JP2966627B2 - Metal hydride storage battery - Google Patents

Metal hydride storage battery

Info

Publication number
JP2966627B2
JP2966627B2 JP4044026A JP4402692A JP2966627B2 JP 2966627 B2 JP2966627 B2 JP 2966627B2 JP 4044026 A JP4044026 A JP 4044026A JP 4402692 A JP4402692 A JP 4402692A JP 2966627 B2 JP2966627 B2 JP 2966627B2
Authority
JP
Japan
Prior art keywords
battery
negative electrode
batteries
hydrogen
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4044026A
Other languages
Japanese (ja)
Other versions
JPH05242908A (en
Inventor
佳久 滝澤
高士 上田
育生 金川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP4044026A priority Critical patent/JP2966627B2/en
Publication of JPH05242908A publication Critical patent/JPH05242908A/en
Application granted granted Critical
Publication of JP2966627B2 publication Critical patent/JP2966627B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、水素を吸蔵および放出
することのできる水素吸蔵合金を負極材料として用いた
金属水素化物蓄電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal hydride storage battery using, as a negative electrode material, a hydrogen storage alloy capable of storing and releasing hydrogen.

【0002】[0002]

【従来の技術】従来からよく用いられている蓄電池とし
ては、ニッケル−カドミウム蓄電池あるいは鉛蓄電池等
が挙げられる。ところで、近年、これらの電池より軽量
で且つ高容量で高エネルギー密度となる可能性があると
いうことで、水素吸蔵合金を負極材料として用いた水素
吸蔵電極を備えたニッケル−水素アルカリ蓄電池が注目
されている。
2. Description of the Related Art Nickel-cadmium storage batteries, lead storage batteries, and the like have been widely used as conventional storage batteries. By the way, in recent years, nickel-hydrogen alkaline storage batteries provided with a hydrogen storage electrode using a hydrogen storage alloy as a negative electrode material have been attracting attention because these batteries may be lighter, have higher capacity, and have a higher energy density than these batteries. ing.

【0003】このアルカリ蓄電池の負極に用いる水素吸
蔵電極は、一般に、特開昭61−66366号公報に示
されるように、ポリテトラフルオロエチレンやポリエチ
レンオキサイドなどの結着剤と水素吸蔵合金粉末とを混
練してペーストを作製し、パンチングメタルやエキスパ
ンドメタル等の芯体の両面に前記ペーストを塗着、乾燥
して作製される。こうして作製された水素吸蔵電極は、
ニッケル−カドミウム蓄電池に用いられる焼結式ニッケ
ル正極との間にセパレータを介在させて渦巻き状に捲回
した状態で電池外装缶に収容されニッケル−水素アルカ
リ蓄電池が構成される。
The hydrogen storage electrode used for the negative electrode of this alkaline storage battery generally comprises a binder such as polytetrafluoroethylene or polyethylene oxide and a hydrogen storage alloy powder as disclosed in Japanese Patent Application Laid-Open No. 61-66366. A paste is prepared by kneading, and the paste is applied to both surfaces of a core such as punched metal or expanded metal, and dried to prepare a paste. The hydrogen storage electrode thus produced is
A nickel-hydrogen alkaline storage battery is housed in a battery outer can in a state of being spirally wound with a separator interposed between the positive electrode and a sintered nickel positive electrode used for a nickel-cadmium storage battery.

【0004】ここで、上記ニッケル−水素アルカリ蓄電
池では、過充電時に正極、負極で次式に示すようにガス
発生反応が起こり、電池内圧が上昇する。特に、急速充
電においてはこの圧力上昇が顕著になる。 2OH- 2O+1/2O2+2e-・・・・・ 正極 2H2O+2e- OH-+H2 ・・・・・ 負極 そこで、特開平2−291665号公報に示されるよう
に、負極表面に撥水性樹脂や水素ガスの分解反応に対し
て触媒活性を有する材料を有する部分を設け、負極内部
に親水性樹脂を用いる方法が提案されている。
In the above nickel-hydrogen alkaline storage battery, a gas generation reaction occurs between the positive electrode and the negative electrode during overcharging as shown by the following formula, and the internal pressure of the battery increases. In particular, this pressure rise becomes remarkable in quick charging. 2OH - → H 2 O + 1 / 2O 2 + 2e - ····· cathode 2H 2 O + 2e - → 2 OH - + H 2 ····· anode Therefore, as shown in JP-A-2-291665, the negative electrode surface There has been proposed a method in which a portion having a material having catalytic activity against a decomposition reaction of hydrogen gas or a hydrogen gas is provided, and a hydrophilic resin is used inside the negative electrode.

【0005】この方法によれば以下のような理由によ
り、電池内の圧力を低下させ、放電時の電圧低下を防ぐ
ことができる。 撥水性樹脂を負極表面に用いることにより、負極表
面の撥水性が向上する。これにより、負極表面と水素ガ
スとが接触しやすくなり、水素吸蔵反応が速やかに進行
する。
[0005] According to this method, the pressure in the battery can be reduced and the voltage drop during discharging can be prevented for the following reasons. By using the water-repellent resin on the negative electrode surface, the water repellency on the negative electrode surface is improved. This makes it easier for the hydrogen gas to come into contact with the negative electrode surface, and the hydrogen storage reaction proceeds quickly.

【0006】更に、水素ガス分解反応に対して触媒活性
を有する材料の添加により、上記反応がさらに促進され
る。 極板内部に親水性樹脂を用いれば、電解液に対
する濡れ性を向上させることができるので、電気化学的
反応の有効面積が増大する。従って、充電電流密度が低
下し、水素の吸蔵効率が高くなることによって、上記式
に示された負極での水素ガス発生反応が抑制される。
Further, the addition of a material having catalytic activity to the hydrogen gas decomposition reaction further accelerates the above reaction. If a hydrophilic resin is used inside the electrode plate, the wettability to the electrolytic solution can be improved, so that the effective area of the electrochemical reaction increases. Accordingly, the charging current density is reduced, and the hydrogen storage efficiency is increased, thereby suppressing the hydrogen gas generation reaction at the negative electrode represented by the above formula.

【0007】[0007]

【発明が解決しようとする課題】しかし、上記の提案に
おける圧力低下の方法は、水素ガスに関するものであ
り、過充電時に正極から発生する酸素ガス消費反応の向
上、およびガス消費反応が行なわれるガスと極板表面と
の接触する界面、およびガスと電解液の接触する界面の
効果的な確保に関しては不十分なものであった。
However, the method of reducing the pressure in the above proposal relates to hydrogen gas, which improves the oxygen gas consuming reaction generated from the positive electrode during overcharging and the gas in which the gas consuming reaction is carried out. It has been insufficient to effectively secure the interface between the electrode and the electrode plate surface and the interface between the gas and the electrolyte.

【0008】さらに、撥水性材料が膜となることによっ
て、ガス消費反応や電気化学反応の反応界面が閉塞状態
となり、酸素ガス消費反応、および電池性能の低下を引
き起こすという問題があった。特に、フッ素樹脂を撥水
性材料として使用する場合フッ素樹脂が繊維化し、前記
のような弊害が生じやすい。本発明は、上記問題点に鑑
みて成されたものであり、密閉型金属水素化物蓄電池に
おいて、過充電時に正極より発生する酸素ガスを負極の
水素吸蔵電極において、より効果的に消費させることに
よって、電池性能を向上させた密閉型金属水素化物蓄電
池を提供することを目的とする。
Further, when the water-repellent material is formed into a film, there is a problem that a reaction interface of a gas consuming reaction or an electrochemical reaction is closed, thereby causing an oxygen gas consuming reaction and a decrease in battery performance. In particular, when a fluororesin is used as a water-repellent material, the fluororesin is converted into a fiber, and the above-described adverse effects are likely to occur. The present invention has been made in view of the above problems, and in a sealed metal hydride storage battery, oxygen gas generated from a positive electrode at the time of overcharge is more effectively consumed in a hydrogen storage electrode of a negative electrode. It is another object of the present invention to provide a sealed metal hydride storage battery having improved battery performance.

【0009】[0009]

【課題を解決するための手段】水素吸蔵合金を主成分と
する負極、アルカリ電解液含浸されたパレータ、ア
ルカリ電解液、及び正極からなる金属水素化物蓄電池に
おいて、前記負極と前記セパレータとの間には分子量が
300万以下に制限されたフッ素樹脂粉末が存在するこ
とを特徴とする。
Negative electrode mainly composed of hydrogen absorbing alloy SUMMARY OF THE INVENTION, cell alkaline electrolyte is impregnated separator, alkaline electrolyte, and the metal hydride storage battery comprising a positive electrode, and the negative electrode and the separator It is characterized in that a fluororesin powder whose molecular weight is restricted to 3,000,000 or less is present between them.

【0010】[0010]

【作用】この種の電池では、正極から発生した酸素ガス
は、次式に示す反応によって消費される。 1/4O2 + 1/2H2O + e- OH- MH + 1/4O2 M + 1/2H2O 上記反応を速やかに反応させるためには酸素ガスと水素
吸蔵合金からなる電極表面との界面、および酸素ガスと
電解液との界面が存在する状態、即ち電極、電解液、酸
素ガスが混在した3相界面を負極表面に存在させること
が重要となる。
In this type of battery, oxygen gas generated from the positive electrode is consumed by a reaction represented by the following equation. 1 / 4O 2 + 1 / 2H 2 O + e - → OH - MH + 1 / 4O 2 → M + 1 / 2H 2 O The reaction consisting of oxygen gas, the hydrogen storage alloy in order reacted promptly electrode It is important that a state in which an interface with the surface and an interface between the oxygen gas and the electrolytic solution exist, that is, a three-phase interface in which the electrode, the electrolytic solution, and the oxygen gas coexist is present on the negative electrode surface.

【0011】ここで上記構成の如く、撥水性を有するフ
ッ素樹脂を負極表面とセパレータとの間に配すれば、フ
ッ素樹脂の撥水性により、酸素ガスが負極表面に移動し
易くなり、かつ極板表面に存在しやすくなる。これによ
り、負極表面付近により細微に水素吸蔵合金表面、電解
液、及び電池内部ガスが混在する3相界面が十分に形成
され、上記の式に示した反応による酸素ガスの消費が円
滑に行なわれる。
Here, if a water-repellent fluororesin is disposed between the negative electrode surface and the separator as in the above configuration, the water repellency of the fluororesin makes it easier for oxygen gas to move to the negative electrode surface. It is likely to be present on the surface. As a result, a three-phase interface where the surface of the hydrogen storage alloy, the electrolyte solution, and the gas inside the battery are more minutely formed is sufficiently formed in the vicinity of the negative electrode surface, and the oxygen gas is smoothly consumed by the reaction shown in the above equation. .

【0012】尚、この場合撥水性樹脂として用いたフッ
素樹脂材料の分子量を300万以下にすれば、フッ素樹
脂の繊維化が防止されるので、フッ素樹脂が膜となり負
極表面が閉塞状態になることが防止される。このような
理由によって、酸素ガスの消費が一層円滑に行なわれる
ことになる。
In this case, if the molecular weight of the fluororesin material used as the water-repellent resin is set to 3,000,000 or less, the fluororesin is prevented from fibrillating, so that the fluororesin becomes a film and the negative electrode surface is closed. Is prevented. For this reason, the consumption of oxygen gas is performed more smoothly.

【0013】[0013]

【実施例】【Example】

〔実施例1〕図1は本発明の一例に係る円筒密閉型ニッ
ケル−水素電池の断面図であり、焼結式ニッケルからな
る正極1と、水素吸蔵合金粉末を有する負極2と、これ
ら正負両極1、2間に介挿されたセパレータ3とからな
る電極群4は渦巻状に捲回されている。この電極群4は
負極端子兼用の外装缶6内に配置されており、この外装
缶6と上記負極2とは負極用導電タブ5により接続され
ている。上記外装缶6の上開口にはパッキング7を介し
て封口体8が装着されており、この封口体8の内部には
コイルスプリング9が設けられている。このコイルスプ
リング9は電池内部の内圧が上昇したときに矢印A方向
に押圧されて内部のガスが大気中に放出されるように構
成されている。また、上記封口体8と前記正極1とは正
極用導電タブ10にて接続されている。
Embodiment 1 FIG. 1 is a cross-sectional view of a cylindrical sealed nickel-hydrogen battery according to an example of the present invention, in which a positive electrode 1 made of sintered nickel, a negative electrode 2 having a hydrogen storage alloy powder, and both positive and negative electrodes The electrode group 4 including the separator 3 interposed between the first and second electrodes is spirally wound. The electrode group 4 is disposed in an outer can 6 serving also as a negative electrode terminal. The outer can 6 and the negative electrode 2 are connected by a negative electrode conductive tab 5. A sealing body 8 is attached to the upper opening of the outer can 6 via a packing 7, and a coil spring 9 is provided inside the sealing body 8. The coil spring 9 is configured such that when the internal pressure inside the battery increases, the coil spring 9 is pressed in the direction of arrow A and the gas inside is released into the atmosphere. The sealing body 8 and the positive electrode 1 are connected by a positive electrode conductive tab 10.

【0014】ここで上記構造の円筒密閉型ニッケル−水
素電池を、以下のようにして作製した。先ず初めに、水
素吸蔵合金の原料金属として、市販のミッシュメタル
(Mm、希土類元素の混合物)、ニッケル、コバルト、
アルミニウム、マンガンが、元素比1.0:3.2:
1.0:0.2:0.6となるように秤量した後、高周
波誘導炉内で溶解、鋳造する。これにより、MmNi
3.2 CoAl0.2 Mn0.6 という組成の合金を得た。次
いで、この金属塊を機械的に粉砕して平均粒径が50μ
mの粉末を作製した。
Here, a cylindrical sealed nickel-hydrogen battery having the above structure was manufactured as follows. First, commercially available misch metals (Mm, a mixture of rare earth elements), nickel, cobalt,
Aluminum and manganese have an elemental ratio of 1.0: 3.2:
After weighing to 1.0: 0.2: 0.6, it is melted and cast in a high frequency induction furnace. Thereby, MmNi
An alloy having a composition of 3.2 CoAl 0.2 Mn 0.6 was obtained. Next, the metal lump is mechanically pulverized to have an average particle size of 50 μm.
m was prepared.

【0015】更に、この粉末に対して1wt%のポリエ
チレンオキサイドと、分散媒としての水を前記合金に加
えスラリーを作製し、パンチングメタルからなる導電性
支持体表面に塗着した後、乾燥および加圧を行い負極2
を得た。このようにして作製した負極2と焼結式ニッケ
ル正極1とを、不織布からなるセパレータ3を介して捲
回させ、その際に負極2とセパレータ3の間に分子量が
20万のポリテトラフルオロエチレン(PTFE)を
0.005mg/cm2 の割合で配し、渦巻状の電極群
4を作製した。この渦巻状の電極群4を外装管内に挿入
し、30重量%の水酸化カリウム水溶液を電解液として
注液した後、封口して公称容量1000mAhの円筒密
閉型ニッケル−水素電池を作製した。
Further, 1 wt% of polyethylene oxide and water as a dispersing medium are added to the above-mentioned alloy to prepare a slurry. The slurry is applied to the surface of a conductive support made of punched metal, and then dried and heated. Pressure and negative electrode 2
I got The negative electrode 2 thus produced and the sintered nickel positive electrode 1 are wound through a separator 3 made of non-woven fabric, and a polytetrafluoroethylene having a molecular weight of 200,000 is interposed between the negative electrode 2 and the separator 3. (PTFE) was disposed at a rate of 0.005 mg / cm 2 to prepare a spiral electrode group 4. This spiral electrode group 4 was inserted into an outer tube, and a 30% by weight aqueous solution of potassium hydroxide was injected as an electrolytic solution, and then sealed to produce a cylindrical sealed nickel-hydrogen battery having a nominal capacity of 1000 mAh.

【0016】このようにして作製した電池を、以下(A
1 ) 電池と称する。 〔実施例2、3〕PTFEの添加量がそれぞれ0.0
5、0.5mg/cm2 となるように配する以外は、上
記実施例1と同様に電池を作製した。このようにして作
製した電池を、以下それぞれ(A2 ) 電池、(A3 )電
池と称する。 〔実施例4〜6〕分子量が20万のPTFEに代えて、
分子量が300万のPTFEを用い、その添加量がそれ
ぞれ0.005、0.05、0.5mg/cm2 となる
ように配する以外は、上記実施例1と同様に電池を作製
した。
The battery fabricated in this manner is referred to as (A)
1 ) It is called a battery. [Examples 2 and 3] The amount of PTFE added was 0.0
A battery was fabricated in the same manner as in Example 1 except that the batteries were arranged so as to be 5, 0.5 mg / cm 2 . The batteries fabricated in this manner are hereinafter referred to as (A 2 ) battery and (A 3 ) battery, respectively. [Examples 4 to 6] Instead of PTFE having a molecular weight of 200,000,
A battery was manufactured in the same manner as in Example 1 except that PTFE having a molecular weight of 3,000,000 was used and the addition amounts were set to be 0.005, 0.05, and 0.5 mg / cm 2 , respectively.

【0017】このようにして作製した電池を、以下それ
ぞれ(A4 )〜(A6 )電池と称する。 〔実施例7〕PTFEに代えて、分子量20万のテトラ
フルオロエチレン−ヘキサフルオロプロピレン共重合体
(FEP)を用い、その添加量が0.05mg/cm2
となるように配した以外は、上記実施例1と同様に電池
を作製した。
The batteries fabricated in this manner are hereinafter referred to as (A 4 ) to (A 6 ) batteries, respectively. [Example 7] A tetrafluoroethylene-hexafluoropropylene copolymer (FEP) having a molecular weight of 200,000 was used in place of PTFE, and the amount of addition was 0.05 mg / cm 2.
A battery was fabricated in the same manner as in Example 1 except that the batteries were arranged so as to be as follows.

【0018】このようにして作製した電池を、以下(A
7 )電池と称する。 〔比較例1〜3〕分子量が20万のPTFEに代えて、
分子量が1000万のPTFEを用い、その添加量がそ
れぞれ0.005、0.05、0.5mg/cm2 とな
るように配する以外は上記実施例1と同様に円筒密閉型
ニッケル−水素電池を作製した。
The battery fabricated in this manner is referred to as (A)
7 ) Called a battery. [Comparative Examples 1 to 3] Instead of PTFE having a molecular weight of 200,000,
Cylindrical sealed nickel-hydrogen battery in the same manner as in Example 1 except that PTFE having a molecular weight of 10,000,000 was used and the addition amounts thereof were set to be 0.005, 0.05, and 0.5 mg / cm 2 , respectively. Was prepared.

【0019】このようにして作製した電池を、以下それ
ぞれ(X1 )〜(X3 )電池と称する。 〔比較例4〕セパレータと負極の間に何も配さない以外
は、上記実施例1と同様に円筒密閉型ニッケル−水素蓄
電池を作製した。
The batteries fabricated in this manner are hereinafter referred to as (X 1 ) to (X 3 ) batteries, respectively. Comparative Example 4 A cylindrical sealed nickel-hydrogen storage battery was manufactured in the same manner as in Example 1 except that nothing was arranged between the separator and the negative electrode.

【0020】このようにして作製した電池を、以下(X
4 )電池と称する。 〔実験1〕本発明の(A1 ) 〜(A7 )電池と比較例の
(X1 )〜(X4 )電池を用いて充電時の電池内部の圧
力を測定したのでその結果を表1に示す。尚、内部圧
は、0.1Cの充放電を3回繰り返すことによって活性
化した後、電池外装缶の底部に孔を設け、この孔部に内
圧測定用の圧力センサーを取付けることにより測定をし
た。
The battery fabricated in this manner is referred to as (X
4 ) Called a battery. [Experiment 1] The pressure inside the battery during charging was measured using the batteries (A 1 ) to (A 7 ) of the present invention and the batteries (X 1 ) to (X 4 ) of the comparative example. Shown in After the internal pressure was activated by repeating charging and discharging at 0.1 C three times, a hole was provided in the bottom of the battery outer can, and the internal pressure was measured by attaching a pressure sensor for measuring the internal pressure to the hole. .

【0021】更に、この電池を1000mAの電流で充
電を行い、電池電圧がピーク値に達したのち、このピー
ク値から10mV低下した時点で充電を停止させ、この
間の電池内部圧力を測定した。
Further, the battery was charged with a current of 1000 mA, and after the battery voltage reached a peak value, the charging was stopped when the battery voltage dropped by 10 mV from the peak value, and the internal pressure of the battery was measured during that time.

【0022】[0022]

【表1】 [Table 1]

【0023】表1から明らかなように、本発明の
(A1 ) 〜(A7 )電池は比較例(X1 )〜(X4 )電
池と比べて、電池の内部圧の上昇が抑制されていること
が認められる。特に、本発明の(A1 ) 〜(A7 )電池
が、分子量1000万のPTFEを用いて作製した(X
1 )〜(X3 )電池と比較して圧力上昇の抑制効果が優
れているのは、以下の理由による。
As is clear from Table 1, the batteries (A 1 ) to (A 7 ) of the present invention suppress the increase in the internal pressure of the battery as compared with the batteries of Comparative Examples (X 1 ) to (X 4 ). Is recognized. In particular, the batteries (A 1 ) to (A 7 ) of the present invention were prepared using PTFE having a molecular weight of 10,000,000 (X
1 ) to (X 3 ) The superior effect of suppressing the pressure increase as compared with the battery is as follows.

【0024】即ち、本発明の(A1 ) 〜(A7 )電池で
は、低分子量のフッ素樹脂を撥水性を有する材料として
使用しているので、フッ素樹脂が繊維化するのを抑制で
き、水素吸蔵電極表面が閉塞状態になることが防止され
る。この結果、水素吸蔵合金表面付近に、より微細に水
素吸蔵合金表面、電解液、および電池内部ガスの3相界
面を形成することができるためであると考えられる。
That is, in the batteries (A 1 ) to (A 7 ) of the present invention, since the low molecular weight fluororesin is used as the material having water repellency, it is possible to suppress the fluororesin from forming fibers and to reduce the hydrogen content. The occlusion electrode surface is prevented from being closed. As a result, it is considered that a three-phase interface between the surface of the hydrogen storage alloy, the electrolyte, and the gas inside the battery can be formed more minutely near the surface of the hydrogen storage alloy.

【0025】上記の結果から、フッ素樹脂の繊維化によ
る弊害を防ぎ、フッ素樹脂の撥水性の特性を生かすため
には、その分子量を300万以下にする必要があること
が分かった。 〔実験2〕本発明の(A1 ) 〜(A7 )電池と比較例の
(X1 )〜(X4 )電池を用いて電池のサイクル寿命を
測定したので、その結果を表2に示す。
From the above results, it was found that the molecular weight of the fluororesin must be reduced to 3,000,000 or less in order to prevent the adverse effects caused by the fiberization of the fluororesin and to make use of the water-repellent properties of the fluororesin. [Experiment 2] The cycle life of the batteries was measured using the batteries (A 1 ) to (A 7 ) of the present invention and the batteries (X 1 ) to (X 4 ) of the comparative example. The results are shown in Table 2. .

【0026】尚、測定時のサイクル条件は、各電池を5
00mAの電流で2.5時間充電した後、500mAの
電流で放電し、電池電圧が1.0Vに達した時点で放電
を終了するというものである。そして、電池放電容量が
初期容量の50%になったサイクル数をサイクル寿命と
した。
The cycle conditions at the time of measurement were as follows:
After charging at a current of 00 mA for 2.5 hours, the battery is discharged at a current of 500 mA, and the discharge is terminated when the battery voltage reaches 1.0 V. The cycle number at which the battery discharge capacity reached 50% of the initial capacity was defined as the cycle life.

【0027】[0027]

【表2】 [Table 2]

【0028】表2から明らかなように、本発明の電池は
比較例の電池に比べてサイクル寿命が長いことがわか
る。これは上記実験1の結果のように、酸素ガス消費速
度の向上によって、水素吸蔵合金の酸化劣化が防止され
サイクル寿命が延長されたものと考えられる。
As is clear from Table 2, the battery of the present invention has a longer cycle life than the battery of the comparative example. This is presumably because the increase in the oxygen gas consumption rate prevented the oxidative deterioration of the hydrogen storage alloy and prolonged the cycle life, as in the results of Experiment 1.

【0029】[0029]

【発明の効果】上記に説明したように、負極とセパレー
タとの間に配されたフッ素樹脂の撥水性により、負極表
面において、酸素ガス、電極、電解質が混在した3相界
面を形成しやすくなる。更に、低分子量のフッ素樹脂を
用いることによりフッ素樹脂の繊維化を防ぐことができ
る。
As described above, due to the water repellency of the fluororesin disposed between the negative electrode and the separator, it is easy to form a three-phase interface in which oxygen gas, an electrode, and an electrolyte are mixed on the surface of the negative electrode. . Further, by using a low molecular weight fluororesin, it is possible to prevent the fluororesin from becoming fibrous.

【0030】以上のことにより、負極の酸素ガス消費能
力が向上し、電池特性の向上を図ることができるという
効果を奏する。
As described above, there is an effect that the oxygen gas consuming ability of the negative electrode is improved and the battery characteristics can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一例に係る円筒密閉型ニッケル−水素
電池の断面図である。
FIG. 1 is a cross-sectional view of a sealed nickel-metal hydride battery according to an example of the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 1 positive electrode 2 negative electrode 3 separator

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−184275(JP,A) 特開 平3−295177(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 10/30 H01M 4/24 H01M 2/18 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-3-184275 (JP, A) JP-A-3-295177 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01M 10/30 H01M 4/24 H01M 2/18

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水素吸蔵合金を主成分とする負極、アル
カリ電解液が含浸されたパレータ、及び正極からなる
金属水素化物蓄電池において、 前記負極と前記セパレータとの間には分子量が300万
以下に制限されたフッ素樹脂粉末が存在することを特徴
とする金属水素化物蓄電池。
1. A negative electrode composed mainly of hydrogen storage alloy, Se alkaline electrolyte is impregnated separator, and the metal hydride storage battery comprising a positive electrode, the molecular weight between the negative electrode and the separator 3,000,000 Metal hydride storage battery characterized by the presence of a fluororesin powder restricted to
JP4044026A 1992-02-28 1992-02-28 Metal hydride storage battery Expired - Lifetime JP2966627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4044026A JP2966627B2 (en) 1992-02-28 1992-02-28 Metal hydride storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4044026A JP2966627B2 (en) 1992-02-28 1992-02-28 Metal hydride storage battery

Publications (2)

Publication Number Publication Date
JPH05242908A JPH05242908A (en) 1993-09-21
JP2966627B2 true JP2966627B2 (en) 1999-10-25

Family

ID=12680143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4044026A Expired - Lifetime JP2966627B2 (en) 1992-02-28 1992-02-28 Metal hydride storage battery

Country Status (1)

Country Link
JP (1) JP2966627B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3336839B2 (en) * 1995-04-10 2002-10-21 ダイキン工業株式会社 Water repellency imparting agent for batteries and batteries
US6330925B1 (en) 1997-01-31 2001-12-18 Ovonic Battery Company, Inc. Hybrid electric vehicle incorporating an integrated propulsion system
JP2009076430A (en) * 2007-08-28 2009-04-09 Sanyo Electric Co Ltd Negative electrode for alkaline storage battery, and alkaline storage battery
JP5456326B2 (en) * 2009-01-09 2014-03-26 三洋電機株式会社 Alkaline storage battery and method of manufacturing the same
JP5975307B2 (en) * 2012-11-28 2016-08-23 パナソニックIpマネジメント株式会社 Nickel metal hydride storage battery and battery pack

Also Published As

Publication number Publication date
JPH05242908A (en) 1993-09-21

Similar Documents

Publication Publication Date Title
JP2966627B2 (en) Metal hydride storage battery
JP3183414B2 (en) Hydrogen storage alloy electrode and alkaline secondary battery using the same
JPH11162468A (en) Alkaline secondary battery
JP3071026B2 (en) Metal hydride storage battery
JP3157237B2 (en) Metal-hydrogen alkaline storage battery
JP3229672B2 (en) Metal hydride storage battery
JP2858862B2 (en) Metal-hydrogen alkaline storage battery
JP3416335B2 (en) Hydrogen storage alloy electrodes for alkaline storage batteries
JP3192694B2 (en) Alkaline storage battery
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
JPH11135112A (en) Positive electrode for alkaline storage battery
JP3143109B2 (en) Cylindrical sealed nickel storage battery
JP2919555B2 (en) Method for producing hydrogen storage alloy electrode for alkaline storage battery
JPH05283071A (en) Activation of metal hydride storage battery
JP2566912B2 (en) Nickel oxide / hydrogen battery
JP2994704B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2846707B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP3071033B2 (en) Hydrogen storage electrode
JP2975626B2 (en) Hydrogen storage electrode
JP3101622B2 (en) Nickel-hydrogen alkaline storage battery
JP2989300B2 (en) Metal-hydrogen alkaline storage battery
JP3863689B2 (en) Hydrogen storage alloy electrode for alkaline storage battery and alkaline storage battery
JPH01134862A (en) Alkaline zinc storage battery
JP2823273B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2957745B2 (en) Manufacturing method of hydrogen storage alloy electrode

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070813

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 13