JP3099329B2 - Lead storage battery - Google Patents

Lead storage battery

Info

Publication number
JP3099329B2
JP3099329B2 JP01157813A JP15781389A JP3099329B2 JP 3099329 B2 JP3099329 B2 JP 3099329B2 JP 01157813 A JP01157813 A JP 01157813A JP 15781389 A JP15781389 A JP 15781389A JP 3099329 B2 JP3099329 B2 JP 3099329B2
Authority
JP
Japan
Prior art keywords
alloy
lattice
active material
battery
maintenance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP01157813A
Other languages
Japanese (ja)
Other versions
JPH0322360A (en
Inventor
直人 星原
康彦 鈴井
宣行 高見
勝弘 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP01157813A priority Critical patent/JP3099329B2/en
Publication of JPH0322360A publication Critical patent/JPH0322360A/en
Application granted granted Critical
Publication of JP3099329B2 publication Critical patent/JP3099329B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は鉛蓄電池の改善に関するものであり、とく
に、自動車用鉛蓄電池のメンテナンスフリー性能を維持
しながら、格子と活物質との密着性を高めて、高温雰囲
気中での充放電寿命の向上を図るものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a lead-acid battery, and more particularly, to improving the adhesion between a grid and an active material while maintaining the maintenance-free performance of a lead-acid battery for an automobile. It is intended to improve the charge / discharge life in a high temperature atmosphere.

従来の技術 一般乗用車の普及とともに、自動車用鉛蓄電池に対し
ても保守管理の不要なメンテナンスフリー化が要求され
るようになってきた。その為、自己放電が少なく、液べ
りの少ないメンテナンスフリー電池用の格子合金とし
て、Pb−Ca系合金が実用化されてきた。
2. Description of the Related Art With the spread of general passenger cars, there has been a demand for lead-acid batteries for automobiles to be maintenance-free without maintenance. For this reason, Pb-Ca alloys have been put to practical use as lattice alloys for maintenance-free batteries with low self-discharge and low liquid swelling.

また、近年のカーエレクトロニクスの発展により電装
品の装着が増え、電池に対する負荷が増大してきた。さ
らに、エンジンルーム内が緻密になるとともに、自動車
の増加が渋滞が重なり、電池が高温状態で使用されるこ
とが多くなってきた。このように、電気負荷が増加し環
境温度が高くなり非常に苛酷な条件で使われるようにな
ってきた。
In addition, due to the recent development of car electronics, the mounting of electrical components has increased, and the load on batteries has increased. Further, as the engine room becomes denser, the number of automobiles increases and congestion overlaps, and the batteries are often used at high temperatures. As described above, the electric load is increased and the environmental temperature is increased, so that it has been used under extremely severe conditions.

発明が解決しようとする課題 そのため、Pb−Ca系合金を格子に用いてメンテナンス
フリー性を保ちながら、耐久力を高めるために、Pb−Ca
−Sn三元合金製の圧延シートを格子に用いて耐食性を高
めたり、格子断面積を大きくしたり、活物質量を増やし
さらに活物質で格子を包み込む構造を構成させるなどの
手段が開発されてきた。
Problems to be Solved by the Invention Therefore, while maintaining the maintenance-free property by using a Pb-Ca-based alloy for the lattice, in order to enhance the durability, Pb-Ca
Means have been developed, such as using a rolled sheet made of Sn ternary alloy for the grid to increase corrosion resistance, increase the grid cross-sectional area, increase the amount of active material, and configure a structure that wraps the grid with active material. Was.

このように市場の強い要望であるメンテナンスフリー
性能をPb−Ca系合金の開発で達するとともに、苛酷な使
用条件に対する耐久力を高めるために、改善が図られて
きた。しかしながら、近年の車両の高温化傾向は非常に
厳しく、高温耐久力の強化が必要である。
As described above, maintenance-free performance, which is a strong demand of the market, has been achieved by the development of Pb-Ca alloys, and improvements have been made in order to increase durability under severe use conditions. However, the temperature of vehicles in recent years is extremely severe, and it is necessary to enhance high-temperature durability.

本発明はメンテナンスフリー性を維持しながら、高温
雰囲気中での充電効率を高めて、充放電サイクルでの長
寿命化を図るものである。
The present invention aims to increase the charging efficiency in a high-temperature atmosphere while maintaining the maintenance-free property, and to prolong the service life in a charge / discharge cycle.

すなわち、カーエレクトロニクスの発展で電気負荷が
増大しエンジンルーム内が緻密になり、道路状態も渋滞
が増えて、エンジンルームが高温状態になる傾向が急増
している。そのため、電池も高温に対する耐久力が求め
られてきた。そこで、耐食性を高め、充電受入れ性を一
層高めるとともに、高温耐久性を改善して寿命性能を向
上させるものである。
That is, with the development of car electronics, the electric load increases, the interior of the engine room becomes denser, the traffic condition of roads also increases, and the tendency of the engine room to become high temperature is increasing rapidly. For this reason, batteries have also been required to have durability against high temperatures. Therefore, the corrosion resistance is improved, the charge acceptability is further improved, and the high-temperature durability is improved to improve the life performance.

課題を解決するための手段 エキスパンド格子体としてカルシウム(Ca)を0.02wt
%〜0.15wt%,スズ(Sn)を0〜5.0wt%含み、残部が
鉛(Pb)からなるPb−Ca系合金母材の格子体表面に、ア
ンチモン(Sb)を5.0〜50wt%含むPb−Sb合金に,ビス
マス(Bi),砒素(As),銅(Cu),銀(Ag),鉄(F
e)からなる群の元素の少なくとも1種類を含有した合
金層が、母材の厚みに対して1.0%以下として設けられ
たものである。
Means for Solving the Problems Calcium (Ca) 0.02wt as expanded lattice
Pb containing 5.0 to 50 wt% of antimony (Sb) on the lattice surface of a Pb-Ca based alloy base material containing 0 to 5.0 wt% of tin (Sn) and the rest being lead (Pb) For bismuth (Bi), arsenic (As), copper (Cu), silver (Ag), iron (F
e) an alloy layer containing at least one element of the group consisting of the group consisting of 1.0% or less with respect to the thickness of the base material.

以上のような格子体を用いることにより、Pb−Ca−Sn
合金の優れたメンテナンスフリー性能を維持して、高温
雰囲気中で使用されたときの充電受入れ性を向上させ、
さらに長寿命を達成する耐久力の向上をはかるものであ
る。
By using such a lattice, Pb-Ca-Sn
Maintaining the excellent maintenance-free performance of the alloy, improving the charge acceptance when used in a high temperature atmosphere,
Further, the durability is improved to achieve a long life.

格子表面層に異種合金製の薄層を形成する方法として
は、母材合金板と異種合金箔とを重ね合わせ圧延する方
法、あるいは母材合金格子に異種合金を電析させるなど
の方法がある。
As a method of forming a thin layer made of a dissimilar alloy on the lattice surface layer, there is a method in which a base material alloy plate and a dissimilar alloy foil are overlapped and rolled, or a method in which a dissimilar alloy is deposited on a base material alloy lattice. .

なお、本発明は正極、負極両方に用いてもよいが、正
極だけに用いたほうがメンテナンス性能の低下がほとん
ど見られないので、メンテナンス性能を重視する場合
は、異種合金層を有する格子は正極用に用い、負極用は
Pb−Ca−Sn合金格子を用いるとよい。
Although the present invention may be used for both the positive electrode and the negative electrode, the maintenance performance is hardly reduced when only the positive electrode is used, so when the maintenance performance is important, the lattice having the dissimilar alloy layer is used for the positive electrode. Used for the negative electrode
A Pb-Ca-Sn alloy lattice may be used.

作用 本発明はPb−Ca系合金格子の表面層にPb−SbおよびB
i,As,Cu,Ag,Feの少なくとも1種類以上を含有する合金
層を有した格子を用いることにより、Pb−Ca系合金格子
のメンテナンス性能を維持しながら、充電受入れ性を向
上させるとともに、高温耐久力を高めるものである。
Action The present invention provides Pb-Sb and B on the surface layer of the Pb-Ca based alloy lattice.
By using a grid having an alloy layer containing at least one of i, As, Cu, Ag, and Fe, while maintaining the maintenance performance of the Pb-Ca based alloy grid, improving the charge acceptability, It enhances high-temperature durability.

格子表面に形成されたPb−Sb−(Bi,As,Cu,Ag,Fe)合
金層中のSb,Bi等は使用中に正極活物質に吸着されて、
活物質の粗大化を抑制し微細な結晶構造を構成する。こ
の微細な結晶を保つことにより、高効率で充電されるも
のと考えられる。
Sb, Bi, etc. in the Pb-Sb- (Bi, As, Cu, Ag, Fe) alloy layer formed on the lattice surface are adsorbed by the positive electrode active material during use,
It suppresses coarsening of the active material and forms a fine crystal structure. It is considered that by keeping these fine crystals, the battery is charged with high efficiency.

また、充放電サイクルをくり返し行うと、負極活物質
は収縮して、表面積が小さくなっていく。その結果、一
定電圧で充電する場合の正極の充電効率を阻害する傾向
がある。このような現象に対しても、極わずかな量のS
b,Bi等が負極活物質に析出することにより、正極の充電
効率への影響を抑制する働きがあるものと考えられる。
When the charge and discharge cycle is repeated, the negative electrode active material shrinks and the surface area decreases. As a result, the charging efficiency of the positive electrode when charging at a constant voltage tends to be impaired. Even for such a phenomenon, a very small amount of S
It is considered that precipitation of b, Bi, etc. on the negative electrode active material has a function of suppressing the influence on the charging efficiency of the positive electrode.

さらに、正極活物質に吸着されたSb,Bi等は活物質同
志の結合力を高めるとともに、格子と活物質との密着性
を高め、深放電のくり返しによる活物質の軟化を抑制す
る働きがあると考えられる。とくに、高温雰囲気中で使
用される場合、格子の腐食が侵攻し極板が増長して、格
子と活物質が剥離する。そこで、活物質の結合力を高め
ることにより格子との密着性も強くなり、高温耐久力を
向上させるものと考えられる。
Furthermore, Sb, Bi, etc. adsorbed on the positive electrode active material increase the bonding force between the active materials, increase the adhesion between the lattice and the active material, and suppress the softening of the active material due to repeated deep discharge. it is conceivable that. In particular, when used in a high-temperature atmosphere, the corrosion of the grid invades, the electrode plate increases, and the grid and the active material are separated. Therefore, it is considered that by increasing the binding force of the active material, the adhesiveness to the lattice is increased, and the high-temperature durability is improved.

以上のように、本発明は格子表面に配置されたSbおよ
びBi等が正極活物質あるいは負極活物質に分散されて、
充電効率を高めていると思われる。この格子表面の合金
にSbおよびBi等が含まれることで一層高効率な充電受入
れ性が認められた。合金中にBi等を存在させることによ
り、Sb,Bi等の遊離を促進し、速やかに正極活物質中に
吸着されて、活物質同志の結合力を強め、格子との密着
性も高めて耐久力を改善するとともに、極わずかな量が
負極に析出し、減液量の増大を抑制しながら、充電効率
を改善するものと推定される。
As described above, in the present invention, Sb and Bi disposed on the lattice surface are dispersed in the positive electrode active material or the negative electrode active material,
It seems that charging efficiency has been improved. The inclusion of Sb, Bi, and the like in the alloy on the surface of this lattice confirmed a more efficient charge acceptability. Presence of Bi, etc. in the alloy promotes release of Sb, Bi, etc., and is quickly adsorbed in the positive electrode active material, strengthening the bonding force between the active materials, and improving the adhesion to the lattice, resulting in durability. It is presumed that while improving the power, a very small amount is deposited on the negative electrode, and the charging efficiency is improved while suppressing an increase in the amount of liquid reduction.

一方、格子表面の合金層は非常に薄く、Sb−Ca系合金
母材の厚みに対して10%以下である。格子体の電気化学
特性はPb−Ca系合金の特性を有しており、高い水素過電
圧を有している。そのため、本発明の電池は自己放電が
少なく、電解液の減少も少ないPb−Ca系合金のもつ優れ
たメンテナンスフリー性能を維持している。
On the other hand, the alloy layer on the lattice surface is very thin, which is 10% or less of the thickness of the Sb-Ca-based alloy base material. The electrochemical properties of the lattice body are the same as those of a Pb-Ca alloy, and have a high hydrogen overvoltage. Therefore, the battery of the present invention maintains the excellent maintenance-free performance of the Pb-Ca-based alloy with less self-discharge and less decrease in electrolyte.

なお、格子表面層のSbの量は0.8wt%未満では本発明
の充電効率を高める顕著な効果が認められなかった。ま
た、50wt%を越えると、Sbの負極への析出量が急増する
などにより、減液速度が増加し、メンテナンス性能が低
下するので、メンテナンスフリーを要望される分野へは
適していない。
When the amount of Sb in the lattice surface layer was less than 0.8 wt%, no remarkable effect of increasing the charging efficiency of the present invention was observed. On the other hand, if it exceeds 50 wt%, the amount of Sb deposited on the negative electrode will increase rapidly, and the rate of liquid reduction will increase, resulting in a decrease in maintenance performance. Therefore, it is not suitable for fields requiring maintenance free.

さらに、少なくともBi,As,Cu,Ag,Feのうち1種類以上
を0.2wt%以下と微量含有することで、とくに充放電を
くり返したときの負極の充電電位を一定に保って寿命末
期まで優れた充電効率を維持させるものと考えられる。
0.2wt%を越えるとメンテナンス性能が減少するのでメ
ンテナンスを望まれる用途には適さない。また、好まし
くは0.1wt%以下である。
Furthermore, by containing at least one of Bi, As, Cu, Ag, and Fe in a trace amount of 0.2 wt% or less, the charge potential of the negative electrode is kept constant, especially when charging and discharging are repeated, and is excellent until the end of life. It is considered that the charging efficiency is maintained.
If it exceeds 0.2 wt%, the maintenance performance is reduced, so that it is not suitable for applications requiring maintenance. Further, it is preferably 0.1% by weight or less.

母材合金には0.02wt%〜0.15wt%のCaを有し優れたメ
ンテナンス性能を発揮する。0.15wt%を越えると耐食性
が低下するので好ましくない。また、5.0wt%以下のSn
を加えることにより、さらに耐食性が向上する。とく
に、0.05wt%〜0.12wt%のCaと0.1wt%〜1.0wt%のSnを
有するPb合金製の冷間圧延シートを加工したエキスパン
ド格子を用いることで優れたメンテナンスフリー性能を
有している。
The base metal alloy has 0.02 wt% to 0.15 wt% Ca and exhibits excellent maintenance performance. If it exceeds 0.15% by weight, corrosion resistance is undesirably reduced. In addition, Sn of 5.0 wt% or less
, The corrosion resistance is further improved. In particular, it has excellent maintenance-free performance by using an expanded grid made of a cold-rolled sheet made of a Pb alloy containing 0.05 wt% to 0.12 wt% Ca and 0.1 wt% to 1.0 wt% Sn. .

実施例 つぎに、実施例により本発明の構成と効果について説
明する。
EXAMPLES Next, the configuration and effects of the present invention will be described with reference to examples.

Pb−0.07wt%Ca−0.25wt%Sn合金を用いて、厚さ10m
m,幅80mmの連続鋳造板をつくり、母材とした。
Using Pb-0.07wt% Ca-0.25wt% Sn alloy, thickness 10m
m, a continuous cast plate with a width of 80 mm was made and used as a base material.

この母材合金板に厚さ0.1mmのPb−5.0wt%Sb−0.03wt
%Bi−0.01Ag合金箔を重ね合わせて、冷間圧延を行い表
面に異種合金層を有する圧延シートを作った。上記圧延
シートをエキスパンド加工して活物質を充填し、正極板
を作った。
0.1mm thick Pb-5.0wt% Sb-0.03wt
% Bi-0.01Ag alloy foil was overlaid and cold rolled to produce a rolled sheet having a dissimilar alloy layer on the surface. The rolled sheet was expanded and filled with an active material to prepare a positive electrode plate.

上記正極板とPb−0.07wt%Ca−0.25wt%Sn合金母材を
用いた負極板とをポリエチレンの多孔性シートセパレー
タを介して、極板群を構成し、電池(A)を組み立て
た。
The above positive electrode plate and a negative electrode plate using a Pb-0.07 wt% Ca-0.25 wt% Sn alloy base material were formed into an electrode plate group with a polyethylene porous sheet separator interposed therebetween, and a battery (A) was assembled.

電池は5時間率容量を48AHとした。比較例として、Pb
−0.07wt%Ca−0.25wt%Sn合金母材を用いた正極板と負
極板を使って、電池(B)を組み立てた。
The battery had a 5-hour rate capacity of 48 AH. As a comparative example, Pb
A battery (B) was assembled using a positive electrode plate and a negative electrode plate using a -0.07 wt% Ca-0.25 wt% Sn alloy base material.

これらの電池(A),(B)を用いて充放電サイクル
寿命試験を行った。試験は放電を25Aで8分間行い、充
電を14.8Vの定電圧で12分間(最大電流25A)行う充放電
を1サイクルとした。なお、環境温度は80℃で行った。
そして、360サイクルごとに300Aで30秒間放電した。こ
の30秒目の電圧が7.2V以下になったときを寿命とした。
A charge / discharge cycle life test was performed using these batteries (A) and (B). In the test, discharging was performed at 25 A for 8 minutes, and charging and discharging were performed at a constant voltage of 14.8 V for 12 minutes (maximum current: 25 A), as one cycle. In addition, environmental temperature was performed at 80 degreeC.
Then, the battery was discharged at 300 A for 30 seconds every 360 cycles. The life was defined as the time when the voltage at the 30th second became 7.2 V or less.

第1図に充放電サイクル寿命試験結果を示す。 FIG. 1 shows the results of the charge / discharge cycle life test.

図から明らかなように本発明の電池(A)は1800サイ
クルと、比較に用いた従来電池(B)の1200サイクルに
比べて優れた寿命性能を示した。
As is clear from the figure, the battery (A) of the present invention exhibited an excellent life performance of 1800 cycles, which was superior to 1200 cycles of the conventional battery (B) used for comparison.

つぎに、これらの電池(A),(B)を分解し、極板
の劣化状態を調べた。本発明の電池(A)は高温雰囲気
中で充放電サイクルがくり返されて、格子の腐食が進
み、極板の変形が見られた。また、極板表面の活物質が
軟化していた。とくに、格子と活物質との界面に亀裂が
生じて、容量が低下し寿命状態となった。一方、従来電
池(B)の極板も変形が大きかった。しかし、活物質の
軟化は少なく、高温下での充電不足により、硫酸鉛の結
晶が成長していた。
Next, these batteries (A) and (B) were disassembled and the state of deterioration of the electrode plates was examined. In the battery (A) of the present invention, the charge / discharge cycle was repeated in a high-temperature atmosphere, the corrosion of the grid advanced, and the electrode plate was deformed. Further, the active material on the electrode plate surface was softened. In particular, a crack was generated at the interface between the lattice and the active material, the capacity was reduced, and the life state was reached. On the other hand, the electrode plate of the conventional battery (B) was also greatly deformed. However, the softening of the active material was small, and lead sulfate crystals grew due to insufficient charging at high temperatures.

なお、充放電サイクル中の電解液の減少量は本発明の
電池(A)も従来電池(B)と同様に少なかった。
The amount of decrease in the electrolytic solution during the charge / discharge cycle was small in the battery (A) of the present invention as in the conventional battery (B).

実施例では、Bi,Agを微量添加した例を示した。もち
ろん、実施例に示した以外のCu,As,Feを用いても同様の
効果が得られた。これらの元素がSbとの相乗効果によっ
て、充電不足を解消し、活物質の結合力を強め、高温耐
久力を改善するものと思われる。
In the embodiment, an example in which a very small amount of Bi and Ag is added is shown. Of course, the same effects were obtained by using Cu, As, and Fe other than those shown in the examples. It is thought that these elements solve the shortage of charge, strengthen the bonding force of the active material, and improve the high-temperature durability due to a synergistic effect with Sb.

発明の効果 本発明は優れたメンテナンス性能を有しながら、高温
耐久性を大幅に改善し、カーエレクトロニクスの発展す
る新時代の自動車用電池を提供するものである。
Advantageous Effects of the Invention The present invention is to provide a new era of automotive batteries with excellent maintenance performance, significantly improved high-temperature durability, and development of car electronics.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の電池の充放電サイクル試験結果を示す
図である。 A……本発明の電池、B……従来例の電池。
FIG. 1 is a diagram showing the results of a charge / discharge cycle test of the battery of the present invention. A: battery of the present invention; B: battery of conventional example.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 勝弘 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭61−188861(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/68 - 4/74 C22C 11/00 - 12/00 ────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Katsuhiro Takahashi 1006 Kazuma Kadoma, Kadoma-shi, Osaka Matsushita Electric Industrial Co., Ltd. (56) References JP-A-61-188861 (JP, A) (58) Field (Int.Cl. 7 , DB name) H01M 4/68-4/74 C22C 11/00-12/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】カルシウム(Ca)を0.02wt%〜0.15wt%、
スズ(Sn)を0〜5.0wt%含み、残部が鉛(Pb)からな
るPb−Ca系合金母材のエキスパンド格子体を少なくとも
正極に用いた鉛蓄電池において、前記エキスパンド格子
体表面に、アンチモン(Sb)を5.0〜50wt%を含むPb−S
b合金に、ビスマス(Bi)、砒素(As)、銅(Cu)、銀
(Ag),鉄(Fe)からなる群の元素の少なくとも1種類
を含有した合金層が、母材の厚みに対して1.0%以下と
して設けられたことを特徴とする鉛蓄電池。
(1) calcium (Ca) is contained in an amount of 0.02 wt% to 0.15 wt%;
In a lead-acid battery including at least a positive electrode of an expanded lattice body of a Pb-Ca based alloy base material containing tin (Sn) in an amount of 0 to 5.0 wt% and the balance of lead (Pb), antimony ( Pb-S containing 5.0 to 50 wt% of Sb)
An alloy layer containing at least one element of the group consisting of bismuth (Bi), arsenic (As), copper (Cu), silver (Ag), and iron (Fe) in the alloy b A lead-acid battery, characterized in that it is provided at 1.0% or less.
JP01157813A 1989-06-20 1989-06-20 Lead storage battery Expired - Lifetime JP3099329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01157813A JP3099329B2 (en) 1989-06-20 1989-06-20 Lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01157813A JP3099329B2 (en) 1989-06-20 1989-06-20 Lead storage battery

Publications (2)

Publication Number Publication Date
JPH0322360A JPH0322360A (en) 1991-01-30
JP3099329B2 true JP3099329B2 (en) 2000-10-16

Family

ID=15657856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01157813A Expired - Lifetime JP3099329B2 (en) 1989-06-20 1989-06-20 Lead storage battery

Country Status (1)

Country Link
JP (1) JP3099329B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03147262A (en) * 1989-11-01 1991-06-24 Shin Kobe Electric Mach Co Ltd Collector for lead-acid battery
US5834141A (en) * 1997-04-18 1998-11-10 Exide Corporation Positive grid alloys
JP5145644B2 (en) * 2006-03-28 2013-02-20 パナソニック株式会社 Lead acid battery

Also Published As

Publication number Publication date
JPH0322360A (en) 1991-01-30

Similar Documents

Publication Publication Date Title
KR100305423B1 (en) Expanded Grid For Electrode Plate of Lead-Acid Battery
EP0213203B1 (en) Grid for lead storage batteries and a method of producing the same
US5120620A (en) Binary lead-tin alloy substrate for lead-acid electrochemical cells
CN103109412B (en) Lead battery and be equipped with the idling stop vehicle of this lead battery
JP4160856B2 (en) Lead-based alloy for lead-acid battery and lead-acid battery using the same
JP3099330B2 (en) Lead storage battery
JPH11339811A (en) Copper alloy foil current collector for secondary battery
JP7296016B2 (en) Lead alloy foil, positive electrode for lead-acid battery, lead-acid battery, and power storage system
JP3099328B2 (en) Lead storage battery
JP3099329B2 (en) Lead storage battery
US6620551B1 (en) Positive plate current collector for lead storage battery and lead storage battery comprising the same
JP2002175798A (en) Sealed lead-acid battery
JP2000133276A (en) Negative electrode current collector for secondary battery
JPH02297864A (en) Lead storage battery
JP3052629B2 (en) Sealed lead-acid battery
JPS63148556A (en) Paste type lead acid battery
JP4364054B2 (en) Lead acid battery
JPH02299154A (en) Lead-acid battery
JP3094423B2 (en) Lead storage battery
JP2000200598A (en) Sealed lead-acid battery
JP5909974B2 (en) Lead acid battery
JP3036235B2 (en) Expanded grid of lead-acid battery
JP3102000B2 (en) Lead storage battery
JP2002260671A (en) Lead-acid battery
JPS6191874A (en) Collection body for lead storage battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070818

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080818

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080818

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

EXPY Cancellation because of completion of term