JPH02296770A - Nonoxide-oxide-based ceramic composite material - Google Patents

Nonoxide-oxide-based ceramic composite material

Info

Publication number
JPH02296770A
JPH02296770A JP1117542A JP11754289A JPH02296770A JP H02296770 A JPH02296770 A JP H02296770A JP 1117542 A JP1117542 A JP 1117542A JP 11754289 A JP11754289 A JP 11754289A JP H02296770 A JPH02296770 A JP H02296770A
Authority
JP
Japan
Prior art keywords
oxide
composite material
based ceramic
nonoxide
oxides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1117542A
Other languages
Japanese (ja)
Inventor
Satoshi Iio
聡 飯尾
Hitoshi Yokoi
等 横井
Shoichi Watanabe
正一 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP1117542A priority Critical patent/JPH02296770A/en
Publication of JPH02296770A publication Critical patent/JPH02296770A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the ceramic composite material excellent in resistance to oxidation and heat by forming the material from a nonoxide-based ceramic such as the nitride, carbide, etc., of Si and an oxide-based ceramic such as the silicate and mullite of a group IVa element. CONSTITUTION:About 5-95wt.% whisker of a nonoxide-based ceramic and about 95-5wt.% powder of an oxide-based ceramic are mixed, and the mixture is hot-pressed and calcined to obtain a nonoxide-oxide-based ceramic composite material. One or more kinds among the nitride, carbide and oxynitride of Si and Sialon are used as the nonoxide based ceramic. One or more kinds among the silicate and mullite of a group IVa element or rare-earth element, the oxide of a group Va or VIa element and the multiple oxide consisting essentially of the materials are used as the oxide-based ceramic. Less than 1% of the total of the oxides of the alkali metal, alkaline-earth metal, group IVa element, rare-earth element and Al is preferably incorporated as the impurities in the composite material. As a result, a nonoxide-oxide-based ceramic composite material excellent in resistance to oxidation and heat is easily obtained.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は窒化珪素、炭化珪素、酸窒化珪素およびサイア
ロン等の非酸化物と、ムライト、ジルコン、インドリウ
ムシリケート(Y2Siz(h)もしくはクロミア等の
酸化物とからなる非酸化物−酸化物系複合材料に関し、
特にガスタービン部品、ディーゼルエンジン部品等の各
種高温構造部品やバイト、エンドミル、カッター ドリ
ル等の各種切削工具など特に耐酸化性に優れた高温構造
部材、耐摩耗性部材に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention is applicable to non-oxides such as silicon nitride, silicon carbide, silicon oxynitride, and sialon, and mullite, zircon, indolium silicate (Y2Siz(h) or chromia, etc.). Regarding a non-oxide-oxide composite material consisting of an oxide of
In particular, it relates to high-temperature structural parts and wear-resistant parts with particularly excellent oxidation resistance, such as various high-temperature structural parts such as gas turbine parts and diesel engine parts, and various cutting tools such as bits, end mills, and cutter drills.

〈従来の技術〉 従来、高強度化、高靭性化あるいは高硬度化を目的とし
て種々のセラミックスの複合化が検討されている。そし
てそれらは多くの場合Stの非酸化物系セラミックスと
金属元素酸化物との組み合わせになっている。例えば、
アルミナセラミックスの靭性や高温強度を改善すること
を目的として炭化珪素ウィスカーとの複合化が検討され
ていて、比較的良好な結果が得られている(特開昭62
−235265)  。
<Prior Art> Conventionally, composites of various ceramics have been studied for the purpose of increasing strength, toughness, or hardness. In many cases, they are a combination of St non-oxide ceramics and metal element oxides. for example,
In order to improve the toughness and high-temperature strength of alumina ceramics, composites with silicon carbide whiskers have been studied, and relatively good results have been obtained (JP-A-62
-235265).

〈発明が解決しようとする課題〉 ところが、このようなSiの非酸化物と金属元素酸化物
を複合化した材料を高温構造部材として用いようとした
場合、非酸化物(例えば炭化珪素)および金属元素酸化
物各々単独での耐酸化性は比較的良好であるにも拘わら
ず、それらを組み合わせた材料は高温の酸化性雰囲気中
で酸化され、強度、靭性等の性能劣化が生じる傾向があ
る。
<Problems to be Solved by the Invention> However, when attempting to use such a composite material of a non-oxide of Si and an oxide of a metal element as a high-temperature structural member, the non-oxide (for example, silicon carbide) and the metal Although the oxidation resistance of each elemental oxide alone is relatively good, materials made by combining them tend to be oxidized in a high-temperature oxidizing atmosphere, resulting in performance deterioration such as strength and toughness.

そこで本発明は、上記の如き実状に鑑み、Si系非酸化
物と金属元素酸化物とからなる複合材料の耐酸化性を向
上させるべく鋭意研究を行った結果なされたものであり
、Si系非酸化物の酸化によって生成するシリカ(Si
O□)が、Si系非酸化物単独の場合は、該シリカが酸
化を防ぐ層として働くにもかかわらず、該複合材料の場
合は該シリカが保護層とならず酸化物と反応してシリケ
ートを生成しながら、酸化が進行していくことが判った
。そこで本発明者らは、酸化物としてはシリカと反応し
にくい物を選択し、かつシリカと反応しやすい不純物を
含ませないか又はかかる不純物含有量を一定量以下に押
さえることにより、この酸化反応が進行しにくくなり、
耐酸化性に優れた非酸化物酸化物系セラミックス複合材
料となることを見いだし本発明を完成した。なお、Si
の酸窒化物は純粋な酸化物ではなく、非酸化物に近い性
質を示すので本発明では非酸化物系セラミックスに含め
た。
Therefore, in view of the above-mentioned actual situation, the present invention was made as a result of intensive research to improve the oxidation resistance of a composite material consisting of a Si-based non-oxide and a metal element oxide. Silica (Si) produced by oxidation of oxides
When O□) is a Si-based non-oxide alone, the silica acts as a layer to prevent oxidation, but in the case of the composite material, the silica does not act as a protective layer and reacts with the oxide to form a silicate. It was found that oxidation progresses while producing . Therefore, the present inventors selected an oxide that does not easily react with silica, and either did not contain impurities that easily reacted with silica, or suppressed the content of such impurities to a certain amount or less, thereby facilitating the oxidation reaction. becomes difficult to progress,
The present invention was completed by discovering that a non-oxide-based ceramic composite material with excellent oxidation resistance can be obtained. In addition, Si
Oxynitrides are not pure oxides but exhibit properties close to non-oxides, so they are included in non-oxide ceramics in the present invention.

又、サイアロンについても同様な思考から非酸化物系セ
ラミックスに含めた。
Also, SiAlON was included in non-oxide ceramics based on the same idea.

〈課題を解決するための手段〉 請求項1の発明の特徴はSiの窒化物、炭化物、酸窒化
物およびサイアロンの少なくとも一種以上からなる非酸
化物系セラミックスと、周期表rVaVa族元素リケー
ト(MSi04、ただしMはIVaVa族元素希土類元
素のシリケー) (RzSiz07 、ただしRは希土
類元素)、ムライト(3Al2O.・2””z) 、V
 a族元素の酸化物およびVTa族元素の酸化物または
これらを主とする複合酸化物から選ばれる少なくとも一
種以上とからなる酸化物セラミックスとを組み合わせと
することにあり、また上記請求項1の発明と関連する請
求項2の発明の特徴は前記セラミックス複合材料を構成
する非酸化物系セラミックスと酸化物系セラミックス中
のアルカリ金属元素、アルカリ土類金属元素、周期表I
VaVa族元素土類元素およびアルミニウムの酸化物か
らなる不純物が合計量が1重量%以下であるようにした
ことにある。
<Means for Solving the Problems> The invention of claim 1 is characterized by a non-oxide ceramic made of at least one of Si nitride, carbide, oxynitride, and SiAlON, and a silicate of an element in group rVaVa of the periodic table (MSi04 , where M is IVaVa group element rare earth element silicate) (RzSiz07, where R is rare earth element), mullite (3Al2O.・2""z), V
The invention of claim 1 is characterized in that it is a combination of an oxide ceramic comprising at least one selected from oxides of group A elements, oxides of VTa group elements, or composite oxides mainly containing these. The feature of the invention of claim 2 related to this is that the alkali metal elements, alkaline earth metal elements, and periodic table I in the non-oxide ceramics and oxide ceramics constituting the ceramic composite material
The total amount of impurities consisting of VaVa group earth elements and oxides of aluminum is 1% by weight or less.

また、特に請求項3のように非酸化物系セラミックスに
ついては窒化珪素、炭化珪素、酸窒化珪素およびサイア
ロンから選ばれる一種以上と、酸化物系セラミックスに
ついてはムライト、ジルコン(ZrSi04) 、イツ
トリウムシリケート(Y、Si。
In particular, as claimed in claim 3, non-oxide ceramics include one or more selected from silicon nitride, silicon carbide, silicon oxynitride, and sialon, and oxide ceramics include mullite, zircon (ZrSi04), and yttrium silicate. (Y, Si.

0、)およびクロミア(CrzO:+)から選ばれる一
種以上との組み合わせは特に耐酸化性に優れており、好
適である。
A combination with one or more selected from 0, ) and chromia (CrzO:+) has particularly excellent oxidation resistance and is suitable.

なお、希土類元素とはSc、Yおよび原子番号57のL
aから71のLuの元素を指す。ここで実質的にとは非
酸化物系セラミ、クスと、酸化物系セラミックスとが粒
界で反応して微量のガラス層を形成する場合をいう。
Note that rare earth elements include Sc, Y, and L with atomic number 57.
Refers to the Lu element from a to 71. Here, "substantially" refers to the case where the non-oxide ceramic, the ox, and the oxide ceramic react at grain boundaries to form a trace amount of a glass layer.

〈作 用〉 本発明では非酸化物系セラミックスは強度、靭性を高め
、酸化物は耐酸化性を高める作用をする。
<Function> In the present invention, the non-oxide ceramics have the function of increasing strength and toughness, and the oxides have the function of increasing oxidation resistance.

シリカと反応しに(い酸化物としては、希土類元素のシ
リケート(RzSizOl、Rは希土類元素)、周期表
rVaVa族元素リケート(MSiO4、Mは■aa族
元素、ムライト、Va族元素の酸化物およびVia族元
素の酸化物をあげることができる。
Oxides that do not react with silica include silicates of rare earth elements (RzSizOl, R is a rare earth element), silicates of rVaVa group elements of the periodic table (MSiO4, M is ■ oxides of group aa elements, mullite, group Va elements, and Examples include oxides of Via group elements.

これらは既に安定なシリケート化合物となっているかあ
るいはシリケートを生成しない酸化物である。逆にアル
カリ金属元素、アルカリ土類金属元素、IVaVa族元
素土類元素及びアルミニウムの酸化物はシリカと反応し
てシリケートを生成する酸化物であり、含有しないのが
望ましいが、含むとすればそれら不純物の許容できる含
有量は最大1重量%である。これら不純物の含有量が1
重量%を越えると上記反応により酸化が進行するため耐
酸化性に劣った非酸化物−酸化物系セラミックス複合材
料となる。なお、本発明の非酸化物系セラミックスと酸
化物系セラミックスの組成比について特に制限はないが
、それぞれの成分の特長が生かされた特性を有する非酸
化物−酸化物系セラミソクス複合材料を得るには非酸化
物の含有量を5〜95重量%、好ましくは20〜80重
量%、酸化物の含有量を95〜5重量%好ましくは80
〜20重量%の範囲とするのが耐酸化性、高温強度を得
るのに大きく寄与することができる。上記範囲外では耐
酸化性、高温強度が充分得られない。
These are already stable silicate compounds or are oxides that do not produce silicate. Conversely, oxides of alkali metal elements, alkaline earth metal elements, IVaVa group earth elements, and aluminum are oxides that react with silica to produce silicate, and it is desirable not to contain them, but if they are included, The permissible content of impurities is a maximum of 1% by weight. The content of these impurities is 1
If it exceeds % by weight, oxidation proceeds due to the above reaction, resulting in a non-oxide-oxide ceramic composite material with poor oxidation resistance. Although there is no particular restriction on the composition ratio of the non-oxide ceramics and the oxide-based ceramics of the present invention, it is possible to obtain a non-oxide-oxide ceramic composite material having characteristics that take advantage of the features of each component. The content of non-oxides is 5 to 95% by weight, preferably 20 to 80% by weight, and the content of oxides is 95 to 5% by weight, preferably 80%.
A content in the range of ~20% by weight can greatly contribute to obtaining oxidation resistance and high-temperature strength. Outside the above range, sufficient oxidation resistance and high temperature strength cannot be obtained.

〈実施例〉 実施例I。<Example> Example I.

非酸化物として第1表に示した特性を有するβ型炭化珪
素ウィスカー(東海カーボン社製トーカイウィスカー)
20重量%と、酸化物としてムライ) (3Altos
  ・2 Sing)粉末(純度99%、平均粒径1μ
m)80重量%とを用い、エタノール中で湿式混合後、
乾燥し、素地粉末とした。この素地粉末をBNコートし
たカーボン型に充填し、1700℃−20MPaでホッ
トプレス法により約1時間焼成した。
β-type silicon carbide whisker (Tokai Whisker manufactured by Tokai Carbon Co., Ltd.) having the characteristics shown in Table 1 as a non-oxide
20% by weight and 3Altos as an oxide)
・2 Sing) powder (99% purity, average particle size 1μ)
m) after wet mixing in ethanol using 80% by weight;
It was dried and made into a base powder. This base powder was filled into a BN-coated carbon mold, and fired at 1700° C. and 20 MPa for about 1 hour by a hot press method.

焼成後、焼結体を3 X 4 X40mmに切断研磨し
第2表に示す緒特性を測定した。なお、第2表に示す曲
げ強度、破壊靭性及び耐酸化抵抗は10頁に記載の方法
により測定した。これによれば緒特性特に耐酸化抵抗が
優れていることがわかる。
After firing, the sintered body was cut and polished to a size of 3 x 4 x 40 mm, and the characteristics shown in Table 2 were measured. The bending strength, fracture toughness, and oxidation resistance shown in Table 2 were measured by the method described on page 10. This shows that the material has excellent properties, particularly oxidation resistance.

実施例2゜ 酸化物としてムライトに代えてジルコン(ZrS 10
4)粉末(純度99%、平均粒径1μm)を用い160
0℃−40MPaでホットプレスした外は実施例1と同
様にして試料を作成し、緒特性を調べた。この特性は第
2表に示すとおりで、実施例1同様に満足すべきもので
あった。
Example 2 Zircon (ZrS 10
4) Using powder (99% purity, average particle size 1 μm),
A sample was prepared in the same manner as in Example 1 except that it was hot pressed at 0° C.-40 MPa, and its properties were examined. These characteristics are as shown in Table 2, and were satisfactory as in Example 1.

実施例3゜ 酸化物としてムライトに代えてクロミア(CrzO,)
粉末(純度99%、平均粒径1μm)を用い1550℃
20MPaでホットプレスした外は実施例1と同様にし
て試料を作成し、緒特性を調べた。その特性は第2表に
示すとおりで、実施例I同様に満足すべきものであった
Example 3゜Chromia (CrzO,) instead of mullite as oxide
1550℃ using powder (99% purity, average particle size 1μm)
A sample was prepared in the same manner as in Example 1 except that it was hot pressed at 20 MPa, and its properties were investigated. The properties are as shown in Table 2, and as in Example I, they were satisfactory.

比較例1゜ 酸化物としてムライトに代えてアルミナ(AI□03)
粉末(純度99%、平均粒径1μm)を用い1850”
C20MPaでホットプレスした外は実施例1と同様に
して試料を作成し、緒特性を調べた。その特性は第2表
に示すとおりで、耐酸化性が不十分であった。
Comparative Example 1゜Alumina (AI□03) instead of mullite as oxide
1850" using powder (99% purity, average particle size 1 μm)
A sample was prepared in the same manner as in Example 1 except that it was hot pressed at C20 MPa, and its properties were investigated. The properties are shown in Table 2, and the oxidation resistance was insufficient.

比較例2゜ 酸化物としてムライトに代えてY−TZP (2,6モ
ル%イツトリア(Y2O2)含有共沈ジルコニア(Zr
Oz))粉末(純度99χ、平均粒径0.5 μm )
を用い1500 ’C−20MPaでホットプレスした
外は実施例1と同様にして試料を作成し、緒特性を調べ
た。
Comparative Example 2゜In place of mullite as an oxide, Y-TZP (co-precipitated zirconia (Zr
Oz)) powder (purity 99χ, average particle size 0.5 μm)
A sample was prepared in the same manner as in Example 1, except that it was hot pressed at 1500'C and 20 MPa using the same method, and its properties were investigated.

その特性は第2表に示すとおりで、耐酸化性が不十分で
あった。
The properties are shown in Table 2, and the oxidation resistance was insufficient.

第1表 曲げ強度測定法 曲げ強度はJIS規格R1601に従ってスパン301
1で大気中3点曲げ強度を測定した。
Table 1 Bending strength measurement method Bending strength is measured at span 301 according to JIS standard R1601.
1, the three-point bending strength was measured in the air.

破壊靭性測定方法 破壊靭性値はインデンティジョン・マイクロッラフチャ
ー法によって測定した。
Fracture toughness measurement method Fracture toughness values were measured by the indentation micro-roughture method.

耐酸化抵抗測定方法 大気中1300℃の条件で100時間保持し保持後の単
位表面積当たりの重量増加を測定した。
Method for Measuring Oxidation Resistance The sample was held in the atmosphere at 1300°C for 100 hours, and the weight increase per unit surface area after the holding was measured.

第2表より明らかなように酸化物としてシリカと反応し
やすい物を用いた場合、シリケートを生成しながら酸化
が進行しでいくが、安定なシリケート化合物やシリケー
トを作らない酸化物を用いると耐酸化性に優れたものと
なっていることが判る。
As is clear from Table 2, if an oxide that easily reacts with silica is used, oxidation will proceed while producing silicates, but if a stable silicate compound or an oxide that does not produce silicate is used, the acid resistance will increase. It can be seen that it has excellent chemical properties.

実施例4゜ 非酸化物として窒化珪素(Si3Na)粉末(宇部興産
社製E−10)90重量%と、酸化物としてイツトリウ
ムシリケート(YzSitOt)粉末(純度99%、平
均粒径1μm)10重量%とをエタノール中で混合し、
乾燥し、素地粉末とした。この素地粉末を金型にて予備
成形後150MPaの圧力でラバープレス成形して成形
体を得た。得られた成形体を窒素雰囲気中、800〜1
200℃の温度で仮焼した後バイコール製ガラス管中に
真空封入し、1750℃−200MPaで直接HIP(
熱間静水圧プレス)を行った。得られた焼結体の特性を
実施例1と同様の方法で測定した結果を第3表に示す。
Example 4 90% by weight of silicon nitride (Si3Na) powder (E-10 manufactured by Ube Industries, Ltd.) as a non-oxide and 10% by weight of yttrium silicate (YzSitOt) powder (purity 99%, average particle size 1 μm) as an oxide % in ethanol,
It was dried and made into a base powder. This base powder was preformed in a mold and then rubber press molded at a pressure of 150 MPa to obtain a molded body. The obtained molded body was heated to 800 to 1
After calcining at a temperature of 200℃, it was vacuum sealed in a Vycor glass tube and directly HIPed at 1750℃-200MPa (
hot isostatic pressing). The properties of the obtained sintered body were measured in the same manner as in Example 1, and the results are shown in Table 3.

第3表より明らかなように酸化物としてシリカと反応し
にくい酸化物を用いるので耐酸化性に優れたものとなっ
ている。
As is clear from Table 3, since the oxide used is an oxide that hardly reacts with silica, it has excellent oxidation resistance.

実施例5゜ 非酸化物として酸窒化珪素(S1zJO)粉末(純度9
8%、平均粒径1μm)を用い、酸化物としてクロミア
(CrzO:+)粉末(純度99%、平均粒径1μm)
を用いた外は実施例1と同様にして1750℃−200
MPaで直接HIP(熱間静水圧プレス)を行って試料
を作成し、緒特性を調べた。その結果は第3表に示すと
おりで、耐酸化性に優れたものとなっている。
Example 5 Silicon oxynitride (S1zJO) powder (purity 9
Chromia (CrzO:+) powder (purity 99%, average particle size 1 μm) was used as the oxide.
1750℃-200 in the same manner as in Example 1 except that
Samples were prepared by directly performing HIP (hot isostatic pressing) at MPa, and their properties were investigated. The results are shown in Table 3, showing excellent oxidation resistance.

実施例6゜ 非酸化物としてβ型サイアロン粉末(宇部興産社製52
2004、Z=2)を用い、酸化物としてクロミア(c
r、o、)粉末(純度99%、平均粒径1μm)を用い
た外は実施例1と同様にして1750℃−200MPa
で直接HIP(熱間静水圧プレス)を行って試料を作成
し、緒特性を調べた。その結果は第3表に示すとおりで
、耐酸化性に優れたものとなっている。
Example 6 β-type Sialon powder (manufactured by Ube Industries, Ltd. 52) was used as a non-oxide.
2004, Z=2), and chromia (c
r, o, ) powder (purity 99%, average particle size 1 μm) was used in the same manner as in Example 1 at 1750°C and 200 MPa.
Samples were prepared by directly performing HIP (hot isostatic pressing), and their properties were investigated. The results are shown in Table 3, showing excellent oxidation resistance.

実施例7゜ 酸化物としてバナジア(vzos)粉末(純度99%、
平均粒径1μm)を用いた外は実施例1と同様にして1
750℃−200MPaで直接HIP (熱間静水圧プ
レス)を行って試料を作成し、緒特性を調べた。
Example 7 Vanadia (vzos) powder (purity 99%,
Example 1 was prepared in the same manner as in Example 1 except that the average particle size was 1 μm).
Samples were prepared by direct HIP (hot isostatic pressing) at 750°C and 200 MPa, and their properties were investigated.

その結果は第3表に示すとおりで、耐酸化性に優れたも
のとなっている。
The results are shown in Table 3, showing excellent oxidation resistance.

比較例3゜ 酸化物としてイツトリア(yzoi)粉末(純度99%
、平均粒径1μm)を用いた外は実施例1と同様にして
1750℃−200MPaで直接HIP(熱間静水圧プ
レス)を行って試料を作成し、緒特性を調べた。その結
果は第3表に示すとおりで、耐酸化性が著しく悪いもの
であった。
Comparative Example 3゜Itria (yzoi) powder (purity 99%) was used as an oxide.
Samples were prepared by direct HIP (hot isostatic pressing) at 1750° C. and 200 MPa in the same manner as in Example 1, except that particles (average particle size: 1 μm) were used, and their properties were investigated. The results are shown in Table 3, and the oxidation resistance was extremely poor.

比較例4゜ 酸化物としてイツトリア(YzOi)粉末(純度99%
、平均粒径1μm)2重量%、酸化タンタル(Tag’
s)粉末8重量%を用いた外は実施例1と同様にして1
750℃−200MPaで直接HIP(熱間静水圧プレ
ス)を行って試料を作成し、緒特性を調べた。その結果
は第3表に示すとおりで、耐酸化性が悪いものであった
Comparative Example 4 Ittria (YzOi) powder (purity 99%) was used as an oxide.
, average particle size 1 μm) 2% by weight, tantalum oxide (Tag'
s) 1 as in Example 1 except that 8% by weight of powder was used.
Samples were prepared by directly performing HIP (hot isostatic pressing) at 750° C. and 200 MPa, and their properties were investigated. The results are shown in Table 3, and the oxidation resistance was poor.

〈発明の効果〉 本発明によれば、耐酸化性および耐熱性に優れた非酸化
物−酸化物系セラミックス複合材料を容易に提供するこ
とができる。
<Effects of the Invention> According to the present invention, a non-oxide-oxide ceramic composite material having excellent oxidation resistance and heat resistance can be easily provided.

Claims (3)

【特許請求の範囲】[Claims] 1.Siの窒化物、炭化物、酸窒化物およびサイアロン
の少なくとも一種以上からなる非酸化物系セラミックス
と、周期表IVa族元素のシリケート(MSiO_4、た
だしMはIVa族元素)、希土類元素のシリケート(R_
2Si_2O_7、ただしRは希土類元素)、ムライト
(3Al_2O_3・2SiO_2)、Va族元素の酸
化物およびVIa族元素の酸化物またはこれらを主とする
複合酸化物から選ばれる少なくとも一種以上の酸化物系
セラミックスとから実質的になる非酸化物−酸化物系セ
ラミックス複合材料。
1. Non-oxide ceramics consisting of at least one of Si nitride, carbide, oxynitride and sialon, silicate of group IVa element of the periodic table (MSiO_4, where M is a group IVa element), silicate of rare earth element (R_
2Si_2O_7 (where R is a rare earth element), mullite (3Al_2O_3.2SiO_2), oxides of group Va elements, oxides of group VIa elements, or composite oxides mainly composed of these. A non-oxide-oxide ceramic composite material consisting essentially of:
2.前記該複合材料中に、アルカリ金属元素、アルカリ
土類金属元素、周期表IVa族元素、希土類元素およびア
ルミニウムの酸化物からなる不純物が合計で1重量%以
下であることを特徴とする請求項1記載の非酸化物−酸
化物系セラミックス複合材料。
2. Claim 1, wherein the composite material contains impurities consisting of an alkali metal element, an alkaline earth metal element, a Group IVa element of the periodic table, a rare earth element, and an oxide of aluminum in a total amount of 1% by weight or less. The non-oxide-oxide ceramic composite material described above.
3.非酸化物系セラミックスが窒化珪素、炭化珪素、酸
窒化珪素およびサイアロンの少なくとも一種以上からな
り、酸化物系セラミックスがムライト、ジルコン(Zr
SiO_4)、イットリウムシリケート(Y_2Si_
2O_7)およびクロミア(Cr_2O_3)の少なく
とも一種以上からなることを特徴とする請求項1記載の
非酸化物−酸化物系セラックス複合材料。
3. Non-oxide ceramics are made of at least one of silicon nitride, silicon carbide, silicon oxynitride, and sialon, and oxide ceramics are made of mullite, zircon (Zr
SiO_4), yttrium silicate (Y_2Si_
2. The non-oxide-oxide ceramics composite material according to claim 1, characterized in that the non-oxide-oxide ceramics composite material comprises at least one of chromia (Cr_2O_3) and chromia (Cr_2O_3).
JP1117542A 1989-05-12 1989-05-12 Nonoxide-oxide-based ceramic composite material Pending JPH02296770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1117542A JPH02296770A (en) 1989-05-12 1989-05-12 Nonoxide-oxide-based ceramic composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1117542A JPH02296770A (en) 1989-05-12 1989-05-12 Nonoxide-oxide-based ceramic composite material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP7269018A Division JPH08104560A (en) 1995-09-25 1995-09-25 Silicon carbide whisker-silicate type oxidation resistant ceramic composite material

Publications (1)

Publication Number Publication Date
JPH02296770A true JPH02296770A (en) 1990-12-07

Family

ID=14714377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1117542A Pending JPH02296770A (en) 1989-05-12 1989-05-12 Nonoxide-oxide-based ceramic composite material

Country Status (1)

Country Link
JP (1) JPH02296770A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1087364A (en) * 1996-09-12 1998-04-07 Toshiba Corp Production of laminated ceramics
JP2006351446A (en) * 2005-06-17 2006-12-28 Ngk Spark Plug Co Ltd Manufacturing method of ceramic heater, and glow plug
JP2016532617A (en) * 2013-03-15 2016-10-20 ゼネラル・エレクトリック・カンパニイ Thinning resistant ceramic matrix composite and environmental coating
JP2019522608A (en) * 2016-05-11 2019-08-15 サフラン・セラミックス Ceramic matrix composite parts
JPWO2021075411A1 (en) * 2019-10-17 2021-04-22
WO2022138664A1 (en) * 2020-12-25 2022-06-30 東ソー株式会社 Ceramic matrix composite and method for manufacturing same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5450015A (en) * 1977-09-28 1979-04-19 Toshiba Ceramics Co Method of making refractory using betaasialon as binding matrix
JPS59107977A (en) * 1982-12-08 1984-06-22 日本鋼管株式会社 High solubility resistance casting nozzle for horizontal continuous casting
JPS60260472A (en) * 1984-06-04 1985-12-23 新技術事業団 Alpha-sialon sintered body and manufacture
JPS6114173A (en) * 1984-06-27 1986-01-22 エレクトロシユメルツヴエルク・ケンプテン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Polycrystal sintered body comprising silicon nitride and sintering additive and manufacture
JPS61266358A (en) * 1985-05-17 1986-11-26 住友電気工業株式会社 Silicon nitride sintered body and manufacture
JPS6364967A (en) * 1986-09-04 1988-03-23 イビデン株式会社 Silicon carbide base composite body and manufacture
JPS6428283A (en) * 1987-03-16 1989-01-30 Hitachi Ltd Sintered composite ceramic material and production thereof
JPH0196062A (en) * 1987-10-09 1989-04-14 Toyota Central Res & Dev Lab Inc Mullite-based sintered body and production thereof
JPH01115872A (en) * 1987-10-29 1989-05-09 Kurasawa Opt Ind Co Ltd Silicon nitride ceramics
JPH01264973A (en) * 1988-04-16 1989-10-23 Toyota Motor Corp Production of sintered body of beta-sialon

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5450015A (en) * 1977-09-28 1979-04-19 Toshiba Ceramics Co Method of making refractory using betaasialon as binding matrix
JPS59107977A (en) * 1982-12-08 1984-06-22 日本鋼管株式会社 High solubility resistance casting nozzle for horizontal continuous casting
JPS60260472A (en) * 1984-06-04 1985-12-23 新技術事業団 Alpha-sialon sintered body and manufacture
JPS6114173A (en) * 1984-06-27 1986-01-22 エレクトロシユメルツヴエルク・ケンプテン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Polycrystal sintered body comprising silicon nitride and sintering additive and manufacture
JPS61266358A (en) * 1985-05-17 1986-11-26 住友電気工業株式会社 Silicon nitride sintered body and manufacture
JPS6364967A (en) * 1986-09-04 1988-03-23 イビデン株式会社 Silicon carbide base composite body and manufacture
JPS6428283A (en) * 1987-03-16 1989-01-30 Hitachi Ltd Sintered composite ceramic material and production thereof
JPH0196062A (en) * 1987-10-09 1989-04-14 Toyota Central Res & Dev Lab Inc Mullite-based sintered body and production thereof
JPH01115872A (en) * 1987-10-29 1989-05-09 Kurasawa Opt Ind Co Ltd Silicon nitride ceramics
JPH01264973A (en) * 1988-04-16 1989-10-23 Toyota Motor Corp Production of sintered body of beta-sialon

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1087364A (en) * 1996-09-12 1998-04-07 Toshiba Corp Production of laminated ceramics
JP2006351446A (en) * 2005-06-17 2006-12-28 Ngk Spark Plug Co Ltd Manufacturing method of ceramic heater, and glow plug
JP4699816B2 (en) * 2005-06-17 2011-06-15 日本特殊陶業株式会社 Manufacturing method of ceramic heater and glow plug
JP2016532617A (en) * 2013-03-15 2016-10-20 ゼネラル・エレクトリック・カンパニイ Thinning resistant ceramic matrix composite and environmental coating
JP2019522608A (en) * 2016-05-11 2019-08-15 サフラン・セラミックス Ceramic matrix composite parts
US10988417B2 (en) 2016-05-11 2021-04-27 Safran Ceramics Composite material part
JPWO2021075411A1 (en) * 2019-10-17 2021-04-22
WO2021075411A1 (en) * 2019-10-17 2021-04-22 株式会社Ihi Ceramic matrix composite and method for producing same
WO2022138664A1 (en) * 2020-12-25 2022-06-30 東ソー株式会社 Ceramic matrix composite and method for manufacturing same
CN116670096A (en) * 2020-12-25 2023-08-29 东曹株式会社 Ceramic matrix composite and method of making the same

Similar Documents

Publication Publication Date Title
JPH07277814A (en) Alumina-based ceramic sintered compact
JPS60246268A (en) Sialon base ceramic
JPH02296770A (en) Nonoxide-oxide-based ceramic composite material
JP2002003276A (en) Reaction synthesis of silicon carbide-boron nitride composite material
US4889834A (en) SiC-Al2 O3 composite sintered bodies and method of producing the same
JP2651935B2 (en) Method for producing composite material and raw material composition
JPH1029868A (en) Silicon nitride composite sintered compact and its production
JP2519076B2 (en) Method for manufacturing silicon carbide whisker-reinforced ceramics
JPH06287061A (en) Sic-based composite ceramic and its production
JPH0535697B2 (en)
JPS63185862A (en) Manufacture of ceramic composite body
JP2581128B2 (en) Alumina-sialon composite sintered body
JPH07172919A (en) Titanium-compound sintered material
Lio et al. Mechanical Properties of Si2N2O/SiC‐Whisker Composites
JPS6345173A (en) High toughness ceramic sintered body and manufacture
JPH08104560A (en) Silicon carbide whisker-silicate type oxidation resistant ceramic composite material
JPH10279360A (en) Silicon nitride structural parts and its production
JPH07165462A (en) Alumina-beta-sialon-yag composite material
JPS60260471A (en) Alpha-sialon sintered body and manufacture
US5173459A (en) Si3 N4 -A12 O3 composite sintered bodies and method of producing the same
JPH05306172A (en) Silicon nitride sintered compact excellent in strength at high temperature and oxidation resistance and its production
JPS62148370A (en) Manufacture of high oxidation-resistance silicon nitride base ceramics
JPH08337476A (en) Silicon nitride-silicon carbide combined sintered compact and its production
JPS63123870A (en) Silicon nitride sintered body
JPH0672055B2 (en) β-SiC whisker / β-Si Ⅱ below 3 ▼ below 4 composite manufacturing method