JP3035230B2 - Manufacturing method of multilayer ceramics - Google Patents

Manufacturing method of multilayer ceramics

Info

Publication number
JP3035230B2
JP3035230B2 JP8262342A JP26234296A JP3035230B2 JP 3035230 B2 JP3035230 B2 JP 3035230B2 JP 8262342 A JP8262342 A JP 8262342A JP 26234296 A JP26234296 A JP 26234296A JP 3035230 B2 JP3035230 B2 JP 3035230B2
Authority
JP
Japan
Prior art keywords
layer
silicon carbide
alumina
silicate
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8262342A
Other languages
Japanese (ja)
Other versions
JPH1087364A (en
Inventor
康広 五戸
孝幸 深澤
雅礼 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP8262342A priority Critical patent/JP3035230B2/en
Publication of JPH1087364A publication Critical patent/JPH1087364A/en
Application granted granted Critical
Publication of JP3035230B2 publication Critical patent/JP3035230B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、強度等の機械的性
質に優れ、高温下での耐酸化性、耐食性も備えた機械部
品材料として好適なセラミックスに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to ceramics which are excellent in mechanical properties such as strength, and which are excellent in oxidation resistance and corrosion resistance at high temperatures and suitable as a material for mechanical parts.

【0002】[0002]

【従来の技術】窒化珪素(SiN)、サイアロン(Si
−Al−O−N)、炭化珪素(SiC)などの非酸化物
セラミックスは、高強度、耐熱性など多くの優れた特性
を有するため、機械部品などとしての応用が精力的に進
められている。しかし、ガスタービン部品のような高温
での利用を考えた場合には、耐酸化性、耐食性に問題が
ある。特に、1500℃前後もしくはそれ以上の温度に
なると、酸化の進行による劣化は避けられない。これに
対し、酸化物セラミックスは耐酸化性、耐食性に優れて
いるが、高温での強度低下が著しい。つまり、非酸化物
セラミックスも酸化物セラミックスも、単独では高強度
及び耐熱性と高温下での耐酸化性及び耐食性との双方を
満足させることができない。
2. Description of the Related Art Silicon nitride (SiN), sialon (Si)
Non-oxide ceramics such as —Al—O—N) and silicon carbide (SiC) have many excellent properties such as high strength and heat resistance, and are being vigorously applied to mechanical parts and the like. . However, when considering use at high temperatures such as gas turbine parts, there are problems in oxidation resistance and corrosion resistance. In particular, when the temperature reaches about 1500 ° C. or higher, deterioration due to the progress of oxidation is inevitable. On the other hand, oxide ceramics have excellent oxidation resistance and corrosion resistance, but have a remarkable decrease in strength at high temperatures. That is, non-oxide ceramics and oxide ceramics alone cannot satisfy both high strength and heat resistance, and oxidation resistance and corrosion resistance at high temperatures.

【0003】[0003]

【発明が解決しようとする課題】そこで、非酸化物セラ
ミックスの表面に酸化物層を形成すれば、耐酸化性及び
耐食性が改善され、高温での使用に耐える機械部品材料
となることが予想される。
Therefore, if an oxide layer is formed on the surface of a non-oxide ceramic, it is expected that the oxidation resistance and the corrosion resistance will be improved, and that the material will be a machine component material that can withstand use at high temperatures. You.

【0004】ところが、通常、非酸化物セラミックスと
酸化物セラミックスとの接合・一体化は難しく、接合し
ようとしてもすぐに分離する。又、接合した場合であっ
ても、一体化操作に加熱処理を伴うことによって、両者
の物性の差、特に熱膨張係数の違いから、冷却過程にお
いて両者に引っ張りあるいは圧縮の残留応力が生じて亀
裂の発生を招くことが多い。従って、従来の手法では非
酸化物セラミックスと酸化物層との一体化は難しい。
However, it is usually difficult to join / integrate non-oxide ceramics and oxide ceramics, and even if they are joined, they are separated immediately. Even in the case of joining, cracks due to tensile or compressive residual stress occur in the cooling process due to the difference in physical properties between the two, especially the difference in the coefficient of thermal expansion, due to the heat treatment involved in the integration operation. Often occurs. Therefore, it is difficult to integrate the non-oxide ceramic and the oxide layer by the conventional method.

【0005】本発明は、この様な従来技術の課題を解決
するためになされたもので、強度及び耐熱性に優れ、高
温下での酸化及び腐食に充分対応可能な機械部品材料を
提供することを目的とするものである。
The present invention has been made in order to solve such problems of the prior art, and provides a mechanical component material which has excellent strength and heat resistance and can sufficiently cope with oxidation and corrosion at high temperatures. It is intended for.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明者らは鋭意研究を重ねた結果、炭化珪素を主
成分とする非酸化物セラミックスと希土類元素の珪酸化
合物の層とをアルミナを用いて一体化できることを見い
だし、本発明の積層セラミックスの製造方法を発明する
に至った。
Means for Solving the Problems In order to achieve the above object, the present inventors have conducted intensive studies and as a result, have found that a non-oxide ceramic containing silicon carbide as a main component and a layer of a silicate compound of a rare earth element are formed. They have found that they can be integrated using alumina, and have invented a method for producing a laminated ceramic of the present invention.

【0007】本発明の積層セラミックスの製造方法は、
炭化珪素を含有する第1層と、一般式:RE2 SiO5
又はRE2 Si2 7 (但し、式中のREは、Y,Y
b,Er及びDyからなる群より選ばれる希土類元素を
示す)で表される希土類珪酸化合物を含有する第2層と
がアルミナを介して積層される積層体を形成し、該積層
体を加熱処理することによって該第1層と該第2層とが
アルミナによって接合されることを要旨とする。
[0007] The method for producing a laminated ceramic of the present invention comprises:
A first layer containing silicon carbide, and a general formula: RE 2 SiO 5
Or RE 2 Si 2 O 7 (where RE is Y, Y
b, a rare earth element selected from the group consisting of Er and Dy) and a second layer containing a rare earth silicate compound represented by the formula: Accordingly, the gist is that the first layer and the second layer are bonded by alumina.

【0008】又、前記アルミナは、前記第1層と第2層
との積層界面に対して0.06g/cm2 以下の割合で介
在させ、前記加熱処理の温度は1500〜1700℃で
ある。
The alumina is interposed at a ratio of 0.06 g / cm 2 or less with respect to the lamination interface between the first layer and the second layer, and the temperature of the heat treatment is 1500 to 1700 ° C.

【0009】又、前記アルミナは、前記第1層と第2層
との積層界面に対して0.06g/cm2 以下の割合で介
在させ、前記加熱処理の温度は1700〜1950℃で
ある。
The alumina is interposed at a ratio of 0.06 g / cm 2 or less with respect to the lamination interface between the first layer and the second layer, and the temperature of the heat treatment is 1700 to 1950 ° C.

【0010】更に、前記第1層は、炭化珪素を含有する
粉末を成形し焼結して得られる焼結体層であり、前記第
2層は、希土類酸化物と酸化珪素との混合物の加熱によ
って生成し、前記加熱処理の温度は1750℃以下であ
る。
Further, the first layer is a sintered body layer obtained by molding and sintering a powder containing silicon carbide, and the second layer is formed by heating a mixture of a rare earth oxide and silicon oxide. And the temperature of the heat treatment is 1750 ° C. or less.

【0011】上記方法によって、150μm以下の厚さ
のアルミナ層が良好に第1層と第2層とを接合し、第1
層を被覆する第2層によって第1層の酸化が防止される
ことにより、得られる積層セラミックスは高温での強度
と耐酸化性、耐腐食性を兼ね備え、層間に生じる残留応
力が低く、亀裂の発生が防止されるため、高温に晒され
る機械部品としての使用に耐える性能を備える。
According to the above method, the alumina layer having a thickness of 150 μm or less satisfactorily joins the first layer and the second layer.
By preventing the oxidation of the first layer by the second layer covering the layer, the resulting laminated ceramic has both high-temperature strength, oxidation resistance and corrosion resistance, low residual stress generated between the layers, and cracks. Since the generation is prevented, it has a performance that can withstand use as a machine component exposed to high temperatures.

【0012】[0012]

【発明の実施の形態】炭化珪素は、高温強度に優れるセ
ラミックスであり、高温での耐酸化性、耐食性が改善さ
れれば好適な機械部品材料となる。この改善は、耐酸化
性、耐食性を有する酸化物セラミックスで炭化珪素表面
を被覆することにより実現され、この目的のための酸化
物として、複合酸化物である希土類元素の珪酸化合物:
RE2SiO5 又はRE2 Si2 7 (式中のREは、
Y,Yb,Er及びDyからなる群より選ばれる希土類
元素を示す)が適していることを本発明者らは見出し
た。上記希土類元素の珪酸化合物(以下、本願において
は単にシリケートと称する)は耐熱性に優れ熱膨張係数
が炭化珪素と近く、熱膨張挙動が類似している。但し、
炭化珪素とシリケートとは、接触させて加熱しても接合
されず、同時焼結によっても一体化しない。つまり、単
に加熱処理するだけではこれらを一体化した積層物を得
ることはできない。
BEST MODE FOR CARRYING OUT THE INVENTION Silicon carbide is a ceramic excellent in high-temperature strength, and if it is improved in oxidation resistance and corrosion resistance at high temperatures, it is a suitable material for mechanical parts. This improvement is realized by coating the surface of silicon carbide with an oxide ceramic having oxidation resistance and corrosion resistance. As an oxide for this purpose, a silicate compound of a rare earth element which is a composite oxide:
RE 2 SiO 5 or RE 2 Si 2 O 7 (where RE is
The present inventors have found that a rare earth element selected from the group consisting of Y, Yb, Er and Dy) is suitable. The rare earth silicate compound (hereinafter simply referred to as silicate in the present application) has excellent heat resistance, a thermal expansion coefficient close to that of silicon carbide, and a similar thermal expansion behavior. However,
The silicon carbide and the silicate are not joined even when they are brought into contact and heated, and they are not integrated by simultaneous sintering. That is, it is not possible to obtain a laminate in which these are integrated by simply performing the heat treatment.

【0013】本発明は、炭化珪素とシリケートとを接合
するために、炭化珪素層とシリケート層との間にアルミ
ナ(Al2 3 )を介在させて加熱処理するもので、こ
れにより両層は良好に接合され、又、微妙な熱膨張挙動
の差に起因する残留応力を緩和する。
According to the present invention, in order to bond silicon carbide and silicate, heat treatment is performed with alumina (Al 2 O 3 ) interposed between the silicon carbide layer and the silicate layer. It is well bonded and relieves residual stress due to slight differences in thermal expansion behavior.

【0014】以下、本発明をさらに詳細に説明する。Hereinafter, the present invention will be described in more detail.

【0015】炭化珪素及びシリケートのアルミナによる
接合は、炭化珪素層及びシリケート層の間にアルミナ薄
層を介在させて加熱処理することにより達成される。接
合する炭化珪素層及びシリケート層は成形体であること
が好ましい。これらの成形体は、粉末を加圧成形して得
られる圧粉体あるいは更に焼結処理を施した焼結体のい
ずれであってもよく、例えば、炭化珪素粉末、アルミナ
粉末及びシリケート粉末を層状に堆積させて同時に加圧
成形した積層物、炭化珪素焼結体又は圧粉体とシリケー
ト焼結体又は圧粉体との間にアルミナ粉末を挟み込んだ
もの等が使用できる。圧粉体の圧粉密度は、操作上の必
要等に応じて適宜設定することができるが、取扱の容易
さ及び焼結時の緻密化等を考慮すると、炭化珪素につい
ては、1.3〜1.9g/cm3 程度に成形するのが好ま
しい。炭化珪素及びシリケートの焼結体は、各々の圧粉
体を焼結温度に加熱することによって得られる。炭化珪
素及びシリケートの焼結温度は、焼結助剤の有無や組成
等によって変化するが、概して、炭化珪素の焼結温度は
2000℃前後、シリケートの焼結温度は1600℃前
後である。又、シリケート圧粉体に代えて、希土類酸化
物粉末:RE2 3(式中のREは、Y,Yb,Er及
びDyからなる群より選ばれる希土類元素を示す)と酸
化珪素(SiO2 )粉末との混合圧粉体を用いてもよ
い。希土類酸化物と酸化珪素との混合物は、加熱すると
希土類酸化物と酸化珪素とが反応してシリケートを生成
するので、混合圧粉体をシリケートの焼結温度に加熱す
ることによって、シリケートが生成すると同時に焼結が
進行する。希土類酸化物と酸化珪素との混合比(モル
比)が1:1ではRE2 SiO5 タイプのシリケートが
生成し、1:2の場合にはRE2 Si2 7 タイプのシ
リケートが生成するので、生成しようとするシリケート
に応じて混合比を適宜調節すればよい。
The bonding of silicon carbide and silicate with alumina is achieved by heat treatment with an alumina thin layer interposed between the silicon carbide layer and the silicate layer. The silicon carbide layer and the silicate layer to be joined are preferably formed bodies. These compacts may be either a compact obtained by pressing the powder under pressure or a sintered compact subjected to a further sintering process. For example, a silicon carbide powder, an alumina powder and a silicate powder may be layered. A laminate in which alumina powder is sandwiched between a silicon carbide sintered body or green compact and a silicate sintered body or green compact, which is simultaneously pressed and formed, can be used. The compact density of the compact can be appropriately set according to operational necessity and the like. However, in consideration of easiness of handling and densification at the time of sintering, silicon carbide has a density of 1.3 to 1.3. It is preferable to mold to about 1.9 g / cm 3 . A sintered body of silicon carbide and silicate is obtained by heating each green compact to a sintering temperature. The sintering temperature of silicon carbide and silicate varies depending on the presence or absence, composition, and the like of a sintering aid. Generally, the sintering temperature of silicon carbide is around 2000 ° C., and the sintering temperature of silicate is around 1600 ° C. Instead of the silicate compact, a rare earth oxide powder: RE 2 O 3 (wherein RE represents a rare earth element selected from the group consisting of Y, Yb, Er and Dy) and silicon oxide (SiO 2 ) A powder compact mixed with powder may be used. When the mixture of the rare earth oxide and the silicon oxide is heated, the rare earth oxide and the silicon oxide react with each other to generate silicate, so that when the mixed green compact is heated to the sintering temperature of the silicate, the silicate is generated. Simultaneous sintering proceeds. When the mixing ratio (molar ratio) between the rare earth oxide and silicon oxide is 1: 1, RE 2 SiO 5 type silicate is generated, and when the mixing ratio is 1: 2, RE 2 Si 2 O 7 type silicate is generated. The mixing ratio may be appropriately adjusted according to the silicate to be formed.

【0016】上述のような炭化珪素層及びシリケート
(又は、希土類酸化物と酸化珪素との混合物)層の間に
アルミナを介在させた積層物を加熱処理することによっ
て、炭化珪素層とシリケート層とが接合される。介在す
るアルミナは、加熱によって一部は炭化珪素及びシリケ
ートと反応もしくは固溶し、炭化珪素層及びシリケート
層に対して接着剤のように作用して、炭化珪素層とシリ
ケート層とを接合する。更に、アルミナは、冷却過程で
両層間に生じる残留応力を低減して安定な積層セラミッ
クスを形成することにも寄与する。但し、使用するアル
ミナの量が過剰であると、加熱処理後の積層体に形成さ
れるアルミナ層が厚くなり、シリケートや炭化珪素とア
ルミナとの熱膨張係数の相違によってアルミナ層におい
て亀裂が生じ、破壊が起こり易くなる。従って、加熱処
理後の積層セラミックスに形成されるアルミナ層が15
0μmより厚くならないように、好ましくは100μm
以下となるように、使用するアルミナの量を調節するこ
とが望ましい。好適なアルミナの使用量は、接合する界
面の面積に比例し、加熱温度や加熱時間などの処理条件
によって変化するが、用いたアルミナがすべて緻密化し
て接合界面に残ると仮定すると、接合界面に対して約
0.04g/cm2 の割合でアルミナを用いた時に加熱処
理後のアルミナ層の厚さが約100μmになる。実際に
は、シリケート及び炭化珪素との反応又は固溶によって
これより薄くなる傾向にある。
[0016] By heat-treating a laminate in which alumina is interposed between the silicon carbide layer and the silicate (or a mixture of rare earth oxide and silicon oxide) layer as described above, the silicon carbide layer and the silicate layer are heated. Are joined. A part of the interposed alumina reacts or forms a solid solution with the silicon carbide and the silicate by heating, acts as an adhesive on the silicon carbide layer and the silicate layer, and joins the silicon carbide layer and the silicate layer. Further, alumina also contributes to forming a stable laminated ceramic by reducing residual stress generated between both layers in a cooling process. However, if the amount of alumina used is excessive, the alumina layer formed on the laminate after the heat treatment becomes thicker, and a crack occurs in the alumina layer due to a difference in thermal expansion coefficient between silicate or silicon carbide and alumina, Destruction is likely to occur. Therefore, the alumina layer formed on the laminated ceramic after the heat treatment has a thickness of 15%.
0 μm, preferably 100 μm
It is desirable to adjust the amount of alumina used so that: The preferred amount of alumina used is proportional to the area of the interface to be bonded, and varies depending on processing conditions such as heating temperature and heating time.Assuming that all the alumina used is densified and remains at the bonding interface, On the other hand, when alumina is used at a rate of about 0.04 g / cm 2 , the thickness of the alumina layer after the heat treatment becomes about 100 μm. Actually, it tends to be thinner due to a reaction or solid solution with silicate and silicon carbide.

【0017】炭化珪素セラミックスは導電性があるの
で、炭化珪素セラミックスをアルミナ懸濁液中に投入し
て炭化珪素セラミックスに負電圧を印加すると、電気泳
動効果によりアルミナ粒子が炭化珪素セラミックスの表
面に引き付けられ、アルミナ薄層が形成される。従っ
て、この様な方法でアルミナ薄層を形成した炭化珪素セ
ラミックスにシリケート成形体を接触させて加熱処理を
行えば、シリケート層と炭化珪素層とがアルミナにより
接合された積層セラミックスが得られる。電気泳動効果
によるアルミナ層の形成は、厚さが数百μm以下の薄い
アルミナ層を形成するのに適しており、電圧の印加時間
の調節によって形成するアルミナ層の厚さを容易に制御
できる。又、接合界面が曲面の場合にも均一なアルミナ
層を形成することができる。
Since silicon carbide ceramics are conductive, when the silicon carbide ceramics is put into an alumina suspension and a negative voltage is applied to the silicon carbide ceramics, the alumina particles are attracted to the surface of the silicon carbide ceramics by an electrophoretic effect. And an alumina thin layer is formed. Therefore, if the silicate compact is brought into contact with the silicon carbide ceramic on which the alumina thin layer is formed by such a method and heat treatment is performed, a laminated ceramic in which the silicate layer and the silicon carbide layer are joined by alumina is obtained. The formation of the alumina layer by the electrophoresis effect is suitable for forming a thin alumina layer having a thickness of several hundreds μm or less, and the thickness of the formed alumina layer can be easily controlled by adjusting the voltage application time. Further, even when the bonding interface is a curved surface, a uniform alumina layer can be formed.

【0018】アルミナによる接合は、炭化珪素焼結体と
シリケート焼結体とを接合する場合には、約1500℃
あるいはそれ以上の温度での加熱処理によって達成さ
れ、約1550〜1750℃に加熱するのが好ましい。
接合する炭化珪素及びシリケートが圧粉体である場合に
は、加熱処理中に同時に圧粉体の焼結も成されるように
加熱処理の温度を設定する必要があるが、シリケートの
融点が炭化珪素に比べて低いので、約1750〜185
0℃程度の低めの温度で炭化珪素が焼結されるように加
熱条件や焼結助剤組成も設定するのが望ましい。従っ
て、接合のための加熱処理温度は、接合する両層の如何
によって適宜設定される。
In the case of bonding a silicon carbide sintered body and a silicate sintered body, the bonding with alumina is performed at about 1500 ° C.
Alternatively, it is achieved by a heat treatment at a higher temperature, and is preferably heated to about 1550 to 1750 ° C.
When the silicon carbide and silicate to be joined are green compacts, it is necessary to set the temperature of the heat treatment so that the green compact is simultaneously sintered during the heat treatment. About 1750 to 185 because it is lower than silicon
It is desirable to set the heating conditions and the sintering aid composition so that silicon carbide is sintered at a lower temperature of about 0 ° C. Therefore, the heat treatment temperature for joining is appropriately set depending on whether both layers are joined.

【0019】本発明においては、焼結助剤、潤滑剤等の
通常用いられるような添加物を一般的な手法に従って使
用することが可能であり、炭化珪素及びシリケートを各
々主成分とする2層が良好に接合される。又、炭化珪素
層については、繊維強化材等のような複合材であっても
本発明の方法を適用して好適な積層セラミックスが得ら
れる。
In the present invention, commonly used additives such as a sintering aid and a lubricant can be used in accordance with a general method, and a two-layer containing silicon carbide and silicate as main components, respectively, can be used. Are bonded well. Regarding the silicon carbide layer, even if it is a composite material such as a fiber reinforced material, a suitable laminated ceramic can be obtained by applying the method of the present invention.

【0020】加熱処理により接合された積層セラミック
スは、熱膨張係数の違いによる残留応力の発生が少ない
安定した積層体であるが、急激な温度変化による亀裂の
発生等を防止するために、加熱処理後の冷却は穏やかに
行うのが好ましい。
The laminated ceramics joined by the heat treatment is a stable laminate having little residual stress due to a difference in thermal expansion coefficient. However, in order to prevent the occurrence of cracks due to a rapid temperature change, the heat treatment is performed. The subsequent cooling is preferably performed gently.

【0021】[0021]

【実施例】以下、実験例により、本発明をさらに詳細に
説明する。
The present invention will be described below in more detail with reference to experimental examples.

【0022】[原料粉末の調製]炭化珪素粉末97重量
部に、焼結助剤としてアルミナ粉末を3重量部添加し、
ボールミルで混合した後乾燥して、炭化珪素層を形成す
るための粉末A1を調製した。
[Preparation of Raw Material Powder] To 97 parts by weight of silicon carbide powder, 3 parts by weight of alumina powder were added as a sintering aid,
After mixing in a ball mill and drying, powder A1 for forming a silicon carbide layer was prepared.

【0023】又、炭化珪素粉末98重量部に、焼結助剤
としてホウ素粉末及び炭素粉末を各々1重量部ずつ添加
し、ボールミルで混合した後乾燥して、炭化珪素層を形
成するための粉末A2を調製した。
Further, 1 part by weight of each of boron powder and carbon powder as a sintering aid is added to 98 parts by weight of silicon carbide powder, mixed by a ball mill and dried to form a powder for forming a silicon carbide layer. A2 was prepared.

【0024】更に、炭化珪素粉末97重量部に、焼結助
剤としてアルミナ粉末を3重量部添加し、ボールミルで
混合した後乾燥して、炭化珪素連続繊維30重量部を加
え混合して炭化珪素複合材層を形成するための粉末A3
を調製した。
Further, 3 parts by weight of alumina powder as a sintering aid was added to 97 parts by weight of silicon carbide powder, mixed with a ball mill, dried, and mixed with 30 parts by weight of silicon carbide continuous fibers. Powder A3 for forming composite material layer
Was prepared.

【0025】又、各希土類元素について、希土類酸化物
粉末:RE2 3 (式中のREは、Y,Yb,Er及び
Dyからなる群より選ばれる希土類元素を示す)と酸化
珪素(SiO2 )粉末とを、以下に示すように混合比
(モル比)が1:1(シリケートとしてRE2 SiO5
を生成する場合)又は1:2(RE2 Si2 7 を生成
する場合)となるようにボールミル中で混合した後乾燥
して、シリケート層を形成するための粉末B1〜B8を
調製した。
For each rare earth element, a rare earth oxide powder: RE 2 O 3 (wherein RE represents a rare earth element selected from the group consisting of Y, Yb, Er and Dy) and silicon oxide (SiO 2 ) Powder and a mixing ratio (molar ratio) of 1: 1 (RE 2 SiO 5 as silicate) as shown below.
Were mixed in a ball mill so that the ratio became 1: 2 (when RE 2 Si 2 O 7 was generated), and then dried to prepare powders B1 to B8 for forming a silicate layer.

【0026】 粉末 形成シリケート層 粉末 形成シリケート層 B1: Y2 SiO5 , B2: Yb2 SiO5 B3: Er2 SiO5 , B4: Dy2 SiO5 B5: Y2 Si2 7 , B6: Yb2 Si2 7 B7: Er2 Si2 7 , B8: Dy2 Si2 7 Powder-formed silicate layer Powder-formed silicate layer B1: Y 2 SiO 5 , B2: Yb 2 SiO 5 B3: Er 2 SiO 5 , B4: Dy 2 SiO 5 B5: Y 2 Si 2 O 7 , B6: Yb 2 Si 2 O 7 B7: Er 2 Si 2 O 7 , B8: Dy 2 Si 2 O 7

【0027】[試料の作製]試料1〜48の各試料につ
いて、表1に従って以下の操作を行った。 (試料作製法1:試料1〜6)まず、1気圧のアルゴン
雰囲気中で、成形型内に粉末A1を均一に投入し、その
上に、粉末A1との接触面積当りのアルミナ量が表1に
記載する値となるようにアルミナ粉末を層状に均一に積
層し、更にその上に粉末B1〜B8の1つを均一に投入
して、1000kg/cm2 のプレス圧力で1分間コールド
プレスにより積層方向に加圧成形して積層体を得た。
[Preparation of Samples] The following operations were performed on each of Samples 1 to 48 in accordance with Table 1. (Sample Preparation Method 1: Samples 1 to 6) First, powder A1 was uniformly charged into a mold in an atmosphere of argon at 1 atm, and the amount of alumina per contact area with powder A1 was placed on the powder A1. Alumina powder is uniformly laminated in a layered manner so as to have the value described in 1 above, and one of the powders B1 to B8 is further uniformly charged thereon, and laminated by cold pressing at a pressing pressure of 1000 kg / cm 2 for 1 minute. The laminate was obtained by pressure molding in the direction.

【0028】次に、上記積層体をカーボンモールドに収
容し、1気圧のアルゴン雰囲気中で表1に記載する加熱
温度に保持して400kg/cm2 のプレス圧力で60分間
積層体のホットプレスを行った。ホットプレス後の積層
体を室温まで冷却した後、積層体の炭化珪素層、アルミ
ナ層及びシリケート層の状態を下記に従って評価した。
Next, the laminate was housed in a carbon mold, and the laminate was hot-pressed at 400 kg / cm 2 under a pressure of 400 kg / cm 2 for 60 minutes while maintaining the heating temperature shown in Table 1 in an argon atmosphere at 1 atm. went. After cooling the laminate after hot pressing to room temperature, the states of the silicon carbide layer, alumina layer and silicate layer of the laminate were evaluated as follows.

【0029】(試料作製法2:試料9〜16)1気圧の
アルゴン雰囲気中で、粉末A2をカーボンモールド内に
均一に投入して2000℃に保持して400kg/cm2
プレス圧力で60分間ホットプレスを行って、炭化珪素
焼結体を得た。
(Sample Preparation Method 2: Samples 9 to 16) In an argon atmosphere at 1 atm, powder A2 was uniformly charged into a carbon mold, kept at 2000 ° C., and pressed at 400 kg / cm 2 for 60 minutes. Hot pressing was performed to obtain a silicon carbide sintered body.

【0030】他方、1気圧のアルゴン雰囲気中で、粉末
B1〜B8の1種をカーボンモールド内に均一に投入し
て1600℃に保持して400kg/cm2 のプレス圧力で
60分間ホットプレスを行って、シリケート焼結体を得
た。
On the other hand, one kind of powders B1 to B8 is uniformly charged in a carbon mold in an argon atmosphere at 1 atm, kept at 1600 ° C., and hot-pressed at a pressure of 400 kg / cm 2 for 60 minutes. Thus, a silicate sintered body was obtained.

【0031】上記炭化珪素焼結体をカーボンモールドに
収容し、アルミナ粉末を表1に示す割合で炭化珪素焼結
体上に積層してこの上にシリケート焼結体を重ね、1気
圧のアルゴン雰囲気中で表1に記載する加熱温度に保持
して400kg/cm2 のプレス圧力で60分間積層体のホ
ットプレスを行った。ホットプレス後の積層体を室温ま
で冷却した後、積層体の炭化珪素層、アルミナ層及びシ
リケート層の状態を下記に従って評価した。
The above-mentioned silicon carbide sintered body was accommodated in a carbon mold, alumina powder was laminated on the silicon carbide sintered body in the ratio shown in Table 1, and a silicate sintered body was laminated thereon, and the atmosphere was argon atmosphere at 1 atm. The laminate was hot-pressed for 60 minutes at a pressing pressure of 400 kg / cm 2 while maintaining the heating temperature shown in Table 1 in the inside. After cooling the laminate after hot pressing to room temperature, the states of the silicon carbide layer, alumina layer and silicate layer of the laminate were evaluated as follows.

【0032】(試料作製法3:試料17〜24、33〜
48)1気圧のアルゴン雰囲気中で、粉末A2をカーボ
ンモールド内に均一に投入して2000℃に保持して4
00kg/cm2 のプレス圧力で60分間ホットプレスを行
って、炭化珪素焼結体を得た。
(Sample Preparation Method 3: Samples 17 to 24, 33 to
48) In a 1 atmosphere of argon atmosphere, powder A2 is uniformly charged into a carbon mold and kept at 2000 ° C. for 4 hours.
Hot pressing was performed at a pressing pressure of 00 kg / cm 2 for 60 minutes to obtain a silicon carbide sintered body.

【0033】他方、1気圧の窒素雰囲気中で、成形型内
に粉末B1〜B8の1種を均一に投入し、1000kg/
cm2 のプレス圧力で1分間コールドプレスにより加圧成
形してシリケート層形成用成形体を得た。
On the other hand, in a nitrogen atmosphere at 1 atm, one kind of powders B1 to B8 is uniformly charged into a mold, and 1000 kg /
The molded body for forming a silicate layer was obtained by press-molding at a pressing pressure of cm 2 for 1 minute by a cold press.

【0034】次に、上記炭化珪素焼結体をカーボンモー
ルドに収容し、アルミナ粉末を表1に示す割合で炭化珪
素焼結体上に積層してこの上に上記シリケート層形成用
成形体を重ね、1気圧のアルゴン雰囲気中で表1に記載
する加熱温度に保持して400kg/cm2 のプレス圧力で
60分間積層体のホットプレスを行った。ホットプレス
後の積層体を室温まで冷却した後、炭化珪素層、アルミ
ナ層及びシリケート層の状態を下記に従って評価した。
Next, the silicon carbide sintered body was placed in a carbon mold, alumina powder was laminated on the silicon carbide sintered body in the ratio shown in Table 1, and the silicate layer forming molded body was stacked thereon. The laminate was hot-pressed for 60 minutes at a pressure of 400 kg / cm 2 while maintaining the heating temperature shown in Table 1 in an argon atmosphere at 1 atm. After cooling the laminate after hot pressing to room temperature, the states of the silicon carbide layer, the alumina layer, and the silicate layer were evaluated according to the following.

【0035】(試料作製法4:試料25〜32)1気圧
のアルゴン雰囲気中で、粉末A3をカーボンモールド内
に均一に投入して1750℃に保持して400kg/cm2
のプレス圧力で60分間ホットプレスを行って、繊維を
複合した炭化珪素焼結体を得た。
(Sample Preparation Method 4: Samples 25 to 32) In an argon atmosphere at 1 atm, powder A3 was uniformly charged into a carbon mold, kept at 1750 ° C., and maintained at 400 kg / cm 2.
Hot pressing was performed at a pressing pressure of 60 minutes to obtain a silicon carbide sintered body in which fibers were combined.

【0036】他方、1気圧の窒素雰囲気中で、成形型内
に粉末B1〜B8の1種を均一に投入し、1000kg/
cm2 のプレス圧力で1分間コールドプレスにより加圧成
形してシリケート層形成用成形体を得た。
On the other hand, in a nitrogen atmosphere at 1 atm, one kind of powders B1 to B8 is uniformly charged into a mold, and 1000 kg /
The molded body for forming a silicate layer was obtained by press-molding at a pressing pressure of cm 2 for 1 minute by a cold press.

【0037】次に、上記炭化珪素焼結体をカーボンモー
ルドに収容し、アルミナ粉末を表1に示す割合で炭化珪
素焼結体上に積層してこの上に上記シリケート層形成用
成形体を重ね、1気圧のアルゴン雰囲気中で表1に記載
する加熱温度に保持して400kg/cm2 のプレス圧力で
60分間積層体のホットプレスを行った。ホットプレス
後の積層体を室温まで冷却した後、炭化珪素層、アルミ
ナ層及びシリケート層の状態を下記に従って評価した。
Next, the above-mentioned silicon carbide sintered body was accommodated in a carbon mold, alumina powder was laminated on the silicon carbide sintered body in the ratio shown in Table 1, and the above-mentioned molded body for forming a silicate layer was laminated thereon. The laminate was hot-pressed for 60 minutes at a pressure of 400 kg / cm 2 while maintaining the heating temperature shown in Table 1 in an argon atmosphere at 1 atm. After cooling the laminate after hot pressing to room temperature, the states of the silicon carbide layer, the alumina layer, and the silicate layer were evaluated according to the following.

【0038】[評価]目視及び顕微鏡による検査によっ
て以下のA〜Fのいずれに該当するかによって評価を決
定した。評価の結果を表1に記載する。 (A) 炭化珪素層、アルミナ層及びシリケート層が良
好に接合され、顕微鏡での観察でも亀裂等の欠陥が見ら
れない。 (B) 顕微鏡での観察において接合界面の一部に微少
な亀裂が認められるが、各層間が良好に接合され、完全
に一体化した積層体である。 (C) 顕微鏡での観察においてシリケート層又は炭化
珪素層の一部に微少な亀裂が認められるが、各層間は良
好に接合され、完全に一体化した積層体である。 (D) 目視での観察において接合界面に亀裂が認めら
れ、積層体の一体化が不完全である (E) 目視での観察においてシリケート層又は炭化珪
素層に亀裂が認められ、積層体の一体化が不完全であ
る。 (F) シリケート層と炭化珪素層とが接合されず分離
した。
[Evaluation] The evaluation was determined by visual inspection or microscopic examination according to any of the following A to F. Table 1 shows the results of the evaluation. (A) The silicon carbide layer, the alumina layer, and the silicate layer are satisfactorily bonded, and no defects such as cracks are observed even under a microscope. (B) Although microscopic cracks are observed at a part of the bonding interface when observed with a microscope, the layers are well bonded to each other and are completely integrated. (C) Although microscopic cracks are observed in a part of the silicate layer or the silicon carbide layer when observed with a microscope, the layers are well joined and completely integrated. (D) Cracks are observed at the joint interface in visual observation, and the integration of the laminate is incomplete. (E) Cracks are observed in the silicate layer or silicon carbide layer by visual observation, and the integration of the laminate is Is incomplete. (F) The silicate layer and the silicon carbide layer were separated without being joined.

【0039】[0039]

【表1】 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 試料 シリケート 炭化珪素 アルミナ量 加熱温度 作製法 評価 用粉末 用粉末 (g/cm2 ) (℃) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 1 B1 A1 0.03 1750 1 C 2 B2 A1 0.03 1750 1 A 3 B3 A1 0.03 1750 1 A 4 B4 A1 0.03 1750 1 A 5 B5 A1 0.03 1750 1 A 6 B6 A1 0.03 1750 1 C 7 B7 A1 0.03 1750 1 A 8 B8 A1 0.03 1710 1 A −−−−−−−−−−−−−−−−−−−−−−−−−− 9 B1 A2 0.02 1550 2 A 10 B2 A2 0.02 1600 2 A 11 B3 A2 0.02 1550 2 A 12 B4 A2 0.02 1650 2 A 13 B5 A2 0.02 1600 2 A 14 B6 A2 0.02 1600 2 A 15 B7 A2 0.02 1600 2 A 16 B8 A2 0.02 1650 2 A −−−−−−−−−−−−−−−−−−−−−−−−−− 17 B1 A2 0.02 1550 3 A 18 B2 A2 0.02 1600 3 A 19 B3 A2 0.02 1550 3 A 20 B4 A2 0.02 1650 3 A 21 B5 A2 0.02 1600 3 A 22 B6 A2 0.02 1600 3 A 23 B7 A2 0.02 1600 3 A 24 B8 A2 0.02 1650 3 A −−−−−−−−−−−−−−−−−−−−−−−−−− 25 B1 A3 0.02 1550 4 A 26 B2 A3 0.02 1600 4 A 27 B3 A3 0.02 1550 4 A 28 B4 A3 0.02 1650 4 A 29 B5 A3 0.02 1600 4 A 30 B6 A3 0.02 1600 4 A 31 B7 A3 0.02 1600 4 A 32 B8 A3 0.02 1650 4 A −−−−−−−−−−−−−−−−−−−−−−−−−− 33 B1 A2 0.01 1550 3 A 34 B1 A2 0.03 1550 3 A 35 B1 A2 0.04 1550 3 A 36 B1 A2 0.06 1550 3 B 37 B1 A2 0.08 1550 3 D 38 B1 A2 0 1550 3 F 39 B1 A2 0.02 1750 3 C 40 B1 A2 0.03 1950 3 E −−−−−−−−−−−−−−−−−−−−−−−−−− 41 B3 A2 0.01 1550 3 A 42 B3 A2 0.03 1550 3 A 43 B3 A2 0.04 1550 3 A 44 B3 A2 0.06 1550 3 B 45 B3 A2 0.10 1550 3 D 46 B3 A2 0 1550 3 F 47 B3 A2 0.02 1750 3 A 48 B3 A2 0.03 1950 3 E −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 試料1〜24の結果から、試料作成方法1〜3のいずれ
においても良好に炭化珪素層とシリケート層とをアルミ
ナ層を介して良好に接合できることが明かである。又、
試料25〜32から、炭化珪素を主成分としたマトリク
スの複合セラミックスであっても同様に良好に接合でき
ることが解る。
[Table 1] ---------------------------------- Sample silicate Silicon carbide Alumina Heating temperature Preparation method Evaluation Powder for powder Powder for powder (g / cm 2 ) (° C) -------------------------------------------------- 1 B1 A1 0.03 1750 1 C2 B2 A1 0.03 1750 1 A3 B3 A1 0.03 1750 1 A4 B4 A1 0.03 1750 1 A5 B5 A1 0.03 1750 1 A 6 B6 A1 0.03 17 1 C 7 B7 A1 0.03 1750 1 A8 B8 A1 0.03 1710 1 A −−−−−−−−−−−−−−−−−−−− 9 B1 A2 0 .02 1550 2 A 10 B2 A2 0.02 1600 2 A 11 B3 A2 0.02 1550 2 A12 B4 A2 0.02 1650 2 A13 B5 A2 0.02 1600 2 A14 B6 A2 0.02 1600 2 A15 B7 A2 0.02 1600 2 A16 B8 A2 0.02 1650 2 A 17 B1 A2 0.02 1550 3 A 18 B2 A2 0.02 1600 3 A19 B3 A2 0.02 1550 3 A------------------------17 20 B4 A2 0.02 1650 3 A 21 B5 A2 0.02 1600 3 A22 B6 A2 0.02 1600 3 A23 B7 A2 0.02 1600 3 A24 B8 A2 0.02 1650 3 A 24 25 B1 A3 0.02 1550 4 A26 B2 A3 0.02 1600 4 A27--------------------------- 3 A3 0.02 1550 4 A28 B4 A3 0.02 1650 4 A29 B5 A3 0.02 1600 4 A30 B6 A3 0.02 1600 4 A 31 B7 A3 0.02 1600 4 A32 B8 A3 0.0 1650 4 A −−−−−−−−−−−−−−−−−−−−−−−−−− 33 B1 A2 0.01 1550 3 A 34 B1 A2 0.03 1550 3 A 35 B1 A2 0.04 1550 3 A36 B1 A2 0.06 1550 3 B37 B1 A2 0.08 1550 3 D38 B1 A2 0 1550 3 F39 B1 A2 0.02 1750 3 C 40 B1 A2 0.03 19503 −−−−−−−−−−−−−−−−−−−−−−−−−−−− 41 B3 A2 0.01 1550 3 A42 B3 A2 0.03 550 3 A 43 B3 A2 0.04 1550 3 A44 B3 A2 0.06 1550 3 B45 B3 A2 0.10 1550 3 D 46 B3 A2 0 1550 3 F 47 B3 A2 0.02 1750 3A .03 1950 3 E −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Samples were prepared from the results of samples 1 to 24. It is clear that the silicon carbide layer and the silicate layer can be favorably joined via the alumina layer in any of the methods 1 to 3. or,
From samples 25 to 32, it can be seen that similar bonding can be similarly achieved even with a matrix composite ceramic containing silicon carbide as a main component.

【0040】更に、試料37及び45の結果は、アルミ
ナの使用量が過剰であると亀裂が発生することを示して
いる。更に、試料40及び48の結果から、加熱処理温
度は1800℃以下であるのが好ましいことを示してい
る。
Further, the results of Samples 37 and 45 show that cracking occurs when the amount of alumina used is excessive. Further, the results of Samples 40 and 48 show that the heat treatment temperature is preferably 1800 ° C. or lower.

【0041】試料19の積層体の走査電子顕微鏡写真を
図1の(a)に、その接合界面近傍の拡大写真を図1の
(b)に示す。図2は図1の(b)を説明する図であ
り、図2に層1として示される部分に対応する図1
(b)の部分がEr2 SiO5 層で、層2に対応する部
分がAl2 3 層、層3がSiC層である。
FIG. 1A shows a scanning electron micrograph of the laminate of Sample 19, and FIG. 1B shows an enlarged photograph of the vicinity of the bonding interface. FIG. 2 is a diagram for explaining FIG. 1B, and FIG. 1 corresponding to the portion shown as layer 1 in FIG.
The part (b) is an Er 2 SiO 5 layer, the part corresponding to the layer 2 is an Al 2 O 3 layer, and the layer 3 is a SiC layer.

【0042】[0042]

【発明の効果】以上説明したように、本発明の積層セラ
ミックスの製造方法は、高温強度と高温における耐酸化
性、耐食性に優れた積層セラミックスが得られるもので
あり、その工業的価値は極めて大である。また、本発明
の製造方法によって得られる積層セラミックスは、その
優れた耐熱性により、高温下で使用される機械部品用材
料として適しており、高品質の機械部品の供給が可能と
なる。
As described above, the method for producing a laminated ceramic according to the present invention is capable of obtaining a laminated ceramic excellent in high-temperature strength, high-temperature oxidation resistance and corrosion resistance, and its industrial value is extremely large. It is. Moreover, the laminated ceramics obtained by the production method of the present invention is suitable as a material for mechanical parts used at high temperatures due to its excellent heat resistance, and enables the supply of high-quality mechanical parts.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る積層セラミックス(実施例におけ
る試料19)の組織を示す走査電子顕微鏡写真(a)、
及び、走査電子顕微鏡写真(a)における接合界面近傍
の拡大写真(b)。
FIG. 1 is a scanning electron micrograph (a) showing the structure of a laminated ceramic according to the present invention (sample 19 in an example);
Also, an enlarged photograph (b) near the bonding interface in the scanning electron micrograph (a).

【図2】図1の拡大写真(b)を説明するための概略
図。
FIG. 2 is a schematic diagram for explaining an enlarged photograph (b) of FIG. 1;

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−67549(JP,A) 特開 平2−296770(JP,A) (58)調査した分野(Int.Cl.7,DB名) C04B 35/00 B32B 18/00 C04B 37/00 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-8-67549 (JP, A) JP-A-2-296770 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C04B 35/00 B32B 18/00 C04B 37/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 炭化珪素を含有する第1層と、一般式:
RE SiO 又はRE Si (但し、式
中のREは、Y,Yb,Er及びDyからなる群より選
ばれる希土類元素を示す)で表される希土類珪酸化合物
を含有する第2層とがアルミナを介して積層される積層
体であって、該アルミナが該第1層と第2層との積層界
面に対して0.06g/cm 以下の割合で介在する該
積層体を形成し、当該積層体を加熱処理することによっ
て該第1層と該第2層とがアルミナによって接合される
ことを特徴とする積層セラミックスの製造方法。
A first layer containing silicon carbide and a general formula:
A second material containing a rare earth silicate compound represented by RE 2 SiO 5 or RE 2 Si 2 O 7 (where RE represents a rare earth element selected from the group consisting of Y, Yb, Er and Dy); A laminate in which the layers are interposed via alumina, wherein the alumina is present at a rate of 0.06 g / cm 2 or less with respect to the laminate interface between the first layer and the second layer. A method of manufacturing a laminated ceramic, wherein the first layer and the second layer are bonded by alumina by forming and heating the laminated body.
【請求項2】 前記第1層は、炭化珪素を含有する粉末
を成形し焼結して得られる焼結体層であり、前記第2層
は、希土類酸化物と酸化珪素との混合物の加熱によって
生成し、前記加熱処理の温度は1750℃以下であるこ
とを特徴とする請求項1に記載の製造方法。
2. The first layer is a sintered body layer obtained by molding and sintering a powder containing silicon carbide, and the second layer is formed by heating a mixture of a rare earth oxide and silicon oxide. The method according to claim 1, wherein the temperature of the heat treatment is 1750 ° C. or less.
【請求項3】 前記加熱処理の温度が1500〜170
0℃であることを特徴とする請求項1又は2に記載の製
造方法。
3. The temperature of the heat treatment is from 1500 to 170.
The method according to claim 1, wherein the temperature is 0 ° C. 4.
JP8262342A 1996-09-12 1996-09-12 Manufacturing method of multilayer ceramics Expired - Lifetime JP3035230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8262342A JP3035230B2 (en) 1996-09-12 1996-09-12 Manufacturing method of multilayer ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8262342A JP3035230B2 (en) 1996-09-12 1996-09-12 Manufacturing method of multilayer ceramics

Publications (2)

Publication Number Publication Date
JPH1087364A JPH1087364A (en) 1998-04-07
JP3035230B2 true JP3035230B2 (en) 2000-04-24

Family

ID=17374424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8262342A Expired - Lifetime JP3035230B2 (en) 1996-09-12 1996-09-12 Manufacturing method of multilayer ceramics

Country Status (1)

Country Link
JP (1) JP3035230B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001146492A (en) 1999-10-04 2001-05-29 Caterpillar Inc Rare earth silicate coating film applied to silicon-based ceramic part for improving corrosion resistance by controlled oxidization
DE10042026A1 (en) 2000-08-26 2002-04-04 Forschungszentrum Juelich Gmbh ceramics
JP4531404B2 (en) 2004-01-13 2010-08-25 財団法人電力中央研究所 Environment-resistant film structure and ceramic structure
CN111017982B (en) * 2019-12-31 2022-02-01 中南大学 Nano-grade rare earth silicate powder material and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02296770A (en) * 1989-05-12 1990-12-07 Ngk Spark Plug Co Ltd Nonoxide-oxide-based ceramic composite material
JPH0867549A (en) * 1994-08-30 1996-03-12 Toshiba Corp Ceramics of layer structure

Also Published As

Publication number Publication date
JPH1087364A (en) 1998-04-07

Similar Documents

Publication Publication Date Title
US8956482B2 (en) Ceramics composite member and method of producing the same
KR101960264B1 (en) Residual stress free joined SiC ceramics and the processing method of the same
CN109400164B (en) MAX phase/nitride ceramic layered gradient composite material and rapid preparation method and application thereof
JP3142560B2 (en) Reaction-sintered mullite-containing ceramic compact, method for producing the compact and use of the compact
CN111085688B (en) Tungsten/silicon nitride/tungsten symmetrical layered gradient composite material and rapid preparation method and application thereof
WO2002081405A1 (en) Method for producing sic fiber-reinforced sic composite material by means of hot press
JP2966375B2 (en) LAMINATED CERAMIC AND PROCESS FOR PRODUCING THE SAME
JP3035230B2 (en) Manufacturing method of multilayer ceramics
JP3117433B2 (en) Manufacturing method of multilayer ceramics
JP3062139B2 (en) Manufacturing method of multilayer ceramics
JP4537669B2 (en) Silicon carbide-based bonded component and method for manufacturing the same
JP3026486B2 (en) Manufacturing method of ceramic laminate
JP2997645B2 (en) Manufacturing method of ceramic laminate
JP2675187B2 (en) Gradient silicon nitride composite material and method of manufacturing the same
JP2886138B2 (en) LAMINATED CERAMIC AND PROCESS FOR PRODUCING THE SAME
JP3202670B2 (en) Manufacturing method of multilayer ceramics
JPH05270957A (en) Ceramic sintered product
JP2984654B1 (en) Method for producing ceramic laminate having sprayed ceramic layer
JP3941455B2 (en) Bonding method for high heat resistant inorganic fiber bonded ceramics
JPH0648849A (en) Ceramic composite material
JP3182094B2 (en) Manufacturing method of ceramic
JP2002167284A (en) Joint body and method of manufacturing it
JPH0867574A (en) Part prepared from fiber-reinforced ceramic-based composite material and its production
JPH07115927B2 (en) SiC-based ceramics and method for producing the same
JPH11310476A (en) Laminated type silicon nitride ceramic composite material

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080218

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120218

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120218

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130218

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 14

EXPY Cancellation because of completion of term