JP3497984B2 - Ultrasonic flaw detector - Google Patents

Ultrasonic flaw detector

Info

Publication number
JP3497984B2
JP3497984B2 JP05470798A JP5470798A JP3497984B2 JP 3497984 B2 JP3497984 B2 JP 3497984B2 JP 05470798 A JP05470798 A JP 05470798A JP 5470798 A JP5470798 A JP 5470798A JP 3497984 B2 JP3497984 B2 JP 3497984B2
Authority
JP
Japan
Prior art keywords
probe
ultrasonic
defect
flaw detector
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05470798A
Other languages
Japanese (ja)
Other versions
JPH11248690A (en
Inventor
澄夫 木暮
真一 樋口
洋司 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP05470798A priority Critical patent/JP3497984B2/en
Publication of JPH11248690A publication Critical patent/JPH11248690A/en
Application granted granted Critical
Publication of JP3497984B2 publication Critical patent/JP3497984B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は超音波を用いた固体
の非破壊検査に用いられる技術に関している。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique used for nondestructive inspection of solids using ultrasonic waves.

【0002】[0002]

【従来の技術】ここ数年来、原子力発電所の耐圧溶接部
の健全性評価において、経年変化として発生が予測され
る各種の疲労割れ,応力腐食割れ等の欠陥の大きさの評
価の精度向上が、強度と予測寿命評価技術の急速な確立
とあいまって、要請されてきており、一般産業界におい
てもその趨勢にある。
2. Description of the Related Art In recent years, in the integrity evaluation of pressure-resistant welded parts of a nuclear power plant, it has been possible to improve the accuracy of evaluation of the size of various kinds of fatigue cracks, stress corrosion cracking, etc. which are predicted to occur as a result of aging. However, along with the rapid establishment of strength and predictive life assessment technology, it has been demanded and is in the trend of general industry.

【0003】このような状況下にあって、種々の手法が
提案されてきているが、未だ不十分な状況にある。
Under these circumstances, various methods have been proposed, but they are still in an insufficient state.

【0004】現在提唱されている有用と考えられている
基本的な方法は超音波探傷試験における欠陥端部から発
生する超音波反射波、いわゆる端部エコーを計測評価す
る方法である。
The currently proposed basic method which is considered to be useful is a method for measuring and evaluating an ultrasonic reflected wave generated from a defect end in an ultrasonic flaw detection test, a so-called end echo.

【0005】まず現在実用されている手動超音波探傷試
験における端部エコー法とその問題点を述べる。
First, the edge echo method in the currently used manual ultrasonic flaw detection test and its problems will be described.

【0006】図13に内部割れの高さを端部エコー法で
測定する原理図を示した。
FIG. 13 shows the principle of measuring the height of internal cracks by the end echo method.

【0007】この図で内部割れの高さHは探傷屈折角を
θ、割れ上下端の端部エコーのビーム路程の差をΔWと
すれば、H=ΔW・cosθ で求まる。
In this figure, the height H of the internal crack is determined by H = ΔW · cos θ, where θ is the flaw detection refraction angle and ΔW is the difference in beam path length between the end echoes at the upper and lower ends of the crack.

【0008】しかし現実には、図14に示した超音波探
傷器のブラウン管76上の信号波形77中の端部エコー
78の表示例の如く、欠陥端部での発生時の信号値が低
い上に、周辺に一様に無指向に拡散するため、超音波探
触子で受信する時には更に低下し、その近傍のノイズ信
号との識別に大きな問題をかかえている。
However, in reality, as in the display example of the end echo 78 in the signal waveform 77 on the cathode ray tube 76 of the ultrasonic flaw detector shown in FIG. 14, the signal value at the time of occurrence at the defect end is low. In addition, since the light diffuses uniformly and omnidirectionally to the surroundings, it is further lowered when received by the ultrasonic probe, and there is a great problem in distinguishing it from noise signals in the vicinity thereof.

【0009】この問題点の改善策として、散乱波法が提
案されている。
The scattered wave method has been proposed as a measure for improving this problem.

【0010】この散乱波法の原理を図15に示したが、
同一仕様の送信探触子80と受信探触子81を分離して
欠陥83を挟んで対称の位置に対向して置き、欠陥の上
下端の端部エコー84,85、表面79の伝達波82と
底面87での反射波86を測定し、欠陥の大きさを算定
する方法であり、送信超音波の直接反射波を受信しない
方式で端部エコーの受信信号のSN比の改善を図ってい
る。
The principle of this scattered wave method is shown in FIG.
A transmission probe 80 and a reception probe 81 having the same specifications are separated and placed facing each other at symmetrical positions with a defect 83 interposed therebetween, and the end echoes 84 and 85 at the upper and lower ends of the defect and the transmitted wave 82 on the surface 79. This is a method of calculating the size of a defect by measuring the reflected wave 86 on the bottom surface 87 and the bottom surface 87, and aims to improve the SN ratio of the received signal of the end echo by a method that does not receive the directly reflected wave of the transmitted ultrasonic wave. .

【0011】一方、送信兼受信用のアレイ探触子の受信
結果と受信探触子による受信結果とを比較して傷か否か
を判定し、傷の場合には、傷の深さ寸法をアレイ探触子
からのビーム偏向制御に伴うエコーレベルとビーム路経
値を計測して推定することが、特開平1−145565 号公報
によって周知であり、この際、受信探触子を欠陥に出来
るだけ近接させて最大受信点に受信探触子を位置させて
いることが認められる。
On the other hand, by comparing the reception result of the array probe for both transmission and reception with the reception result by the reception probe, it is judged whether or not there is a scratch. It is known from JP-A-1-145565 to measure and estimate the echo level and beam path value associated with beam deflection control from the array probe, in which case the receiving probe can be made defective. It is recognized that the receiving probe is located at the maximum receiving point only in close proximity.

【0012】[0012]

【発明が解決しようとする課題】従来の散乱波法は、以
下の問題点を持っている。
The conventional scattered wave method has the following problems.

【0013】一つの探触子から送信される超音波ビー
ムの広がりを利用して探傷情報を得て欠陥の大きさを算
定する方法であり、その広がりで送信超音波の音圧が著
しく低下するので、欠陥端部エコーがますます微弱にな
り、ノイズ信号との識別等に測定限界がある。
This is a method of calculating flaw size by obtaining flaw detection information by utilizing the spread of the ultrasonic beam transmitted from one probe, and the sound pressure of the transmitted ultrasonic wave is remarkably lowered by the spread. Therefore, the echo at the edge of the defect becomes weaker and weaker, and there is a measurement limit in distinguishing it from a noise signal.

【0014】図16はオーステナイトステンレス鋼の
溶接部89の近傍の欠陥90のサイジングに散乱波法を
適用した場合の説明図であり、この溶接金属89は超音
波の減衰が大きく、柱状晶金属組織による超音波の曲が
りを生じ、かつ林状ノイズエコーを生じるので、このよ
うな部位を挟んで送受の探触子80,81を配置して探
傷する散乱波法の適用は困難である。また、溶接部ビー
ド表面88の形状の影響も受ける。
FIG. 16 is an explanatory view when the scattered wave method is applied to the sizing of the defect 90 in the vicinity of the welded portion 89 of austenitic stainless steel. The welded metal 89 has a large attenuation of ultrasonic waves and has a columnar crystal structure. As a result, the ultrasonic wave is bent and a forest noise echo is generated. Therefore, it is difficult to apply the scattered wave method in which the probes 80 and 81 for transmission and reception are arranged with such a portion sandwiched therebetween for flaw detection. It is also affected by the shape of the weld bead surface 88.

【0015】また、特開平1−145565 号公報のものは、
欠陥である傷の深さを推定する際に、送信と受信を兼ね
るアレイ探触子の受信信号をも利用するのであるが、欠
陥端部での反射信号値が低い上に、欠陥端部周辺に一様
に無指向に拡散するため、アレイ探触子で受信する時に
は更に低下し、その近傍のノイズ信号との識別に大きな
問題をかかえる。
Further, the one disclosed in JP-A-1-145565 is
When estimating the depth of a flaw, which is a defect, the received signal of the array probe that both transmits and receives is also used.However, the reflected signal value at the defect edge is low, and the surrounding area of the defect edge is also low. Since it diffuses uniformly and omnidirectionally, it is further reduced when received by the array probe, which causes a great problem in distinguishing it from noise signals in the vicinity thereof.

【0016】本発明の目的は、欠陥の端部位置の高精度
な把握にある。
An object of the present invention is to detect the edge position of a defect with high accuracy.

【0017】[0017]

【課題を解決するための手段】第1手段は、欠陥に近い
位置に受信探触子を、前記受信探触子の位置にくらべて
相対的に前記欠陥に遠い位置に送信探触子として可変角
超音波探触子を置いた探触子構造体と、少なくとも前記
送信探触子から被検査体表面への超音波入射点を変化さ
せる手段と、前記受信探触子からの受信信号に基づくデ
ータの処理手段と、前記処理手段からのデータの表示手
段とを備えた超音波探傷装置において、前記データの処
理手段は、前記超音波入射点と前記欠陥の端部の超音波
反射波の見掛け上の超音波反射点とを結んだ複数の直線
の交点を欠陥の端部として算定する欠陥端部評定処理部
を備え、前記表示手段は、前記処理手段と前記算定結果
を表示するように接続されていることを特徴とする超音
波探傷装置である。
[Means for Solving the Problems] A first means is to change a receiving probe at a position near a defect as a transmitting probe at a position relatively far from the defect as compared with the position of the receiving probe. A probe structure having an angular ultrasonic probe, means for changing at least an ultrasonic wave incident point from the transmitting probe to the surface of the object to be inspected, and a receiving signal from the receiving probe In an ultrasonic flaw detector equipped with data processing means and data display means from the processing means, the data processing means is such that the apparent ultrasonic reflected waves at the ultrasonic incident point and the end of the defect are apparent. A defect edge evaluation processing unit for calculating an intersection of a plurality of straight lines connecting the ultrasonic reflection points as an edge of a defect, and the display means is connected so as to display the processing means and the calculation result. It is an ultrasonic flaw detector characterized in that

【0018】このような第1手段によれば、超音波探傷
作業では送信探触子と受信探触子を分離し、後者を前者
の前面、即ち受信探触子を送信探触子よりも欠陥個所に
近い位置に配置してあるので、 図7に示した如く、微弱な端部エコーを受信する受信
探触子51を送信探触子50から独立させて前方に置
き、送信探触子50の主ビーム52のライン上からずら
すことにより、端部エコーを受信する探触子51が供試
体の結晶粒界等からの主ビーム反射ノイズ信号を受信し
ないように配置でき、大幅にSN比を改善することが可
能になり、微弱な信号値である端部エコー信号の検出,
測定が容易になる。
According to such a first means, in the ultrasonic flaw detection work, the transmitting probe and the receiving probe are separated, and the latter is the front surface of the former, that is, the receiving probe is more defective than the transmitting probe. Since it is arranged at a position close to the position, as shown in FIG. 7, the reception probe 51 that receives the weak end echo is placed in front of the transmission probe 50 independently of the transmission probe 50. By displacing the main beam 52 from the line of the main beam 52, the probe 51 that receives the end echo can be arranged so as not to receive the main beam reflection noise signal from the crystal grain boundary of the sample, etc. It is possible to improve the detection of the end echo signal, which is a weak signal value,
Measurement becomes easy.

【0019】探傷のための送信超音波ビームは直進指
向性を持つが、図7に示したごとく、欠陥端部からの端
部エコーは無指向一様拡散特性56を持ち、距離の2乗
に反比例して急速に減衰するので、受信探触子を送信探
触子の前面に、供試体(被検査体)の探傷面の形状が許
す限り欠陥端部直上に配置することにより、欠陥端部か
らの距離を短縮して端部エコー信号値の減衰を抑制で
き、微弱な信号値である端部エコー信号の検出,測定が
容易になる。
Although the transmitted ultrasonic beam for flaw detection has a straight-line directivity, as shown in FIG. 7, the end echo from the defect end has an omnidirectional uniform diffusion characteristic 56, which is the square of the distance. Since it decays rapidly in inverse proportion, the receiving probe is placed in front of the transmitting probe and right above the defect edge as long as the shape of the flaw detection surface of the DUT (inspection object) allows. It is possible to suppress the attenuation of the end echo signal value by shortening the distance from, and it becomes easy to detect and measure the end echo signal having a weak signal value.

【0020】図8に示した如く、送信用探触子50と
端部エコー受信用探触子51が、溶接部89に対して、
検出すべき欠陥54と同じ側にあり、送信と受信の探触
子が溶接部を挟むことが無いので、溶接部が超音波の減
衰等の問題のあるオーステナイトステンレス鋼等であっ
ても問題なく適用できる。
As shown in FIG. 8, the transmitting probe 50 and the end echo receiving probe 51 are attached to the welded portion 89.
Since the transmitting and receiving probes are on the same side as the defect 54 to be detected and do not sandwich the welded portion, there is no problem even if the welded portion is austenitic stainless steel or the like having a problem such as attenuation of ultrasonic waves. Applicable.

【0021】第1手段で採用されたデータの処理手段
は、前記超音波入射点と前記欠陥の端部の超音波反射波
の見掛け上の超音波反射点とを結んだ複数の直線の交点
を欠陥の端部として算定する欠陥端部評定処理部を備
え、その処理部での端部エコーの発信点、すなわち欠陥
の端部を算定する方法について述べる。
The data processing means employed in the first means forms a plurality of intersections of straight lines connecting the ultrasonic wave incident point and the apparent ultrasonic wave reflection point of the ultrasonic wave reflected wave at the end of the defect. A method for calculating the defect echo end point at the processing part, that is, the defect end part for calculating the defect end part, that is, the defect end part will be described.

【0022】一般に超音波探傷器においては、送受分割
方式であっても見掛け上あたかも送受を同一の探触子で
行っているかのごとき信号処理方式を取っている。すな
わち、図9において被検査物に内在する欠陥54の高さ
Hを測定する場合において、送信探触子50で欠陥54
の端部55から発生し、一様に拡散していく端部エコー
56を計測した場合、超音波が丁度送信探触子50と欠
陥端部55を往復した時間を距離に換算して、送信超音
波ビーム52上に欠陥端部55の端部エコー発生点を求
める方式になっている。従って、送信探触子50が超音
波を発信して、端部エコー受信探触子51で欠陥端部5
5からの端部エコー56を経路53を経て受信する送受
分割方式の場合でも、端部エコー発生点は送信超音波5
2の線上に、発信から受信までの超音波伝達時間の換算
距離による算定した点57があたかも欠陥端部の如く計
測される。
In general, the ultrasonic flaw detector adopts a signal processing method as if the same probe is used for transmitting and receiving even if the transmitting and receiving division method is used. That is, when the height H of the defect 54 existing in the inspection object is measured in FIG. 9, the defect 54 is measured by the transmission probe 50.
When the end echo 56 that is generated from the end 55 of the ultrasonic wave and is diffused uniformly is measured, the time when the ultrasonic wave just reciprocates between the transmitting probe 50 and the defective end 55 is converted into a distance and is transmitted. It is a method of obtaining the end echo generation point of the defect end 55 on the ultrasonic beam 52. Therefore, the transmitting probe 50 transmits ultrasonic waves, and the end echo receiving probe 51 causes the defective end portion 5 to move.
Even in the transmission / reception division system in which the end echo 56 from 5 is received via the route 53, the end echo generation point is the transmitted ultrasonic wave 5
On the line 2, the point 57 calculated by the conversion distance of the ultrasonic wave transmission time from the transmission to the reception is measured as if it is the end of the defect.

【0023】図10の如く、送信探触子50を入射超音
波の屈折角θを変化可能とする可変角探触子とし、これ
と端部エコー受信探触子51とを結合状態で、送信探触
子を可変角走査しながら、欠陥54上を矢印の方向に走
査すると、欠陥の端部をその発信超音波52aから52
dで捉えた端部エコーの見掛け上の発生点57aから5
7dが任意に設定した探触子位置座標ピッチ毎に得られ
る。これら端部エコーの見掛け上の発生点とそれぞれの
超音波の入射点を結んだ多数の探傷直線が得られ、これ
らの延長線上の交点が欠陥端部55の位置と演算され
る。すなわち複雑な三角関数の演算を行うことなしに、
超音波探傷器の原理を用いて簡易に欠陥端部を求めるこ
とを可能とし、かつ多数のデータの集合点とする加算効
果により、結晶粒界等のノイズエコーとの区別を明確に
することを可能とし、測定精度を著しく向上する画期的
な働きが得られる。
As shown in FIG. 10, the transmission probe 50 is a variable angle probe capable of changing the refraction angle θ of the incident ultrasonic wave, and the end echo reception probe 51 and the transmission probe 50 are transmitted in a coupled state. When the defect 54 is scanned in the direction of the arrow while scanning the probe at a variable angle, the end of the defect is transmitted from the transmitted ultrasonic waves 52a to 52a.
5 from the apparent generation point 57a of the end echo captured in d
7d is obtained for each probe position coordinate pitch that is arbitrarily set. A large number of flaw detection straight lines connecting the apparent generation points of these end echoes and the incident points of the respective ultrasonic waves are obtained, and the intersections on these extended lines are calculated as the position of the defect end 55. That is, without performing complicated trigonometric operation,
It is possible to easily find the defect edge using the principle of the ultrasonic flaw detector, and to clarify the distinction from noise echoes such as grain boundaries by the addition effect that is the collection point of many data. It is possible to obtain an epoch-making function that significantly improves the measurement accuracy.

【0024】第2手段は、第1手段において、前記送信
探触子を送受信共用の探触子として採用し、前記可変角
超音波探触子にデータの処理手段を接続し、前記データ
の処理手段に、前記可変角超音波探触子からの受信信号
によるデータに基づいて欠陥の位置を算定する探傷処理
部を備え、前記表示手段は、前記探傷処理部と欠陥端部
評定処理部からのデータを併記するように前記データの
処理手段に接続してあることを特徴とする超音波探傷装
置であり、第1手段による作用効果に加えて、可変角超
音波探触子による欠陥の超音波受信情報をデータの処理
手段で欠陥探傷像のデータとし、その欠陥探傷像のデー
タに欠陥端部評定処理部からの欠陥端部のデータを表示
手段上に合成して端部を正確に表した欠陥の実態に近い
正確な表示が可能と成るという作用効果が得られる。
A second means is the first means, wherein the transmitting probe is adopted as a probe for both transmission and reception, and a data processing means is connected to the variable-angle ultrasonic probe to process the data. The means includes a flaw detection processing unit that calculates the position of the defect based on the data obtained by the received signal from the variable-angle ultrasonic probe, and the display unit displays the flaw detection processing unit and the defect edge evaluation processing unit. An ultrasonic flaw detector characterized in that the ultrasonic flaw detector is connected to a processing means for the data so as to write data together. In addition to the function and effect by the first means, ultrasonic waves for defects by a variable-angle ultrasonic probe The received information is used as the data of the defect inspection image by the data processing means, and the data of the defect inspection image is combined with the data of the defect edge portion from the defect edge evaluation processing portion on the display means to accurately represent the edge portion. Accurate display that is close to the actual state of defects Effect that made is obtained.

【0025】第3手段は、第1手段又は第2手段におい
て、前記送信探触子は超音波ビームを集束させる手段を
備えていることを特徴とする超音波探傷装置であり、第
1手段又は第二手段による作用効果に加えて、送信探触
子の超音波ビームを集束型にすることは、欠陥に当たる
超音波ビームを強力にして、端部エコーの信号レベルを
高める作用があり、その作用によって端部エコーの信号
の検出や測定が一層容易になるという効果が得られる。
A third means is an ultrasonic flaw detector according to the first means or the second means, characterized in that the transmitting probe is provided with means for focusing an ultrasonic beam. In addition to the function and effect of the second means, focusing the ultrasonic beam of the transmission probe has the effect of strengthening the ultrasonic beam hitting the defect and increasing the signal level of the end echo. This has the effect of making it easier to detect and measure the signal of the end echo.

【0026】第4手段は、第1手段から第3手段までの
いずれか一手段において、送信探触子に電子位相制御型
の超音波探触子を用いたことを特徴とする超音波探傷装
置であり、第1手段から第3手段までのいずれか一手段
による作用効果に加えて、送信探触子に電子位相制御型
の探触子を用いることにより、送信超音波のビームの集
束距離を任意に設定可能と成る作用が得られ、可変角走
査も容易に可能となる効果が得られる。
The fourth means is any one of the first to third means, wherein an ultrasonic probe of electronic phase control type is used as the transmission probe. In addition to the effect of any one of the first means to the third means, by using an electronic phase control type probe for the transmission probe, the focusing distance of the beam of the transmission ultrasonic wave is increased. The effect that it can be set arbitrarily can be obtained, and the effect that variable angle scanning can also be easily obtained is obtained.

【0027】第5手段は、第1手段から第4手段までの
いずれか一手段において、受信探触子に可変角超音波探
触子を用いたことを特徴とする超音波探傷装置であり、
第1手段から第4手段までのいずれか一手段による作用
効果に加えて、受信探触子を自由に受信指向特性を変え
られる可変角型とすることにより、受信角を最大感度の
角度に調整してその受信最大感度を維持しできる作用が
得られ、その作用によって、受信探触子をどの様な位置
にあってもその位置における受信最大感度にセットし
て、微弱な信号値である端部エコー信号の検出,測定が
容易になる効果が得られる。
A fifth means is an ultrasonic flaw detector, characterized in that, in any one of the first means to the fourth means, a variable-angle ultrasonic probe is used as a receiving probe.
In addition to the effect of any one of the first means to the fourth means, the reception angle is adjusted to the angle of maximum sensitivity by making the reception probe a variable angle type in which the reception directivity can be freely changed. The effect of maintaining the maximum reception sensitivity can be obtained, and by that operation, the reception probe can be set to the maximum reception sensitivity at that position regardless of the position, and an edge with a weak signal value can be set. This has the effect of facilitating detection and measurement of partial echo signals.

【0028】第6手段は、第1手段において、送信探触
子として、複数の超音波振動子を被検査物表面への超音
波入射点を同心円中心とする楔材の円周上に配置したア
レイ型探触子をスイッチング制御する探触子を用いるこ
とを特徴とする超音波探傷装置であり、第1手段による
作用効果に加えて、複数の超音波振動子を被検査物への
超音波入射点を同心円中心とする楔材の円周上に配置し
て、スイッチング制御することにより任意の屈折角の超
音波送信を可能とし、図6に示した如く、端部エコーを
最大感度で受信する位置に受信探触子6をセットして、
二箇所の送信探触子位置28a,28bで、欠陥上端部
21をそれぞれの二つの屈折角の超音波ビームで捉え、
欠陥上端部の算定が可能となる。
A sixth means is the same as the first means, wherein a plurality of ultrasonic transducers are arranged on the circumference of the wedge member having the concentric center of the ultrasonic wave incident point on the surface of the object to be inspected as a transmitting probe. an ultrasonic flaw detection apparatus according to claim array type probe using the probe to control switching, in addition to the effects by the first means, a plurality of ultrasonic transducers to the object to be inspected super sound waves incident point arranged on the circumference of the wedge member to be concentric center, to allow the ultrasound transmission any refraction angle by controlling switching, as shown in FIG. 6, the maximum sensitivity end echo Set the receiving probe 6 to the position where
At the two transmission probe positions 28a and 28b, the defect upper end portion 21 is captured by ultrasonic beams having two refraction angles,
It is possible to calculate the upper edge of the defect.

【0029】第7手段は、第1手段又は第2手段又は第
3手段において、受信探触子に固定角探触子を用い、送
信探触子に可変角探触子を用い、前記受信探触子を固定
し、これに対して走査方向に移動自在に送信探触子を搭
載した探触子構造体と、前記探触子構造体に連結された
走査機構とを備えたことを特徴とする超音波探傷装置で
あり、第1手段又は第2手段又は第3手段による作用効
果に加えて、以下の作用効果が得られる。
A seventh means is the first means, the second means or the third means, wherein a fixed angle probe is used as the receiving probe and a variable angle probe is used as the transmitting probe. A probe structure is provided, which has a probe fixed thereto and is mounted with a transmission probe movably in the scanning direction, and a scanning mechanism connected to the probe structure. The ultrasonic flaw detector has the following function and effect in addition to the function and effect by the first means, the second means, and the third means.

【0030】図11に示した如く、受信用に固定角探
触子51を用い、これに対し矢印59の方向に走査可能
とする可変角探触子62とを一体とした探触子構造体6
1を搭載した走査機構63から構成され、探触子構造体
61を走査機構63により矢印60の方向に一定の微小
走査ピッチ送っては、可変角探触子の超音波屈折角θを
設定された角度範囲を回転走査しては送って行くと、必
ずその欠陥からの端部エコーが受信探触子の超音波振動
子面で垂直に受信される座標に到達する。この座標位置
で可変角探触子をその超音波屈折角を回転走査しなが
ら、受信用の固定角探触子に対して矢印59の方向に探
傷走査すると、端部エコーを最良の条件で計測すること
になり、精度の良い欠陥の大きさの評価が可能になる。
As shown in FIG. 11, a probe structure using a fixed-angle probe 51 for reception, and a variable-angle probe 62 capable of scanning in the direction of arrow 59, is integrated therewith. 6
1, the probe structure 61 is sent by the scanning mechanism 63 at a constant fine scanning pitch in the direction of the arrow 60, and the ultrasonic refraction angle θ of the variable angle probe is set. When an angular range is rotationally scanned and sent, the end echo from the defect always reaches the coordinates that are received vertically on the ultrasonic transducer plane of the receiving probe. When the variable angle probe is rotationally scanned at its ultrasonic refraction angle at this coordinate position and flaw detection scanning is performed in the direction of arrow 59 with respect to the fixed angle probe for reception, the end echo is measured under the best condition. As a result, the size of the defect can be evaluated with high accuracy.

【0031】第8手段は、第1手段又は第2手段又は第
3手段において、受信探触子と送信探触子とを走査方向
において相対的に固定されて装備した探触子構造体と、
前記送信探触子として採用された電子走査機能付き電子
位相制御集束型可変角探触子と、前記探触子構造体に連
結された走査機構とを備えたことを特徴とする超音波探
傷装置であり、第1手段又は第2手段又は第3手段によ
る作用効果に加えて、電子走査が可能となって、機械式
の走査機構無しで走査でき、装置がコンパクトに成る効
果が得られる。
Eighth means is a probe structure in which the receiving probe and the transmitting probe are mounted relatively fixed in the scanning direction in the first means, the second means, or the third means,
An ultrasonic flaw detector, comprising: an electronic phase control focusing variable angle probe having an electronic scanning function adopted as the transmission probe; and a scanning mechanism connected to the probe structure. In addition to the effects of the first means, the second means, or the third means, electronic scanning is possible, scanning can be performed without a mechanical scanning mechanism, and the apparatus can be made compact.

【0032】第9手段は、第1手段から第8手段までの
いずれか一手段において、受信用探触子の振動子の後面
の充填材を無くするか、あるいは前記後面での超音波に
対するダンパー効果を緩める手段を講じてあることを特
徴とする超音波探傷装置であり、第1手段から第8手段
までのいずれか一手段による作用効果に加えて、受信用
探触子の振動子の背面のダンパー材を除去、あるいはそ
の効果を弱めて、受信感度を著しく高める作用が得ら
れ、感度を高くして高精度な欠陥検査が可能となる効果
が得られる。
As a ninth means, in any one of the first to eighth means, the filler on the rear surface of the transducer of the receiving probe is eliminated, or a damper for ultrasonic waves on the rear surface. An ultrasonic flaw detector characterized in that a means for relaxing the effect is provided, and in addition to the function and effect of any one of the first to eighth means, the back surface of the transducer of the receiving probe The damper material is removed or the effect thereof is weakened to remarkably enhance the reception sensitivity, and the sensitivity is increased to enable highly accurate defect inspection.

【0033】第10手段は、第1手段から第9手段まで
のいずれか一手段において、前記データの処理手段は、
被検査体の肉厚方向への超音波送受信データにより前記
被検査体の表面と底面との位置を認識する演算部と、前
記演算部による表面と底面との情報を表示手段に表示す
るように前記表示手段が前記データの処理手段に接続さ
れていることを特徴とする超音波探傷装置であり、第1
手段から第9手段までのいずれか一手段による作用効果
に加えて、被検査体の圧肉方向の超音波受信情報から被
検査体の表面と底面との位置を演算して共通の表示手段
に欠陥端部の位置と被検査体の表面と底面との位置とを
合成して表示できる作用が得られるので、被検査体内の
欠陥の存在位置が認識しやすい効果が得られる。
A tenth means is any one of the first to ninth means, wherein the data processing means is
A calculation unit for recognizing the positions of the surface and the bottom surface of the inspection object by ultrasonic transmission / reception data in the thickness direction of the inspection object, and information for the surface and the bottom surface by the calculation unit is displayed on the display means. The ultrasonic flaw detector is characterized in that the display means is connected to the data processing means.
In addition to the function and effect of any one of the means to the ninth means, the positions of the surface and the bottom of the object to be inspected are calculated from the ultrasonic wave reception information of the object to be inspected in the common display means. Since the position of the defect end and the position of the surface and the bottom surface of the inspection object can be combined and displayed, an effect of easily recognizing the existence position of the defect in the inspection object can be obtained.

【0034】[0034]

【発明の実施の形態】以下に本発明の一実施例を図1〜
図6を用いて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to FIGS.
This will be described with reference to FIG.

【0035】図1は被検査物1に内在する割れ状の欠陥
2の欠陥の高さhを測定するための全体説明図である。
探触子構造体3は、送信探触子4と受信探触子6からな
り、送信探触子4は幅の狭い短冊状の多数の超音波振動
子の集合体としたアレイ超音波振動子5を電子制御によ
り超音波ビームを任意の距離の点(20,21等)に集
束させ、更にその方向を振る、いわゆる可変角機能12
を持たせ、かつその超音波ビームを矢印のようにアレイ
超音波振動子の電子走査方向14の方向に電子走査する
位相制御方式の集束型可変角探触子である。
FIG. 1 is an overall explanatory view for measuring the height h of the crack-like defect 2 existing in the inspection object 1.
The probe structure 3 includes a transmitting probe 4 and a receiving probe 6, and the transmitting probe 4 is an array ultrasonic transducer that is an assembly of a plurality of narrow strip-shaped ultrasonic transducers. The so-called variable angle function 12 for focusing the ultrasonic beam 5 on the point (20, 21, etc.) of an arbitrary distance by electronic control and swinging the direction further
And a phase-controlled focusing variable angle probe in which the ultrasonic beam is electronically scanned in the electronic scanning direction 14 of the array ultrasonic transducer as shown by the arrow.

【0036】受信探触子6は送信超音波ビームが欠陥の
下端20に当たり、発生した端部エコーを受信するもの
で、固定角の探触子である。
The receiving probe 6 is a fixed-angle probe for receiving the end echo generated by the transmitted ultrasonic beam hitting the lower end 20 of the defect.

【0037】この探触子構造体3は走査ロッド9と結合
され、走査機構8によって左右に探傷走査される。走査
機構8は走査ロッド9を介して結合された探触子構造体
3を、位置座標検出用のエンコーダ19の出力をもとに
走査機構用制御器17により、所定ピッチ送り、この位
置で送信探触子4は超音波ビームの集束距離を被検査物
1の底面にセットした条件で、所定の角度範囲を可変角
動作しながら、所定のストロークをアレイ超音波振動子
の電子走査方向14の左矢印方向に電子走査する。次
に、また走査機構8で探触子構造体3を所定ピッチ送
り,送信探触子4で同様の動作を行い、これをくり返し
ていく。
The probe structure 3 is connected to the scanning rod 9, and the scanning mechanism 8 scans the probe laterally. The scanning mechanism 8 sends the probe structure 3 coupled via the scanning rod 9 at a predetermined pitch by the scanning mechanism controller 17 based on the output of the encoder 19 for position coordinate detection, and transmits at this position. The probe 4 performs a predetermined stroke in the electronic scanning direction 14 of the array ultrasonic transducer while performing a variable angle operation in a predetermined angular range under the condition that the focusing distance of the ultrasonic beam is set on the bottom surface of the DUT 1. Electronically scan in the direction of the left arrow. Next, the scanning mechanism 8 again feeds the probe structure 3 by a predetermined pitch, the transmitting probe 4 performs the same operation, and this is repeated.

【0038】図2を用いて、これらの探傷走査において
得られる欠陥からの一連の端部エコー値により、受信探
触子でその端部エコーを最大感度で受信可能な走査機構
8の座標を下記のようにして求める。
With reference to FIG. 2, the coordinates of the scanning mechanism 8 capable of receiving the end echo with the maximum sensitivity by the receiving probe are shown below by the series of end echo values from the defects obtained in these flaw detection scans. To ask.

【0039】走査機構8の座標a 図2(a)は走査機構8の座標がaの探傷の状況の説明
図である。この状態は欠陥下端20からの端部エコー1
0aが受信探触子6aの受信振動子7aに垂直には入射
していないが、受信探触子6aが端部エコーによる受信
信号を出力出来る状態である。電子走査機能付きの電子
位相制御集束型可変角探触子4の電子走査座標における
送信集束超音波ビームの中心ビームを11a−1,11
a−2,11a−3とし、それぞれがその座標位置で所
定の角度範囲回転走査する。これら送信超音波ビームに
は幅があるために、受信探触子6aで受信する端部エコ
ー値はアレイ超音波振動子電子走査座標毎に図2(b)
のような曲線11a−1,11a−2,11a−3の集
合となり、これら各曲線の最高点を結んだ包絡線11a
が得られる。
Coordinate a of Scanning Mechanism 8 FIG. 2A is an explanatory view of a flaw detection situation in which the coordinate of the scanning mechanism 8 is a. This state is the end echo 1 from the defect bottom 20.
Although 0a does not vertically enter the reception transducer 7a of the reception probe 6a, the reception probe 6a is in a state where it can output a reception signal by an end echo. The central beams of the transmission focused ultrasonic beams at the electronic scanning coordinates of the electronic phase control focused variable angle probe 4 with the electronic scanning function are set to 11a-1, 11a.
a-2 and 11a-3, each of which scans a predetermined angular range at the coordinate position. Since these transmitted ultrasonic beams have a width, the end echo value received by the reception probe 6a is shown in FIG. 2B for each array ultrasonic transducer electronic scanning coordinate.
Is a set of curves 11a-1, 11a-2, and 11a-3, and the envelope 11a connecting the highest points of these curves.
Is obtained.

【0040】走査機構8の所定のピッチ毎の座標で上
記のデータをとると、包絡線11a〜11eが得られ、
欠陥端部からの端部エコー11eが受信探触子6eの受
信振動子7eへ垂直に入射する時に最高値となる。
When the above data is taken at the coordinates of the scanning mechanism 8 at predetermined pitches, envelopes 11a to 11e are obtained,
The maximum value is obtained when the end echo 11e from the defect end is vertically incident on the reception transducer 7e of the reception probe 6e.

【0041】この時の走査機構8の座標eが、受信探触
子6の指向特性上から、端部エコーを最大感度で受信可
能な座標となる。
The coordinate e of the scanning mechanism 8 at this time is a coordinate at which the end echo can be received with the maximum sensitivity in view of the directivity characteristics of the receiving probe 6.

【0042】これに続いて行われる制御動作を図1を用
いて説明する。
The control operation that follows will be described with reference to FIG.

【0043】まず、データ収録演算制御装置16の指
令で、走査機構用制御器17により走査機構8が自動的
に動作して、端部エコーが最大感度で受信される座標e
に探触子構造体3が戻され、かつ超音波探傷制御器15
によりアレイ超音波振動子5の中心座標に超音波入射点
がセットされる。
First, the scanning mechanism controller 17 automatically operates the scanning mechanism 8 in response to a command from the data recording arithmetic control device 16, and the coordinate e at which the end echo is received with maximum sensitivity.
The probe structure 3 is returned to the
Thus, the ultrasonic wave incident point is set at the central coordinate of the array ultrasonic wave transducer 5.

【0044】送信超音波ビームの集束距離を、アレイ
超音波振動子の発信遅延制御を超音波探傷制御器15に
より行い、端部エコー受信ビーム路程に一致させる。
The focal length of the transmitted ultrasonic beam is controlled by the ultrasonic flaw detector controller 15 to control the transmission delay of the array ultrasonic transducer to match the end echo reception beam path.

【0045】送信探触子4の電子走査基点から可変角
電子走査を実施して、所定ピッチ毎の各座標における可
変角探傷端部エコーデータを採取して、その最高値にお
ける屈折角を求める。
Variable angle electronic scanning is performed from the electronic scanning base point of the transmitting probe 4, variable angle flaw detection end echo data at each coordinate at a predetermined pitch is sampled, and the refraction angle at the maximum value is obtained.

【0046】上記のそれぞれの送信超音波入射点座標
を基点として、それぞれの端部エコー最高値の屈折角に
より得られる複数の直線の交点が欠陥の下端部として、
演算制御装置16により求まる。
With the coordinates of the incident points of the transmitted ultrasonic waves as the base points, the intersections of a plurality of straight lines obtained by the refraction angles of the respective end echo maximum values are the lower ends of the defects,
It is obtained by the arithmetic and control unit 16.

【0047】次に走査機構8により、探触子構造体3を
左方向に探傷走査していくと、欠陥2の上端21の端部
エコーが計測されはじめ、上述と同様にして、この端部
エコー13が最大感度で受信される受信探触子22の位
置が求まり、ここで電子走査可変角探傷が行われ、欠陥
上端の位置が求まる。これらから演算制御装置16によ
り、欠陥高さhがプリンタ18により、出力される。
Next, when the scanning structure 8 scans the probe structure 3 in the left direction, the end echo of the upper end 21 of the defect 2 starts to be measured. The position of the reception probe 22 at which the echo 13 is received with the maximum sensitivity is obtained, and the electronic scanning variable angle flaw detection is performed here, and the position of the defect upper end is obtained. From these, the calculation control device 16 outputs the defect height h by the printer 18.

【0048】次に、図1において、送信探触子4に専用
の超音波探傷制御器15の受信信号処理回路1チャンネ
ルを割り当て、送受兼用として欠陥探傷を行う実施例に
ついて述べる。これは端部エコー計測走査に並行して、
送信探触子4で欠陥2からの超音波反射信号を受信し、
欠陥像を演算制御装置16で演算し、図3に示した如
く、上述の如く求めた欠陥上下端位置20p,21pに
欠陥像2pを重ね合わせた探傷画像をプリンタ18から
出力する。なお、この場合において、送信探触子4の可
変角0°のデータも収録し、被検査物の表面79pと底
面87pも演算し、同一画面に表示している。
Next, referring to FIG. 1, an embodiment will be described in which one channel of the reception signal processing circuit of the ultrasonic flaw detection controller 15 dedicated to the transmission probe 4 is assigned to perform flaw detection for both transmission and reception. This is in parallel with the end echo measurement scan,
The transmitting probe 4 receives the ultrasonic reflection signal from the defect 2,
The defect image is calculated by the arithmetic and control unit 16, and as shown in FIG. 3, the printer 18 outputs a flaw detection image in which the defect image 2p is superimposed on the defect upper and lower end positions 20p and 21p obtained as described above. In this case, the data of the variable angle 0 ° of the transmission probe 4 is also recorded, and the front surface 79p and the bottom surface 87p of the inspection object are also calculated and displayed on the same screen.

【0049】図4は走査機構8を設備しない場合の実施
例である。まず大きさを評価すべき欠陥の付近の探傷面
上に探触子構造体3を当て、キーボード25で電子位相
制御集束型可変角探触子を用いた送信探触子4が作動状
態の探傷モードに設定し、探触子構造体3を手動で左右
に探傷走査して、超音波探傷制御器15のブラウン管表
示器上で欠陥下端20からの端部エコー13が最大とな
る位置を見つけ、そこに探触子構造体3を固定する。
FIG. 4 shows an embodiment in which the scanning mechanism 8 is not provided. First, the probe structure 3 is placed on the flaw detection surface near the defect whose size is to be evaluated, and the transmission probe 4 using the electronic phase control focusing type variable angle probe is operated with the keyboard 25 to detect flaws. In the mode, the probe structure 3 is manually scanned left and right to find a position on the cathode ray tube display of the ultrasonic flaw detector 15 where the end echo 13 from the defect lower end 20 is maximum, The probe structure 3 is fixed there.

【0050】次にキーボード25でモードを欠陥サイジ
ングに切替え、上記の固定点で送信探触子4の電子走
査,可変角探傷等の上述と同様の計測,制御及び演算を
超音波探傷制御器15とデータ収録演算制御装置16で
行い、かつ欠陥上端も同様にして求め、欠陥のサイジン
グを終了する。
Next, the mode is switched to the defect sizing with the keyboard 25, and the ultrasonic flaw detector controller 15 performs the same measurement, control and calculation as the above such as electronic scanning of the transmission probe 4 and variable angle flaw detection at the fixed point. And the data recording arithmetic control unit 16 and similarly obtain the upper end of the defect, and the defect sizing is completed.

【0051】図5は欠陥の端部エコーの検出,計測のた
めの受信探触子6に垂直探触子を用い、欠陥端部からの
距離を最小にして、かつ楔材を介せずに、超音波振動子
7で端部エコーを受け、その減衰を少なくして測定感度
を改善する実施例である。
In FIG. 5, a vertical probe is used as the receiving probe 6 for detecting and measuring the echo at the end of the defect, and the distance from the end of the defect is minimized, and the wedge material is not used. In this embodiment, the ultrasonic transducer 7 receives an end echo and reduces its attenuation to improve the measurement sensitivity.

【0052】ここで、この受信探触子6を可変角型にし
て、欠陥2の上部に溶接ビード等の近接障害があった場
合に、これを避けて受信探触子6を右側に移動し、端部
エコーを最大感度で受信する角度に調整して使用する実
施例もある。
Here, when the receiving probe 6 is made into a variable angle type, and when there is a proximity obstacle such as a welding bead on the upper part of the defect 2, the receiving probe 6 is moved to the right side avoiding this. There is also an embodiment in which the end echo is adjusted to an angle for receiving with maximum sensitivity and used.

【0053】また、受信探触子6において、楔材に超音
波振動子を接着した場合、その背面ダンパ材を使用せ
ず、受信感度を大幅に改善する使用例もある。
In the receiving probe 6, when the ultrasonic transducer is adhered to the wedge member, there is also a use example in which the rear damper material is not used and the receiving sensitivity is significantly improved.

【0054】図6の実施例は複数の短冊状の超音波振動
子群29を被検査物への超音波入射点を同心円中心とす
る楔材の円周上に配置して、スイッチング制御すること
により任意の屈折角の送信を可能とする可変角送信探触
子を使用するものである。
[0054] Example 6 is arranged a plurality of strip-shaped ultrasonic transducer group 29 the ultrasonic incident point of the object to be inspected on the circumference of the wedge member to be concentric center controls switching Therefore, a variable angle transmission probe that enables transmission of an arbitrary refraction angle is used.

【0055】まず、受信探触子6の中心と可変角送信探
触子28aの被検査物への入射点との距離がほぼ被検査
物1の肉厚寸法になるように位置決め機構26により調
整する。この距離はエンコーダ19から自動的にデータ
収録演算制御装置16に入力される。次に、データ収録
演算制御装置16により切替えスイッチ回路30を制御
して、所定の入射屈折角範囲の連続可変角探傷走査をし
ながら、前記と同様に手動で欠陥2の上端21の端部エ
コーが最大となる受信位置を見付け、受信探触子6を位
置決めセットする。
First, the positioning mechanism 26 adjusts the distance between the center of the receiving probe 6 and the incident point of the variable-angle transmitting probe 28a on the object to be inspected to be approximately the thickness of the object to be inspected 1. To do. This distance is automatically input from the encoder 19 to the data recording calculation control device 16. Next, the data recording / calculation control device 16 controls the changeover switch circuit 30 to perform continuous variable-angle flaw detection scanning in a predetermined incident refraction angle range, and manually perform an end echo of the upper end 21 of the defect 2 as described above. Finds the maximum reception position, and sets the reception probe 6 for positioning.

【0056】この可変角送信探触子28aの位置で、デ
ータ収録演算制御装置16により切替えスイッチ回路3
0を制御して送信超音波の屈折角を連続的に変え、受信
探触子6で受信した端部エコー値を超音波探傷器31を
介して、データ収録演算制御装置16に収録する。ここ
で端部エコー値が最大となる屈折角での超音波入射点3
2と見掛け上の端部エコー反射点34を結んだ直線33
が得られる。
At the position of the variable angle transmission probe 28a, the changeover switch circuit 3 is operated by the data recording arithmetic control unit 16.
0 is controlled to continuously change the refraction angle of the transmitted ultrasonic wave, and the end echo value received by the reception probe 6 is recorded in the data recording calculation control device 16 via the ultrasonic flaw detector 31. Here, the ultrasonic wave incident point 3 at the refraction angle that maximizes the end echo value
A straight line 33 connecting 2 and the apparent end echo reflection point 34
Is obtained.

【0057】次に、位置決め機構26により、可変角送
信探触子を28bに移動し、この距離をエンコーダ19
の出力としてデータ収録演算制御装置16に自動入力す
る。ここで可変角探触子28aの場合と同様にして、端
部エコー値が最大となる屈折角での超音波入射点35と
見掛け上の端部エコー反射点37を結んだ直線36が得
られる。以上の2本の直線の交点が欠陥上端21とデー
タ収録演算制御装置16により演算される。なお、更に
計測点を増やし、欠陥サイジング精度を上げることも可
能である。
Next, the variable angle transmission probe is moved to 28b by the positioning mechanism 26, and this distance is measured by the encoder 19
Is automatically input to the data recording arithmetic control device 16. Here, similarly to the case of the variable angle probe 28a, a straight line 36 that connects the ultrasonic wave incident point 35 and the apparent end echo reflection point 37 at the refraction angle where the end echo value is maximum is obtained. . The intersection of the above two straight lines is calculated by the defect upper end 21 and the data recording calculation control device 16. It should be noted that it is possible to further increase the number of measurement points and increase the defect sizing accuracy.

【0058】以上、詳細に説明した如く、本発明の実施
例では、集束超音波を用いることによる検出限界寸法の
改善,探触子を送受分割型にし受信探触子を欠陥に近づ
けることによる微弱な欠陥の端部エコー受信の感度向
上,探触子を送受分割型にしたことによる送信反射波の
受信探触子での受信回避によるSN比の大幅改善,端部
エコー発生点の積算算定方式の採用によるノイズの影響
の排除等画期的な機能と性能の超音波探傷欠陥寸法測定
装置の提供を可能にした。
As described above in detail, in the embodiment of the present invention, the detection limit size is improved by using the focused ultrasonic waves, and the weakness is caused by making the probe a transmission / reception split type and bringing the reception probe close to a defect. The sensitivity of the end echo reception of various defects, the improvement of the SN ratio by avoiding the reception of the reflected reflected wave at the reception probe due to the split transmission and reception of the probe, and the integrated calculation method of the end echo generation point It has become possible to provide an ultrasonic flaw detection defect size measuring device with epoch-making functions and performances such as the elimination of the influence of noise.

【0059】[0059]

【発明の効果】請求項1の発明によれば、被検査体内の
欠陥端部をノイズに惑わされることなく高精度に測定で
きるので、その欠陥の測定精度や測定限界最小寸法を改
善することが出来るという効果が得られる。
According to the first aspect of the present invention, since the defect end portion in the object to be inspected can be measured with high accuracy without being disturbed by noise, it is possible to improve the measurement accuracy of the defect and the minimum measurement limit dimension. The effect that it can be obtained.

【0060】請求項2の発明によれば、請求項1の発明
による作用効果に加えて、表示手段上に欠陥の長さ方向
の情報に正確な欠陥端部の情報を合成して表示し、実像
に近い欠陥情報が表示手段を通じて認識できるという効
果が得られる。
According to the second aspect of the invention, in addition to the effect of the first aspect of the invention, the information of the defect edge is accurately combined with the information of the defect length direction and displayed on the display means. The effect that the defect information close to the real image can be recognized through the display means is obtained.

【0061】請求項3の発明によれば、請求項1又は請
求項2の発明による効果に加えて、受信強度が高まっ
て、欠陥端部エコーの信号の検出や測定が一層容易にな
るという効果が得られる。
According to the invention of claim 3, in addition to the effect of the invention of claim 1 or claim 2, the reception intensity is increased, and the detection and measurement of the signal of the defective end echo is further facilitated. Is obtained.

【0062】請求項4の発明によれば、請求項1から請
求項3までのいずれか一項の発明による効果に加えて、
超音波の収束と可変角走査の制御を電子的に行えるの
で、装置の取扱が容易となる。
According to the invention of claim 4, in addition to the effect of the invention of any one of claims 1 to 3,
Since the ultrasonic waves can be converged and the variable angle scanning can be electronically controlled, the device can be easily handled.

【0063】請求項5の発明によれば、請求項1から請
求項4までのいずれか一項の発明による効果に加えて、
受信探触子をどの様な位置にあってもその位置における
受信最大感度にセットして、微弱な信号値である端部エ
コー信号の検出,測定が容易になる効果が得られる。
According to the invention of claim 5, in addition to the effect of the invention of any one of claims 1 to 4,
At any position, the receiving probe is set to the maximum receiving sensitivity at that position, and the effect of facilitating detection and measurement of the end echo signal, which is a weak signal value, can be obtained.

【0064】請求項6の発明によれば、請求項1の発明
による効果をスイッチング制御で送信超音波の屈折角を
任意の屈折角に容易に可変して欠陥端部の算定が容易に
達成できる。
[0064] According to the invention of claim 6, easily variable and the calculation of the defect ends readily accomplished any refraction angle refraction angle of the transmitted ultrasonic wave effects of the invention of claim 1 in switching control it can.

【0065】請求項7の発明によれば、請求項1から請
求項3までのいずれか一項の発明による効果に加えて、
端部エコーを最良の条件で計測出来て、欠陥の精度の良
い評価が可能になる。
According to the invention of claim 7, in addition to the effect by the invention of any one of claims 1 to 3,
The edge echo can be measured under the best condition, and the defect can be evaluated with high accuracy.

【0066】請求項8の発明によれば、請求項1から請
求項3までのいずれか一項の発明による効果に加えて、
機械式の走査機構を電子式走査に置き換えたので、装置
がコンパクトに成る効果が得られる。
According to the invention of claim 8, in addition to the effect of the invention of any one of claims 1 to 3,
Since the mechanical scanning mechanism is replaced by the electronic scanning, the effect of making the apparatus compact can be obtained.

【0067】請求項9の発明によれば、請求項1から請
求項8までのいずれか一手段による効果に加えて、受信
探触子の感度を向上して一層高精度な欠陥検査が可能と
なる効果が得られる。
According to the invention of claim 9, in addition to the effect of any one of claims 1 to 8, the sensitivity of the receiving probe is improved to enable more highly accurate defect inspection. The effect is obtained.

【0068】請求項10の発明によれば、請求項1から
請求項9までのいずれか一手段による効果に加えて、共
通の表示手段に欠陥端部の位置と被検査体の表面と底面
との位置とを合成して表示できるから、被検査体内の欠
陥の存在位置が認識しやすいという効果が得られる。
According to the invention of claim 10, in addition to the effect of any one of claims 1 to 9, the position of the defect end, the surface and the bottom of the object to be inspected are shared by the common display means. Since it can be displayed by combining with the position of, the effect of easily recognizing the existing position of the defect in the inspection object is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す超音波探傷欠陥寸法測
定装置の説明図である。
FIG. 1 is an explanatory view of an ultrasonic flaw detection defect size measuring apparatus showing an embodiment of the present invention.

【図2】本発明の一実施例を示す探傷データ計測に関す
る原理説明図である。
FIG. 2 is an explanatory diagram of the principle of flaw detection data measurement according to an embodiment of the present invention.

【図3】本発明の一実施例を示す画像処理出力の説明図
である。
FIG. 3 is an explanatory diagram of image processing output according to an embodiment of the present invention.

【図4】本発明の一実施例を示す簡易型の超音波探傷欠
陥寸法測定装置の説明図である。
FIG. 4 is an explanatory diagram of a simple ultrasonic flaw detection defect size measuring apparatus according to an embodiment of the present invention.

【図5】本発明の一実施例を示す受信探触子に垂直探触
子を用いた説明図である。
FIG. 5 is an explanatory diagram in which a vertical probe is used as a receiving probe according to an embodiment of the present invention.

【図6】本発明の一実施例を示す電子走査可変角探触子
を用いた超音波探傷欠陥寸法測定装置の説明図である。
FIG. 6 is an explanatory diagram of an ultrasonic flaw detection defect size measuring apparatus using an electronic scanning variable angle probe according to an embodiment of the present invention.

【図7】本発明の探傷原理説明図である。FIG. 7 is an explanatory diagram of a flaw detection principle of the present invention.

【図8】本発明を溶接部に適用した場合の探触子配置説
明図である。
FIG. 8 is an explanatory diagram of probe arrangement when the present invention is applied to a welded portion.

【図9】本発明の欠陥端部位置標定の基本原理説明図で
ある。
FIG. 9 is a diagram illustrating the basic principle of defect edge position locating according to the present invention.

【図10】本発明の欠陥端部位置演算の原理説明図であ
る。
FIG. 10 is a diagram illustrating the principle of defect edge position calculation according to the present invention.

【図11】機械的走査による超音波探傷欠陥寸法測定走
査の原理説明図である。
FIG. 11 is an explanatory diagram of the principle of ultrasonic flaw detection defect size measurement scanning by mechanical scanning.

【図12】電子走査による超音波探傷欠陥寸法測定走査
の原理説明図である。
FIG. 12 is an explanatory diagram of the principle of ultrasonic flaw detection defect size measurement scanning by electronic scanning.

【図13】端部エコー法による欠陥サイジングの公知例
の説明図である。
FIG. 13 is an explanatory diagram of a known example of defect sizing by the edge echo method.

【図14】端部エコーの信号出力の説明図である。FIG. 14 is an explanatory diagram of signal output of an end echo.

【図15】散乱波法による欠陥サイジングの公知例の説
明図である。
FIG. 15 is an explanatory diagram of a known example of defect sizing by a scattered wave method.

【図16】散乱波法による欠陥サイジングの適用上の問
題点の一例の説明図である。
FIG. 16 is an explanatory diagram of an example of problems in application of defect sizing by the scattered wave method.

【符号の説明】[Explanation of symbols]

1…被検査物、2…欠陥、3…超音波探触子構造体、4
…送信探触子、5…アレイ超音波振動子、6…欠陥下端
からの端部エコー受信位置の受信探触子、7…欠陥下端
受信位置の受信超音波振動子、8…走査機構、9…走査
ロッド、10…欠陥下端からの端部エコー、11…集束
超音波中心ビーム、13…欠陥上端からの端部エコー、
14…アレイ超音波振動子の電子走査方向、15…超音
波探傷制御器、16…データ収録演算制御装置、17…
走査機構用制御器、18…プリンタ、19…エンコー
ダ、20…欠陥下端、21…欠陥上端、22…欠陥上端
からの端部エコー受信位置の受信探触子。
1 ... Inspected object, 2 ... Defect, 3 ... Ultrasonic probe structure, 4
... transmission probe, 5 ... array ultrasonic transducer, 6 ... reception probe at end echo reception position from lower end of defect, 7 ... receiving ultrasonic transducer at lower end of defect reception position, 8 ... scanning mechanism, 9 ... scanning rod, 10 ... end echo from bottom of defect, 11 ... focused ultrasound central beam, 13 ... end echo from top of defect,
14 ... Electronic scanning direction of array ultrasonic transducer, 15 ... Ultrasonic flaw detection controller, 16 ... Data recording arithmetic control device, 17 ...
Controller for scanning mechanism, 18 ... Printer, 19 ... Encoder, 20 ... Defect lower end, 21 ... Defect upper end, 22 ... Receiving probe of end echo reception position from defect upper end.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 洋司 茨城県日立市幸町三丁目2番1号 日立 エンジニアリング株式会社内 (56)参考文献 特開 平1−145565(JP,A) 特開 平9−145696(JP,A) 特開 昭59−122944(JP,A) 特開 昭54−46595(JP,A) 特開 平5−18944(JP,A) 特開 平2−78949(JP,A) 特開 昭58−139062(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 29/00 - 29/28 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoji Yoshida 3-2-1, Sachimachi, Hitachi City, Ibaraki Prefecture Hitachi Engineering Co., Ltd. (56) Reference JP-A-1-145565 (JP, A) JP-A 9-145696 (JP, A) JP 59-122944 (JP, A) JP 54-46595 (JP, A) JP 5-18944 (JP, A) JP 2-78949 (JP, A) JP 58-139062 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) G01N 29/00-29/28

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】欠陥に近い位置に受信探触子を、前記受信
探触子の位置にくらべて相対的に前記欠陥に遠い位置に
送信探触子として可変角超音波探触子を置いた探触子構
造体と、少なくとも前記送信探触子から被検査体表面へ
の超音波入射点を変化させる手段と、前記受信探触子か
らの受信信号に基づくデータの処理手段と、前記処理手
段からのデータの表示手段とを備えた超音波探傷装置に
おいて、前記データの処理手段は、前記超音波入射点と
前記欠陥の端部の超音波反射波の見掛け上の超音波反射
点とを結んだ複数の直線の交点を欠陥の端部として算定
する欠陥端部評定処理部を備え、前記表示手段は、前記
処理手段と前記算定結果を表示するように接続されてい
ることを特徴とする超音波探傷装置。
1. A receiving probe is placed at a position close to the defect, and a variable-angle ultrasonic probe is placed as a transmitting probe at a position relatively far from the defect as compared with the position of the receiving probe. A probe structure, a means for changing at least an ultrasonic wave incident point from the transmission probe to the surface of the object to be inspected, a processing means for processing data based on a reception signal from the reception probe, and the processing means. In the ultrasonic flaw detector with the data display means from the above, the data processing means connects the ultrasonic wave incident point and the apparent ultrasonic wave reflection point of the ultrasonic wave reflected at the end of the defect. A defect edge evaluation processing section for calculating an intersection of a plurality of straight lines as an edge of a defect, wherein the display means is connected to the processing means so as to display the calculation result. Sonic flaw detector.
【請求項2】請求項1において、前記送信探触子を送受
信共用の探触子として採用し、前記可変角超音波探触子
にデータの処理手段を接続し、前記データの処理手段
に、前記可変角超音波探触子からの受信信号によるデー
タに基づいて欠陥の位置を算定する探傷処理部を備え、
前記表示手段は、前記探傷処理部と欠陥端部評定処理部
からのデータを併記するように前記データの処理手段に
接続してあることを特徴とする超音波探傷装置。
2. The transmission probe according to claim 1, wherein the transmission probe is used for both transmission and reception, data processing means is connected to the variable-angle ultrasonic probe, and the data processing means comprises: A flaw detection processing unit for calculating the position of the defect based on the data by the received signal from the variable angle ultrasonic probe is provided,
The ultrasonic flaw detector, wherein the display means is connected to the data processing means so that the data from the flaw detection processing section and the data from the defect edge evaluation processing section are written together.
【請求項3】請求項1又は請求項2において、前記送信
探触子は超音波ビームを集束させる手段を備えているこ
とを特徴とする超音波探傷装置。
3. The ultrasonic flaw detector according to claim 1 or 2, wherein the transmission probe includes means for focusing an ultrasonic beam.
【請求項4】請求項1から請求項3までのいずれか一項
において、送信探触子に電子位相制御型の超音波探触子
を用いたことを特徴とする超音波探傷装置。
4. An ultrasonic flaw detector according to any one of claims 1 to 3, wherein an electronic phase control type ultrasonic probe is used as the transmission probe.
【請求項5】請求項1から請求項4までのいずれか一項
において、受信探触子に可変角超音波探触子を用いたこ
とを特徴とする超音波探傷装置。
5. An ultrasonic flaw detector according to any one of claims 1 to 4, wherein a variable-angle ultrasonic probe is used as the receiving probe.
【請求項6】請求項1において、送信探触子として、複
数の超音波振動子を被検査物表面への超音波入射点を同
心円中心とする楔材の円周上に配置したアレイ型探触子
スイッチング制御する探触子を用いることを特徴とす
る超音波探傷装置。
6. The array type probe according to claim 1, wherein a plurality of ultrasonic transducers are arranged as a transmitting probe on a circumference of a wedge member whose concentric center is an ultrasonic wave incident point on the surface of the object to be inspected. probe ultrasonic flaw detector, characterized in that the used probe for controlling switching.
【請求項7】請求項1又は請求項2又は請求項3におい
て、受信探触子に固定角探触子を用い、送信探触子に可
変角超音波探触子を用い、前記受信探触子を固定し、こ
れに対して走査方向に移動自在に送信探触子を搭載した
探触子構造体と、前記探触子構造体に連結された走査機
構とを備えたことを特徴とする超音波探傷装置。
7. The receiving probe according to claim 1, 2, or 3, wherein a fixed-angle probe is used as the receiving probe and a variable-angle ultrasonic probe is used as the transmitting probe. The probe structure is provided with a probe fixed to the probe and having a transmission probe movably in the scanning direction, and a scanning mechanism connected to the probe structure. Ultrasonic flaw detector.
【請求項8】請求項1又は請求項2又は請求項3におい
て、受信探触子と送信探触子とを走査方向において相対
的に固定されて装備した探触子構造体と、前記送信探触
子として採用された電子走査機能付き電子位相制御集束
型可変角探触子と、前記探触子構造体に連結された走査
機構とを備えたことを特徴とする超音波探傷装置。
8. A probe structure according to claim 1, 2 or 3, wherein a receiving probe and a transmitting probe are relatively fixed and mounted in the scanning direction, and the transmitting probe. An ultrasonic flaw detector, comprising: an electronic phase control focusing variable angle probe having an electronic scanning function, which is used as a probe, and a scanning mechanism connected to the probe structure.
【請求項9】請求項1から請求項8までのいずれか一項
において、受信用探触子の振動子の後面の充填材を無く
するか、あるいは前記後面での超音波に対するダンパー
効果を緩める手段を講じてあることを特徴とする超音波
探傷装置。
9. The method according to any one of claims 1 to 8, wherein the filler on the rear surface of the transducer of the receiving probe is eliminated, or the damper effect for ultrasonic waves on the rear surface is relaxed. An ultrasonic flaw detector characterized in that means are taken.
【請求項10】請求項1から請求項9までのいずれか一
項において、前記データの処理手段は、被検査体の肉厚
方向への超音波送受信データにより前記被検査体の表面
と底面との位置を認識する演算部と、前記演算部による
表面と底面との情報を表示手段に表示するように前記表
示手段が前記データの処理手段に接続されていることを
特徴とする超音波探傷装置。
10. The data processing means according to any one of claims 1 to 9, wherein the surface of the inspection object and the bottom surface of the inspection object are detected by ultrasonic transmission / reception data in the thickness direction of the inspection object. The ultrasonic flaw detector, wherein the display unit is connected to the data processing unit so that the display unit displays information on the surface and the bottom surface by the calculation unit. .
JP05470798A 1998-03-06 1998-03-06 Ultrasonic flaw detector Expired - Fee Related JP3497984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05470798A JP3497984B2 (en) 1998-03-06 1998-03-06 Ultrasonic flaw detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05470798A JP3497984B2 (en) 1998-03-06 1998-03-06 Ultrasonic flaw detector

Publications (2)

Publication Number Publication Date
JPH11248690A JPH11248690A (en) 1999-09-17
JP3497984B2 true JP3497984B2 (en) 2004-02-16

Family

ID=12978283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05470798A Expired - Fee Related JP3497984B2 (en) 1998-03-06 1998-03-06 Ultrasonic flaw detector

Country Status (1)

Country Link
JP (1) JP3497984B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4633268B2 (en) * 2001-01-12 2011-02-16 川崎重工業株式会社 Ultrasonic flaw detector
JP4564183B2 (en) * 2001-01-19 2010-10-20 株式会社東芝 Ultrasonic flaw detection method
WO2005121772A1 (en) * 2004-06-11 2005-12-22 Shinko Inspection & Service Co., Ltd. Ultrasonic testing method and ultrasonic test instrument
RU2004126028A (en) * 2004-08-26 2006-02-27 Владимир Кистуевич Шухостанов (RU) METHOD FOR PHONON DIAGNOSTICS OF THE STATE OF THE OBJECT OF THE TECHNOSPHERE
JP5145066B2 (en) * 2008-02-12 2013-02-13 株式会社神戸製鋼所 Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
CN114199998B (en) * 2020-09-18 2024-03-08 宝山钢铁股份有限公司 Manual detection method and device for welding pipe groove unfused and slag inclusion defects

Also Published As

Publication number Publication date
JPH11248690A (en) 1999-09-17

Similar Documents

Publication Publication Date Title
US4570487A (en) Multibeam satellite-pulse observation technique for characterizing cracks in bimetallic coarse-grained component
US5497662A (en) Method and apparatus for measuring and controlling refracted angle of ultrasonic waves
US7784347B2 (en) Ultrasound phased array devices and methods
US8250923B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus
JP4884930B2 (en) Ultrasonic flaw detection apparatus and method
JP5800667B2 (en) Ultrasonic inspection method, ultrasonic flaw detection method and ultrasonic inspection apparatus
CN105699492A (en) An ultrasonographic method used for weld seam detection
JPH11183446A (en) Method and apparatus for ultrasonic flaw detection of weld
JP2007046913A (en) Welded structure flaw detection testing method, and steel welded structure flaw detector
US20130160551A1 (en) Ultrasonic flaw detection device and ultrasonic flaw detection method
US5804730A (en) Ultrasonic testing method
JP3535417B2 (en) Ultrasonic defect height measuring device and defect height measuring method
JP3497984B2 (en) Ultrasonic flaw detector
JP4600335B2 (en) Ultrasonic inspection method and apparatus
KR20100124238A (en) Calibration block (reference block) and calibration procedure for phased-array ultrasonic inspection
JP5738684B2 (en) Ultrasonic flaw detection test method, ultrasonic flaw detection test apparatus and ultrasonic flaw detection test program incorporating surface shape identification processing of ultrasonic flaw detection test specimen
KR102037692B1 (en) The ultrasonic testing method using phased-array ultrasonic transducers and wedges
JP2007178186A (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JPH03122563A (en) Ultrasonic flaw detection apparatus
Komura et al. Improved ultrasonic testing by phased array technique and its application
JPH07244028A (en) Apparatus and method for ultrasonically detecting flaw on spherical body to be detected
JP4175762B2 (en) Ultrasonic flaw detector
JP4527216B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JPH0419558A (en) Image processing method for ultrasonic flaw detection test
US20060162457A1 (en) Method of using ultrasound to inspect a part in immersion

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees