaw detection control device 34 causes the reflected ultrasonic receiving circuit 36 to acquire signals from the first probe 1 and the second probe 30 that have received these reflected ultrasonic waves, and causes the evaluation circuit 37 to receive the data. At this time, the delay time calculation circuit 39 shifts the focusing position of the second probe 60 to the reflected ultrasonic receiving circuit 36 while shifting the focusing position of the second probe 60 in the height direction by the half-value width of the focusing diameter. The half time width of the transducer diameter in the element 61 is calculated and given a delay time for reciprocating scanning, whereby the focusing position in the second probe 60 is as indicated by 65 in FIG. It changes in the height direction and the arrangement direction of the transducers in the first probe 61. Therefore, the reception signal of the reflected ultrasonic wave from the second probe 60 is the best when the corner of the defect indicated by 6 in FIG. Become stronger.

そのため、第1の探触子61と第2の探触子60から反射超音波受信回路36を介して反射超音波データを受け取った評価回路37は、それぞれの超音波の発射から受信までの時間長さを算出し、それによって第1の探触子61から発した超音波がどの深さから反射してきたものであるかを評価する。   Therefore, the evaluation circuit 37 that has received the reflected ultrasound data from the first probe 61 and the second probe 60 via the reflected ultrasound receiver circuit 36 is the time from emission to reception of each ultrasound. The length is calculated, thereby evaluating the depth from which the ultrasonic wave emitted from the first probe 61 is reflected.

そしてその評価結果を基に、まず、第1の探触子61からの反射信号の中の底面からの反射波を除き、それよりも短時間で反射してきた超音波により、被検体における欠陥6、または母材部と溶接部5との境界からの反射超音波を抽出する。また、第2の探触子60が反射超音波を受信しているかどうかを確認し、受信していない場合は第2の探触子60の集束位置の高さ方向と第1の探触子61における振動子の配列方向の変更による55のような走査が終了した後、探傷制御装置34が前記したように第1の探触子61における振動子径の半値幅R4の走査幅で、被検体を図6(A)に68で示したように、往復動させながら走査を続けるよう走査機構38に指示する。   Based on the evaluation result, first, the reflected wave from the bottom surface in the reflected signal from the first probe 61 is removed, and the defect 6 in the subject is detected by the ultrasonic wave reflected in a shorter time than that. Alternatively, reflected ultrasonic waves from the boundary between the base material part and the welded part 5 are extracted. Further, it is confirmed whether or not the second probe 60 has received the reflected ultrasonic wave. If not, the height direction of the focusing position of the second probe 60 and the first probe are checked. After the scanning like 55 due to the change of the arrangement direction of the transducers in 61 is completed, the flaw detection control device 34 has the scanning width of the full width at half maximum R4 of the transducer diameter in the first probe 61 as described above. As shown by 68 in FIG. 6A, the scanning mechanism 38 is instructed to continue scanning while reciprocating.

そして、第2の探触子30が反射超音波を受信している場合、評価回路37は、探傷制御装置34を介して送られてくる走査機構38からの信号により、第1の探触子1と第2の探触子60、61の位置を確認し、また、第1の探触子61が欠陥6からの反射超音波を受信しているかどうかを確認して、これらの情報から、第2の探触子60が受信した反射超音波が欠陥6からのものかどうかを評価する。   When the second probe 30 receives the reflected ultrasonic wave, the evaluation circuit 37 uses the signal from the scanning mechanism 38 sent via the flaw detection control device 34 to output the first probe. The positions of the first and second probes 60 and 61 are confirmed, and whether or not the first probe 61 is receiving the reflected ultrasonic wave from the defect 6 is determined. It is evaluated whether the reflected ultrasonic wave received by the second probe 60 is from the defect 6.

すなわち、第1の探触子61が欠陥6からの反射超音波を受信していると評価された場合は、その位置により、第2の探触子60が受信した反射超音波は欠陥6からのものと判断でき、評価回路37は、第2の探触子60の集束位置の高さ方向と第1の探触子61における振動子の配列方向の変更によって生じる反射超音波の大きさの変化により、最も反射超音波が大きくなった位置を欠陥6の深さと評価する。   That is, when it is evaluated that the first probe 61 has received the reflected ultrasonic wave from the defect 6, the reflected ultrasonic wave received by the second probe 60 depends on the position from the defect 6. The evaluation circuit 37 determines the magnitude of the reflected ultrasound generated by the change in the height direction of the focusing position of the second probe 60 and the arrangement direction of the transducers in the first probe 61. The position where the reflected ultrasonic wave becomes the largest due to the change is evaluated as the depth of the defect 6.

このようにすることにより、第2の探触子60による受信ビーム径が小さいために集束効果が生じ、前記したように溶接部のような音響異方性があって超音波の屈曲や減衰があり、さらに母材部と溶金部の境界から返ってくるエコー等の雑音があっても、それらに影響されずに欠陥6からの反射超音波を識別できる。また、溶接部5に余盛があっても、第1の超音波探触子61と第2の超音波探触子60とが余盛方向に配置されているから、こういった余盛に邪魔されることなく探傷することが可能であり、さらに、第2の探触子60の集束位置を、高さ方向と第1の探触子61における振動子の配列方向に変更することで欠陥6の深さを正確に評価でき、かつ、欠陥の有無と長さ、欠陥の深さを一度で検査すると共に、走査機構38による走査幅が第1の探触子61における振動子径の半値幅R4となって大きくなるから、短時間で探傷できる超音波探傷方法及び装置を提供することができる。   By doing so, the receiving beam diameter by the second probe 60 is small, so that a focusing effect is produced. As described above, there is acoustic anisotropy as in the welded portion, and bending and attenuation of the ultrasonic waves are caused. In addition, even if there is noise such as an echo returning from the boundary between the base material portion and the molten metal portion, the reflected ultrasonic waves from the defect 6 can be identified without being affected by them. Even if the welded portion 5 has a surplus, the first ultrasonic probe 61 and the second ultrasonic probe 60 are arranged in the surplus direction. It is possible to perform flaw detection without being obstructed, and further, the defect is obtained by changing the focusing position of the second probe 60 in the height direction and the arrangement direction of the transducers in the first probe 61. 6 can be accurately evaluated, and the presence / absence and length of the defect and the depth of the defect can be inspected at a time, and the scanning width by the scanning mechanism 38 is half the vibrator diameter of the first probe 61. Since the value width R4 is increased, an ultrasonic flaw detection method and apparatus capable of flaw detection in a short time can be provided.

以上種々述べてきたように本発明によれば、簡単な構成でしかも短時間で、溶接部のように音響異方性があって超音波の屈曲や減衰があり、さらに母材部と溶金部の境界から返ってくるエコー等の雑音がある部位に生じた欠陥の長さ、深さを、正確に探傷できる超音波探傷方法及び装置を提供することができる。   As described above, according to the present invention, in a simple configuration and in a short time, there is acoustic anisotropy as in a welded portion, and there is bending and attenuation of ultrasonic waves. It is possible to provide an ultrasonic flaw detection method and apparatus capable of accurately flaw-detecting the length and depth of a defect generated in a site having noise such as an echo returned from the boundary of the part.

本発明になる超音波探傷装置の実施例1の概略構成図で、(A)は使用する探触子とその超音波の広がりを説明するための図、(B)は探傷実施のための構成ブロック図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic block diagram of Example 1 of the ultrasonic flaw detector which becomes this invention, (A) is a figure for demonstrating the probe to be used and the expansion of the ultrasonic wave, (B) is a structure for flaw detection implementation. It is a block diagram. 本発明になる超音波探傷装置の実施例1の第1変形例概略構成図で、(A)は使用する探触子とその超音波の広がりを説明するための図、(B)は探傷実施のための構成ブロック図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic configuration diagram of a first modification of the first embodiment of the ultrasonic flaw detector according to the present invention. FIG. FIG. 本発明になる超音波探傷装置の実施例1の第2変形例概略構成図で、(A)は使用する探触子とその超音波の広がりを説明するための図、(B)は探傷実施のための構成ブロック図である。FIG. 2 is a schematic configuration diagram of a second modified example of the first embodiment of the ultrasonic flaw detector according to the present invention, in which FIG. FIG. 本発明になる超音波探傷装置の実施例2の概略構成図で、(A)は使用する探触子とその超音波の広がりを説明するための図、(B)は探傷実施のための構成ブロック図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic configuration diagram of an ultrasonic flaw detection apparatus according to a second embodiment of the present invention, in which FIG. It is a block diagram. 実施例2の超音波探傷装置により受信した反射超音波から被検体の欠陥を抽出する方法を説明するための図である。6 is a diagram for explaining a method for extracting a defect of a subject from reflected ultrasonic waves received by the ultrasonic flaw detector according to Embodiment 2. FIG. 溶接部に余盛があっても探傷が可能な本発明になる超音波探傷装置の実施例3の概略構成図で、(A)は使用する探触子とその超音波の広がりを説明するための図、(B)は探傷実施のための構成ブロック図である。It is a schematic block diagram of Example 3 of the ultrasonic flaw detector according to the present invention capable of flaw detection even if there is a surplus in the welded portion, and FIG. FIG. 4B is a block diagram showing the configuration for flaw detection. 従来の探傷方法を説明するための図で、(A)、(C)に欠陥を長さ方向から見た断面図を、(B)、(D)に欠陥を長さ方向に対して直角の方向から見た断面図である。It is a figure for demonstrating the conventional flaw detection method, The sectional view which looked at the defect from the length direction to (A) and (C), and (B) and (D) at right angles with respect to the length direction. It is sectional drawing seen from the direction. 超音波探傷用探触子を2つ用いた従来の探傷方法を説明するための図である。It is a figure for demonstrating the conventional flaw detection method using two probes for ultrasonic flaw detection.

符号の説明Explanation of symbols

1 第1の探触子
2 第2の探触子
3 第1の探触子による超音波の拡散範囲
4 集束位置
5 溶接部
6 欠陥
7 第2の探触子の収束位置4へ向う超音波
8 第2の探触子の集束範囲
9 第1の探触子1へ戻る超音波
10 探傷制御装置
11 超音波送信回路
12 反射超音波受信回路
13 評価回路
14 走査機構
DESCRIPTION OF SYMBOLS 1 1st probe 2 2nd probe 3 Ultrasonic diffusion range by 1st probe 4 Focusing position 5 Welding part 6 Defect 7 Ultrasonic wave toward convergence position 4 of 2nd probe 8 Focusing range of second probe 9 Ultrasonic wave 10 returning to first probe 1 Flaw detection control device 11 Ultrasonic transmission circuit 12 Reflected ultrasonic wave reception circuit 13 Evaluation circuit 14 Scanning mechanism

Claims (12)

第1の超音波探触子と第2の超音波探触子とを一体とした構造体を走査機構に搭載して用意し、溶接部を含む被検体を超音波探傷する超音波探傷方法において、
前記第1の探触子は単一の振動子が配列され、超音波を固定角で拡散させて送受信をおこない、前記第2の探触子は固定角の集束型で、前記第1の探触子から発せられて反射した超音波を受信し、前記走査機構により前記被検体を、前記第2の探触子における集束径の半値幅が重なる走査幅で往復動走査させ、前記第1の探触子が受けた反射超音波で被検体における欠陥の有無と欠陥の長さを、前記第2の探触子が受けた反射超音波で欠陥の深さを評価して探傷することを特徴とする超音波探傷方法。
In an ultrasonic flaw detection method in which a structure in which a first ultrasonic probe and a second ultrasonic probe are integrated is prepared by mounting on a scanning mechanism, and an object including a welded portion is subjected to ultrasonic flaw detection. ,
In the first probe, a single transducer is arranged to transmit and receive by diffusing ultrasonic waves at a fixed angle, and the second probe is a fixed-angle focusing type, and the first probe. The reflected ultrasonic wave emitted from the probe is received, and the object is reciprocally scanned by the scanning mechanism with a scanning width in which the half-value widths of the focusing diameters of the second probe overlap. Flaw detection is performed by evaluating the presence / absence of a defect in the object and the length of the defect with the reflected ultrasonic wave received by the probe, and evaluating the depth of the defect with the reflected ultrasonic wave received by the second probe. Ultrasonic flaw detection method.
前記第2の探触子を、集束位置を前記被検体表面に対して略高さ方向に変更可能なフェーズドアレイ型とし、高さ方向に集束位置を移動させながら前記走査機構による被検体の往復動走査を行って探傷することを特徴とする請求項1に記載した超音波探傷方法。   The second probe is a phased array type in which the focusing position can be changed substantially in the height direction with respect to the subject surface, and the object is reciprocated by the scanning mechanism while moving the focusing position in the height direction. The ultrasonic flaw detection method according to claim 1, wherein flaw detection is performed by performing dynamic scanning. 前記第2の探触子として、集束位置を、高さ方向と前記第1の探触子における振動子の配列方向との両方向に変更可能なマトリクスフェーズドアレイ型とし、該第2の探触子における集束位置を、高さ方向に集束径の半値幅だけずらしながら前記第1の探触子における振動子の配列方向へ往復動走査し、かつ、前記走査機構により、前記第1の探触子における振動子径の半値幅で被検体を往復動走査して探傷することを特徴とする請求項1に記載した超音波探傷方法。   The second probe is a matrix phased array type in which the focusing position can be changed in both the height direction and the transducer arrangement direction in the first probe, and the second probe. Reciprocating scanning in the direction of transducer arrangement in the first probe while shifting the focusing position in the height direction by a half-value width of the focusing diameter, and the first probe by the scanning mechanism The ultrasonic flaw detection method according to claim 1, wherein flaw detection is performed by reciprocating scanning of a subject with a half-value width of a vibrator diameter in the above. 第1の超音波探触子と第2の超音波探触子とを一体とした構造体を走査機構に搭載して用意し、溶接部を含む被検体を超音波探傷する超音波探傷方法において、
前記第1と第2の探触子は超音波の集束位置が前記被検体表面に対して略高さ方向に変更可能なフェーズドアレイ型とし、前記第1の探触子は超音波を送受信し、前記第2の探触子は、前記第1の探触子から送られる超音波の集束点を中心として第2の探触子における前記変更可能な高さ方向の範囲を走査しながら反射超音波を受信し、前記走査機構により被検体を、前記第1と第2の探触子における集束径の半値幅が重なる走査幅で往復動走査させて、前記第1の探触子が受けた反射超音波で被検体における欠陥の有無と欠陥の長さを、前記第2の探触子が受けた反射超音波で欠陥の深さを評価して探傷することを特徴とする超音波探傷方法。
In an ultrasonic flaw detection method in which a structure in which a first ultrasonic probe and a second ultrasonic probe are integrated is prepared by mounting on a scanning mechanism, and an object including a welded portion is subjected to ultrasonic flaw detection. ,
The first and second probes are of a phased array type in which an ultrasonic focusing position can be changed in a substantially height direction with respect to the subject surface, and the first probe transmits and receives ultrasonic waves. The second probe scans the range of the changeable height direction of the second probe around the focal point of the ultrasonic wave sent from the first probe while reflecting the ultrasonic wave. The first probe receives the sound wave, reciprocally scans the subject by the scanning mechanism with a scanning width in which the half widths of the focusing diameters of the first and second probes overlap. An ultrasonic flaw detection method characterized in that the presence / absence of a defect and the length of a defect are detected by reflected ultrasonic waves and the depth of the defect is evaluated by reflected ultrasonic waves received by the second probe. .
前記第1と第2の探触子が検出した前記被検体の各走査断面における各集束位置に対する反射超音波データを記憶手段に記憶し、該記憶した受信データから、欠陥の長さ方向における欠陥深さ方向の反射超音波強さが最大となる値を各断面毎に抽出し、該抽出した断面毎の反射超音波強さが最大となる値を重ね合わせて欠陥深さの分布を演算手段により算出し、欠陥深さ分布を算出することを特徴とする請求項4に記載した超音波探傷方法。   Reflected ultrasound data for each focusing position in each scanning section of the subject detected by the first and second probes is stored in the storage means, and the defect in the defect length direction is stored from the stored received data. The value that maximizes the reflected ultrasonic intensity in the depth direction is extracted for each cross section, and the value that maximizes the reflected ultrasonic intensity for each extracted cross section is superimposed to calculate the defect depth distribution. 5. The ultrasonic flaw detection method according to claim 4, wherein the defect depth distribution is calculated by: 第1の超音波探触子と第2の超音波探触子とを一体とした構造体を走査機構に搭載して用意し、余盛がある溶接部を含む被検体を超音波探傷する超音波探傷方法において、
前記第1の探触子は単一の振動子が配列され、超音波を固定角で拡散させて送受信をおこない、前記第2の探触子は、集束位置を前記被検体表面に対して高さ略方向及び前記第1の探触子における振動子の配列方向の両方向に変更可能なマトリクスフェーズドアレイ型で、前記第1の探触子から発せられて反射した超音波を受信し、前記走査機構は、前記構造体における前記第1の超音波探触子と第2の超音波探触子の配置を前記余盛方向とし、前記第1の探触子における振動子径の半値幅で余盛方向に往復動走査して、前記第1の探触子が受けた反射超音波で被検体における欠陥の有無と欠陥の長さを、前記第2の探触子が受けた反射超音波で欠陥の深さを評価しながら探傷することを特徴とする超音波探傷方法。
A structure in which a first ultrasonic probe and a second ultrasonic probe are integrated is prepared by mounting on a scanning mechanism, and an ultrasonic inspection is performed on an object including a welded portion with surplus. In the acoustic flaw detection method,
In the first probe, a single transducer is arranged, and ultrasonic waves are diffused at a fixed angle to transmit and receive, and the second probe has a high focusing position with respect to the subject surface. A matrix phased array type that can be changed in both the approximate direction and the direction in which the transducers are arranged in the first probe, receives the reflected ultrasonic waves emitted from the first probe, and performs the scanning The mechanism is configured such that the arrangement of the first ultrasonic probe and the second ultrasonic probe in the structure is the extra-strip direction, and a surplus with a half-value width of a vibrator diameter in the first probe. The presence or absence of a defect in the subject and the length of the defect with the reflected ultrasonic wave received by the first probe by reciprocating scanning in the ascending direction are determined with the reflected ultrasonic wave received by the second probe. An ultrasonic flaw detection method characterized by flaw detection while evaluating the depth of a defect.
第1の超音波探触子と第2の超音波探触子とを一体とした構造体と、該構造体を搭載し、溶接部を含む被検体を走査する走査機構とからなる超音波探傷装置において、
前記第1の探触子は超音波が固定角で拡散して送受信する単一の振動子が配列され、前記第2の探触子は固定角の集束型で前記第1の探触子から発せられて反射した超音波を受信し、前記走査機構は前記第2の探触子における集束径の半値幅が重なる走査幅で前記被検体を往復動走査して、前記第1の探触子が受信した反射超音波で被検体における欠陥の有無と欠陥の長さを、前記第2の探触子が受信した反射超音波で欠陥の深さをそれぞれ評価する評価回路を備えたことを特徴とする超音波探傷装置。
Ultrasonic flaw detection comprising: a structure in which a first ultrasonic probe and a second ultrasonic probe are integrated; and a scanning mechanism that mounts the structure and scans a subject including a welded portion In the device
The first probe is arranged with a single transducer for transmitting and receiving ultrasonic waves diffused at a fixed angle, and the second probe is a fixed angle focusing type from the first probe. The emitted ultrasonic wave is received, and the scanning mechanism reciprocates and scans the subject with a scanning width that overlaps the half-value width of the focusing diameter of the second probe, and the first probe. And an evaluation circuit for evaluating the presence / absence of a defect and the length of the defect with the reflected ultrasonic wave received by the second probe and the depth of the defect with the reflected ultrasonic wave received by the second probe. Ultrasonic flaw detector.
前記第2の探触子は、集束位置を前記被検体表面に対して略高さ方向に変更可能なフェーズドアレイ型であり、該第2の探触子における集束位置を高さ方向に変更する各振動子の超音波受信間隔算出用遅延時間算出手段を備えたことを特徴とする請求項7に記載した超音波探傷装置。   The second probe is a phased array type in which the focusing position can be changed in a substantially height direction with respect to the subject surface, and the focusing position in the second probe is changed in the height direction. 8. The ultrasonic flaw detector according to claim 7, further comprising a delay time calculating means for calculating an ultrasonic reception interval of each transducer. 前記第2の探触子を、集束位置が高さ方向と前記第1の探触子における振動子の配列方向の両方向に変更可能なマトリクスフェーズドアレイ型で構成し、該第2の探触子における集束位置を、高さ方向に集束径の半値幅だけずらしながら前記第1の探触子における振動子の配列方向へ往復動走査させる各振動子の超音波受信間隔算出用遅延時間算出手段と、前記第1の探触子が受けた反射超音波で被検体における欠陥の有無と欠陥の長さを、前記第2の探触子が受けた反射超音波で欠陥の深さを評価する評価回路とを備え、前記走査機構は、前記第1の探触子における振動子径の半値幅で被検体を走査して探傷することを特徴とする請求項7に記載した超音波探傷装置。   The second probe is configured as a matrix phased array type in which a focusing position can be changed in both a height direction and an arrangement direction of transducers in the first probe, and the second probe A delay time calculating means for calculating an ultrasonic reception interval of each transducer that reciprocally scans the focusing position in the first probe in the height direction while shifting by a half-value width of the focusing diameter in the first probe. Evaluation of the presence / absence of a defect in the object and the length of the defect with the reflected ultrasonic wave received by the first probe, and the depth of the defect with the reflected ultrasonic wave received by the second probe The ultrasonic flaw detection apparatus according to claim 7, further comprising: a circuit, wherein the scanning mechanism performs flaw detection by scanning a subject with a half-value width of a transducer diameter of the first probe. 第1の超音波探触子と第2の超音波探触子とを一体とした構造体と、該構造体を搭載し、溶接部を含む被検体を走査する走査機構とからなる超音波探傷装置において、
前記第1と第2の探触子は超音波の集束位置が前記被検体表面に対して略高さ方向に変更可能なフェーズドアレイ型であり、前記第1の探触子は超音波を送受信し、前記第2の探触子は、前記第1の探触子から送られる超音波の集束点を中心として第2の探触子における前記変更可能な高さ方向の範囲を走査しながら反射超音波を受信し、前記走査機構は前記第1と第2の探触子における集束径の半値幅が重なる走査幅で往復動走査して、前記第1と第2の探触子における集束位置を高さ方向に変更する各振動子の超音波発信間隔算出用遅延時間算出手段と、前記第1の探触子が受けた反射超音波で被検体における欠陥の有無と欠陥の長さを、前記第2の探触子が受けた反射超音波で欠陥の深さを評価する評価回路とを備えたことを特徴とする超音波探傷装置。
Ultrasonic flaw detection comprising: a structure in which a first ultrasonic probe and a second ultrasonic probe are integrated; and a scanning mechanism that mounts the structure and scans a subject including a welded portion In the device
The first and second probes are of a phased array type in which the ultrasonic focusing position can be changed in a substantially height direction with respect to the subject surface, and the first probe transmits and receives ultrasonic waves. The second probe reflects while scanning the range of the changeable height direction of the second probe around the focal point of the ultrasonic wave sent from the first probe. The ultrasonic wave is received, and the scanning mechanism performs reciprocating scanning with a scanning width in which the half-value widths of the focusing diameters of the first and second probes overlap, and the focusing positions of the first and second probes. The ultrasonic transmission interval calculation delay time calculating means for each transducer that changes the height of the object, the presence or absence of defects in the subject and the length of the defects in the reflected ultrasound received by the first probe, And an evaluation circuit for evaluating the depth of the defect with the reflected ultrasonic wave received by the second probe. Ultrasonic flaw detector.
前記第1と第2の探触子が検出した前記被検体の各走査断面における各集束位置に対する反射超音波データを記憶する記憶手段と、該記憶手段に記憶した受信データから、欠陥の長さ方向における欠陥深さ方向の反射超音波強さが最大となる値を各断面毎に抽出し、該抽出した断面毎の反射超音波強さが最大となる値を重ね合わせて欠陥深さの分布を算出する演算手段とを設け、該演算出段により欠陥深さ分布を算出することを特徴とする請求項10に記載した超音波探傷方法。   The storage means for storing the reflected ultrasonic data for each focus position in each scanning section of the subject detected by the first and second probes, and the length of the defect from the received data stored in the storage means The value that maximizes the reflected ultrasonic intensity in the direction of the defect depth in each direction is extracted for each cross section, and the value that maximizes the reflected ultrasonic intensity for each extracted cross section is overlaid to distribute the defect depth The ultrasonic flaw detection method according to claim 10, further comprising: calculating means for calculating the defect depth distribution, and calculating the defect depth distribution by the calculation step. 第1の超音波探触子と第2の超音波探触子とを一体とした構造体と、該構造体を搭載し、余盛がある溶接部を含む被検体を走査する走査機構とからなる超音波探傷装置において、
前記第1の探触子は超音波が固定角で拡散して送受信する単一の振動子が配列され、前記第2の探触子は、集束位置を前記被検体表面に対して高さ略方向及び前記第1の探触子における振動子の配列方向の両方向に変更可能で、前記第1の探触子から発せられて反射した超音波を受信するマトリクスフェーズドアレイ型であり、前記走査機構は、前記構造体における前記第1の超音波探触子と第2の超音波探触子の配置を前記余盛方向として、前記第1の探触子における振動子径の半値幅で余盛方向に往復動走査し、前記第2の探触子における集束位置を、高さ方向に集束径の半値幅だけずらしながら前記第1の探触子における振動子の配列方向へ往復動走査させる各振動子の超音波受信間隔算出用遅延時間算出手段と、前記第1の探触子が受けた反射超音波で被検体における欠陥の有無と欠陥の長さを、前記第2の探触子が受けた反射超音波で欠陥の深さを評価する評価回路とを備えたことを特徴とする超音波探傷装置。
From the structure which integrated the 1st ultrasonic probe and the 2nd ultrasonic probe, and the scanning mechanism which mounts this structure and scans the subject containing the welding part with surplus In the ultrasonic flaw detector
The first probe is arranged with a single transducer that transmits and receives an ultrasonic wave diffused at a fixed angle, and the second probe has a focusing position that is approximately the height of the subject surface. The scanning mechanism is of a matrix phased array type that receives the ultrasonic waves emitted from the first probe and reflected from the first probe. Is a surplus with a half-value width of the transducer diameter in the first probe, with the arrangement of the first and second ultrasonic probes in the structure as the surplus direction. Reciprocatingly scanning in the direction, and reciprocatingly scanning in the arrangement direction of the transducers in the first probe while shifting the focusing position in the second probe by a half-value width of the focusing diameter in the height direction. A delay time calculating means for calculating an ultrasonic wave reception interval of the vibrator, and the first probe; And an evaluation circuit for evaluating the presence / absence of a defect in the subject with the reflected ultrasonic wave and the length of the defect, and the depth of the defect with the reflected ultrasonic wave received by the second probe. Ultrasonic flaw detector.
JP2005375012A 2005-12-27 2005-12-27 Ultrasonic flaw detection method and ultrasonic flaw detection apparatus Withdrawn JP2007178186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005375012A JP2007178186A (en) 2005-12-27 2005-12-27 Ultrasonic flaw detection method and ultrasonic flaw detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005375012A JP2007178186A (en) 2005-12-27 2005-12-27 Ultrasonic flaw detection method and ultrasonic flaw detection apparatus

Publications (1)

Publication Number Publication Date
JP2007178186A true JP2007178186A (en) 2007-07-12

Family

ID=38303536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005375012A Withdrawn JP2007178186A (en) 2005-12-27 2005-12-27 Ultrasonic flaw detection method and ultrasonic flaw detection apparatus

Country Status (1)

Country Link
JP (1) JP2007178186A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2532141C1 (en) * 2013-07-23 2014-10-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кузбасский государственный технический университет имени Т.Ф. Горбачева" (КузГТУ) Method of non-destructive test of long-term operated metal of operated elements of heat power equipment
CN110320283A (en) * 2019-07-04 2019-10-11 江阴兴澄特种钢铁有限公司 A kind of binary channels probe regulating mechanism and binary channels are popped one's head in the method for detection of water logging high-frequency ultrasonic
CN111044700A (en) * 2019-12-27 2020-04-21 中南大学 Method for evaluating quality of welding seam of laser small hole welding of equal-thickness material
CN112730632A (en) * 2021-01-21 2021-04-30 浙江爱视博医疗科技有限公司 High-integration ultrasonic scanning probe
CN113311003A (en) * 2021-05-27 2021-08-27 海南大学 Multifunctional steel structure crack monitoring test platform

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2532141C1 (en) * 2013-07-23 2014-10-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кузбасский государственный технический университет имени Т.Ф. Горбачева" (КузГТУ) Method of non-destructive test of long-term operated metal of operated elements of heat power equipment
CN110320283A (en) * 2019-07-04 2019-10-11 江阴兴澄特种钢铁有限公司 A kind of binary channels probe regulating mechanism and binary channels are popped one's head in the method for detection of water logging high-frequency ultrasonic
CN110320283B (en) * 2019-07-04 2024-05-17 江阴兴澄特种钢铁有限公司 Dual-channel probe adjusting mechanism and dual-channel probe water immersion high-frequency ultrasonic flaw detection method
CN111044700A (en) * 2019-12-27 2020-04-21 中南大学 Method for evaluating quality of welding seam of laser small hole welding of equal-thickness material
CN111044700B (en) * 2019-12-27 2021-06-08 中南大学 Method for evaluating quality of welding seam of laser small hole welding of equal-thickness material
CN112730632A (en) * 2021-01-21 2021-04-30 浙江爱视博医疗科技有限公司 High-integration ultrasonic scanning probe
CN112730632B (en) * 2021-01-21 2024-06-11 浙江爱视博医疗科技有限公司 High-integration ultrasonic scanning probe
CN113311003A (en) * 2021-05-27 2021-08-27 海南大学 Multifunctional steel structure crack monitoring test platform

Similar Documents

Publication Publication Date Title
KR101155423B1 (en) Tubular object ultrasonic test device and ultrasonic test method
JP4544240B2 (en) Tubular ultrasonic inspection apparatus and ultrasonic inspection method
JP4910769B2 (en) Pipe quality control method and manufacturing method
JP4910768B2 (en) Calibration method of ultrasonic flaw detection, tube quality control method and manufacturing method
US7650789B2 (en) Method and apparatus for examining the interior material of an object, such as a pipeline or a human body from a surface of the object using ultrasound
JP2008122209A (en) Ultrasonic flaw inspection device and method
JP2007046913A (en) Welded structure flaw detection testing method, and steel welded structure flaw detector
JP2009540311A (en) Ultrasonic testing equipment with array probe
JP2008286640A (en) Device and method for ultrasonic flaw detection of pipe
JP5565904B2 (en) Method for identifying surface shape of ultrasonic testing specimen, identification program, aperture synthesis processing program, and phased array testing program
JP2007178186A (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP5574731B2 (en) Ultrasonic flaw detection test method
JP5963253B2 (en) Ultrasonic sensor
JP2013019715A (en) Ultrasonic inspection method and ultrasonic inspection device
JP3535417B2 (en) Ultrasonic defect height measuring device and defect height measuring method
KR20220034889A (en) Ultrasonic Inspection Systems and Ultrasonic Inspection Methods
JP6026245B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus
JP3165888B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
KR101767422B1 (en) Seperable Ultrasonic Transducer with Enhanced Space Resolution
JP3497984B2 (en) Ultrasonic flaw detector
JP7180494B2 (en) Ultrasonic flaw detector and ultrasonic flaw detection method
JP6089805B2 (en) Measuring device, measuring method, program, and storage medium
JP4614219B2 (en) Inspection method and inspection apparatus for laser welded joint
JP3754669B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
JP5957297B2 (en) Defect search device, scan device, and defect search method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090303