JP2966375B2 - LAMINATED CERAMIC AND PROCESS FOR PRODUCING THE SAME - Google Patents

LAMINATED CERAMIC AND PROCESS FOR PRODUCING THE SAME

Info

Publication number
JP2966375B2
JP2966375B2 JP9162900A JP16290097A JP2966375B2 JP 2966375 B2 JP2966375 B2 JP 2966375B2 JP 9162900 A JP9162900 A JP 9162900A JP 16290097 A JP16290097 A JP 16290097A JP 2966375 B2 JP2966375 B2 JP 2966375B2
Authority
JP
Japan
Prior art keywords
layer
silicon oxide
silicon carbide
rare earth
disilicate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9162900A
Other languages
Japanese (ja)
Other versions
JPH1112050A (en
Inventor
孝幸 深澤
康広 五戸
雅礼 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP9162900A priority Critical patent/JP2966375B2/en
Publication of JPH1112050A publication Critical patent/JPH1112050A/en
Application granted granted Critical
Publication of JP2966375B2 publication Critical patent/JP2966375B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、強度等の機械的性
質に優れ、高温下での耐酸化性、耐食性も備えた構造用
材料、特に高温ガスタービン用部材又は自動車エンジン
用部材あるいは超高速航空機用耐熱部材等を製造するた
めの材料として好適な積層セラミックス及びその製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structural material having excellent mechanical properties such as strength and oxidation resistance and corrosion resistance at high temperatures, particularly a member for a high-temperature gas turbine or a member for an automobile engine, or an ultra-high speed member. The present invention relates to a laminated ceramic suitable as a material for producing a heat-resistant member for an aircraft, and a method for producing the same.

【0002】[0002]

【従来の技術】窒化珪素(SiN)、サイアロン(Si
−Al−O−N)、炭化珪素(SiC)などの非酸化物
セラミックスは、高温における耐熱性、耐熱衝撃性及び
耐クリープ特性に優れ、このような優れた機械特性から
ガスタービン用部品などの構造部材への適用が期待され
ている。しかし、非酸化物セラミックスは、1500℃
前後もしくはそれ以上の温度になると、酸化の進行によ
る劣化が問題となるため、高温での利用には支障が生じ
る。これに対し、酸化物セラミックスは耐熱性、耐酸化
性に優れているが、高温における強度、靭性等の機械的
特性が低い。従って、非酸化物セラミックスも酸化物セ
ラミックスも、単独では耐熱性及び耐酸化性と高温下で
の使用に耐える機械特性との双方を満足させることがで
きない。
2. Description of the Related Art Silicon nitride (SiN), sialon (Si)
Non-oxide ceramics such as -Al-ON) and silicon carbide (SiC) have excellent heat resistance, thermal shock resistance and creep resistance at high temperatures. It is expected to be applied to structural members. However, non-oxide ceramics are 1500 ° C
If the temperature becomes higher or lower or higher, deterioration due to the progress of oxidation becomes a problem, so that use at high temperatures is hindered. On the other hand, oxide ceramics have excellent heat resistance and oxidation resistance, but have low mechanical properties such as strength and toughness at high temperatures. Therefore, non-oxide ceramics and oxide ceramics alone cannot satisfy both heat resistance and oxidation resistance and mechanical properties that can withstand use at high temperatures.

【0003】[0003]

【発明が解決しようとする課題】そこで、非酸化物セラ
ミックスの表面に酸化物層を形成すれば、耐酸化性及び
耐食性が改善され、高温での使用に耐える機械部品材料
となることが期待される。
Therefore, if an oxide layer is formed on the surface of a non-oxide ceramic, it is expected that the oxidation resistance and the corrosion resistance will be improved, and that it will be a mechanical component material that can withstand use at high temperatures. You.

【0004】しかし、一般的な酸化物セラミックスで
は、非酸化物セラミックスより酸化物セラミックスの方
が熱膨張率が大きく他の物性も異なるため、単純に積層
して焼結したのでは、焼結−冷却過程で生じる残留応力
(酸化物層側に生じる引っ張り応力)によって割れを生
じる。従って、非酸化物セラミックスと酸化物セラミッ
クスとの接合、一体化は難しい。
However, in general oxide ceramics, oxide ceramics have a higher coefficient of thermal expansion and different physical properties than non-oxide ceramics. Cracks occur due to residual stress (tensile stress generated on the oxide layer side) generated during the cooling process. Therefore, it is difficult to join and integrate the non-oxide ceramic and the oxide ceramic.

【0005】本発明は、この様な従来技術の課題を解決
するためになされたもので、強度及び耐熱性に優れ、高
温下での酸化及び腐食に充分耐え長時間使用可能な機械
部品材料を簡易に提供することを目的とするものであ
る。
The present invention has been made in order to solve such problems of the prior art, and is intended to provide a mechanical component material which has excellent strength and heat resistance, can withstand oxidation and corrosion at high temperatures, and can be used for a long time. The purpose is to provide it easily.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明者らは鋭意研究を重ねた結果、炭化珪素を主
成分とする非酸化物セラミックスと希土類元素珪酸化合
物:RE2 Si27(式中のREは、Y,Yb,Er
及びDyからなる群より選ばれる希土類元素)の層とを
酸化珪素を用いて一体化できることを見いだし、本発明
の積層セラミックス及びその製造方法を発明するに至っ
た。
Means for Solving the Problems In order to achieve the above object, the present inventors have conducted intensive studies and have found that a non-oxide ceramic containing silicon carbide as a main component and a rare earth silicate compound: RE 2 Si 2 O 7 (where RE is Y, Yb, Er
And Dy) and a layer of a rare earth element selected from the group consisting of Dy can be integrated using silicon oxide, and the inventors have invented the multilayer ceramics of the present invention and a method for producing the same.

【0007】本発明の積層セラミックスは、炭化珪素を
含有する第1層と、一般式:RE2Si27 (但し、
式中のREは、Y,Yb,Er及びDyからなる群より
選ばれる希土類元素を示す)で表される希土類珪酸化合
物を含有する第2層と、酸化珪素を含有し該第1層と該
第2層とを接合する第3層とを有する。
The laminated ceramic of the present invention comprises a first layer containing silicon carbide and a general formula: RE 2 Si 2 O 7 (provided that:
RE in the formula represents a rare earth element selected from the group consisting of Y, Yb, Er and Dy), a second layer containing a rare earth silicate compound represented by the following formula: And a third layer that joins the second layer.

【0008】又、本発明の積層セラミックスは、炭化珪
素を含有する第1層と、一般式:RE2 Si27 (但
し、式中のREは、Y,Yb,Er及びDyからなる群
より選ばれる希土類元素を示す)で表される希土類珪酸
化合物を含有する第2層と、該第1層と該第2層とを接
合する第3層とを有し、該第3層は、酸化珪素層及びム
ライト層の2層あるいは酸化珪素層、ムライト層及びア
ルミナ層の3層を有する。
The laminated ceramic of the present invention comprises a first layer containing silicon carbide and a general formula: RE 2 Si 2 O 7 (where RE is a group consisting of Y, Yb, Er and Dy) A second layer containing a rare earth silicate compound represented by the following formula (1), and a third layer joining the first layer and the second layer: It has two layers of a silicon oxide layer and a mullite layer or three layers of a silicon oxide layer, a mullite layer and an alumina layer.

【0009】又、本発明の積層セラミックスは、炭化珪
素を含有する第1層と、一般式:RE2 Si27 (但
し、式中のREは、Y,Yb,Er及びDyからなる群
より選ばれる希土類元素を示す)で表される希土類珪酸
化合物を含有する第2層と、一般式:RE2 SiO5
(但し、式中のREは、Y,Yb,Er及びDyからな
る群より選ばれる希土類元素を示す)で表される希土類
珪酸化合物を含有する第3層と、該第2層と該第1層又
は該第3層との間に酸化珪素を含有する第4層が設けら
れ、該第4層が該第2層と該第3層との間に設けられる
場合には該第1層と該第2層との間にアルミナ又はムラ
イトあるいは酸化珪素を含有する第5層が設けられる。
Further, the laminated ceramic of the present invention comprises a first layer containing silicon carbide and a general formula: RE 2 Si 2 O 7 (wherein RE is a group consisting of Y, Yb, Er and Dy) A second layer containing a rare earth silicate compound represented by the following formula: RE 2 SiO 5
(Wherein RE represents a rare earth element selected from the group consisting of Y, Yb, Er, and Dy), a third layer containing a rare earth silicate compound, A fourth layer containing silicon oxide is provided between the second layer and the third layer, and when the fourth layer is provided between the second layer and the third layer, A fifth layer containing alumina, mullite, or silicon oxide is provided between the second layer and the second layer.

【0010】更に、本発明の積層セラミックスの製造方
法は、炭化珪素を含有する第1層と、一般式:RE2
27 (但し、式中のREは、Y,Yb,Er及びD
yからなる群より選ばれる希土類元素を示す)で表され
る希土類珪酸化合物を含有する第2層と、上記第1層と
第2層との間に積層界面に対して0.04g/cm2 以下
の割合で形成される酸化珪素層とを有する積層体を形成
し、該積層体を1400〜1700℃で加熱処理するこ
とによって該第1層と該第2層とが酸化珪素によって接
合される。
Further, according to the method for producing a laminated ceramic of the present invention, a first layer containing silicon carbide and a general formula: RE 2 S
i 2 O 7 (where RE is Y, Yb, Er and D
y represents a rare earth element selected from the group consisting of y), and 0.04 g / cm 2 with respect to the lamination interface between the second layer containing the rare earth silicate compound and the first and second layers. The first layer and the second layer are joined by silicon oxide by forming a laminate having a silicon oxide layer formed at the following ratio and performing heat treatment on the laminate at 1400 to 1700 ° C. .

【0011】[0011]

【発明の実施の形態】炭化珪素は、高温強度に優れるセ
ラミックスであり、高温での耐酸化性、耐食性が改善さ
れれば好適な機械部品材料となる。これは、耐酸化性、
耐食性を有する酸化物系セラミックスで炭化珪素表面を
被覆することにより実現され、このための酸化物とし
て、複合酸化物である希土類元素の珪酸化合物(RE2
SiO5又はRE2 Si27 、式中のREは、Y,Y
b,Er及びDyからなる群より選ばれる希土類元素を
示す)が適していることを本発明者らは見出した。上記
希土類元素の珪酸化合物(以下、本願においてはシリケ
ートと称する)は耐酸化性に優れ、熱膨張係数が炭化珪
素に近く、熱膨張挙動が類似している。但し、炭化珪素
とシリケートとは直接接触させて加熱しても接合されな
いため、本発明者らは特願平8−262342号におい
て、炭化珪素とシリケートとの界面にアルミナを介在さ
せて加熱処理することによって接合する方法を提案して
いる。ところが、ガスタービン等の高温で長時間使用さ
れる部材を考えると、アルミナより酸素透過性の低い酸
化珪素等の材料を接合材として用いることが望まれる。
しかし、モノシリケートと炭化珪素との界面に酸化珪素
を介在させて加熱しても、酸化珪素が加熱中にモノシリ
ケートに吸収されて界面に残らず、モノシリケートと炭
化珪素とは接合されない。
BEST MODE FOR CARRYING OUT THE INVENTION Silicon carbide is a ceramic excellent in high-temperature strength, and if it is improved in oxidation resistance and corrosion resistance at high temperatures, it is a suitable material for mechanical parts. This is oxidation resistance,
This is realized by coating the surface of silicon carbide with an oxide ceramic having corrosion resistance. As an oxide for this purpose, a silicate compound of a rare earth element (RE 2
SiO 5 or RE 2 Si 2 O 7 , where RE is Y, Y
The present inventors have found that a rare earth element selected from the group consisting of b, Er and Dy is suitable. The silicate compound of the rare earth element (hereinafter referred to as silicate in the present application) has excellent oxidation resistance, a thermal expansion coefficient close to that of silicon carbide, and similar thermal expansion behavior. However, since the silicon carbide and the silicate are not bonded even when they are brought into direct contact with each other and heated, the present inventors disclosed in Japanese Patent Application No. 8-262342 that heat treatment was performed with alumina interposed at the interface between the silicon carbide and the silicate. It proposes a joining method by means of this. However, considering a member used for a long time at a high temperature such as a gas turbine, it is desired to use a material such as silicon oxide having a lower oxygen permeability than alumina as a bonding material.
However, even if silicon oxide is interposed at the interface between monosilicate and silicon carbide and heated, silicon oxide is absorbed by the monosilicate during heating and does not remain at the interface, and the monosilicate and silicon carbide are not joined.

【0012】本発明は、炭化珪素層と希土類元素のジシ
リケート(RE2 Si27 、式中のREは、Y,Y
b,Er及びDyからなる群より選ばれる希土類元素を
示す)層との間に酸化珪素(SiO2 )層を介在させて
加熱処理することによって炭化珪素層とジシリケート層
とを接合して積層セラミックスを得ることを提案するも
のである。更に、ジシリケートの緻密化が比較的難しい
ことを考慮して、ジシリケート層にモノシリケート層を
積層することも提案する。
According to the present invention, a silicon carbide layer and a rare earth element disilicate (RE 2 Si 2 O 7 , where RE is Y, Y
b, Er, and Dy) and a silicon oxide (SiO 2 ) layer interposed between the silicon carbide layer and the disilicate layer to perform a heat treatment. It is proposed to obtain. Further, in view of the fact that the densification of disilicate is relatively difficult, it is proposed to stack a monosilicate layer on the disilicate layer.

【0013】以下、本発明についてさらに詳細に説明す
る。
Hereinafter, the present invention will be described in more detail.

【0014】熱膨張係数の測定によると、ジシリケート
(RE2 Si27 )はモノシリケート(RE2 SiO
5 )より熱膨張率が小さく、熱膨張挙動もモノシリケー
トよりジシリケートの方が炭化珪素にマッチしている。
According to the measurement of the coefficient of thermal expansion, disilicate (RE 2 Si 2 O 7 ) is converted to monosilicate (RE 2 SiO 2 ).
5 ) Disilicate has a smaller coefficient of thermal expansion than that of monosilicate, and has better thermal expansion behavior than silicon carbide.

【0015】炭化珪素とジシリケートとの酸化珪素によ
る接合は、炭化珪素層とジシリケート層との間に酸化珪
素薄層を介在させて加熱処理することにより達成され
る。炭化珪素の焼結温度は2000℃前後で、シリケー
トや酸化珪素の焼結温度よりかなり高いため、接合する
炭化珪素層は、炭化珪素を含有する粉末を成形し予め焼
結した焼結体であることが好ましい。炭化珪素焼結体上
に酸化珪素粉末を層状に積層し、更にジシリケート層を
重ねて約1400〜1700℃に加熱することによって
積層体は焼結され、本発明に係る積層セラミックスが得
られる。但し、ジシリケート層については、ジシリケー
ト粉末による圧粉体だけでなく、ジシリケートと同じ組
成比になるように希土類酸化物(RE23 、REは、
Y,Yb,Er及びDyからなる群より選ばれる希土類
元素を示す)粉末と酸化珪素(SiO2 )粉末とを1:
2の混合比(モル比)で混合した混合粉の圧粉体を用い
ることもできる。希土類酸化物と酸化珪素との混合圧粉
体をジシリケートの焼結温度に加熱すると、ジシリケー
トが生成すると同時に焼結が進行する。酸化珪素は、加
熱によって、一部は炭化珪素及びジシリケートと反応も
しくは固溶し、炭化珪素層及びジシリケート層に対して
接着剤のように作用して炭化珪素層とジシリケート層と
を接合する。得られる積層セラミックスは図1の(a)
のようにジシリケート層1が酸化珪素層2を介して炭化
珪素層3に積層され、形成される酸化珪素層の厚さは介
在させる酸化珪素粉末の量に依存し、積層セラミックス
の酸化珪素層の厚さが約5〜150μm、好ましくは1
00μm程度以下となるように、接合界面について約
0.001〜0.04g/cm2 の割合で酸化珪素粉末を
積層する。酸化珪素層の量が不足したり過剰であったり
すると、接合反応相が形成されなかったり接合界面で亀
裂・剥離が発生したりする。
The bonding of silicon carbide and disilicate by silicon oxide is achieved by heat treatment with a silicon oxide thin layer interposed between the silicon carbide layer and the disilicate layer. Since the sintering temperature of silicon carbide is about 2000 ° C., which is considerably higher than the sintering temperature of silicate or silicon oxide, the silicon carbide layer to be bonded is a sintered body obtained by molding a powder containing silicon carbide and pre-sintering the same. Is preferred. By laminating silicon oxide powder in layers on the silicon carbide sintered body, further laminating a disilicate layer and heating to about 1400 to 1700 ° C., the laminated body is sintered to obtain the laminated ceramic according to the present invention. However, as for the disilicate layer, not only the green compact by the disilicate powder but also the rare earth oxide (RE 2 O 3 , RE
A rare earth element selected from the group consisting of Y, Yb, Er and Dy) and silicon oxide (SiO 2 ) powder:
A green compact of a mixed powder mixed at a mixing ratio (molar ratio) of 2 can also be used. When a mixed green compact of a rare earth oxide and silicon oxide is heated to the sintering temperature of disilicate, sintering proceeds simultaneously with the formation of disilicate. Part of the silicon oxide reacts or forms a solid solution with the silicon carbide and the disilicate by heating, and acts as an adhesive on the silicon carbide layer and the disilicate layer to join the silicon carbide layer and the disilicate layer. The resulting laminated ceramic is shown in FIG.
The disilicate layer 1 is laminated on the silicon carbide layer 3 via the silicon oxide layer 2 as described above, and the thickness of the formed silicon oxide layer depends on the amount of silicon oxide powder to be interposed. About 5-150 μm in thickness, preferably 1
Silicon oxide powder is laminated at a rate of about 0.001 to 0.04 g / cm 2 on the bonding interface so that the thickness is about 00 μm or less. If the amount of the silicon oxide layer is insufficient or excessive, a bonding reaction phase will not be formed, and cracks and peeling will occur at the bonding interface.

【0016】加熱処理により接合された積層セラミック
スは、熱膨張係数の違いによる残留応力の発生が少ない
安定した積層体であるが、急激な温度変化による亀裂の
発生等を防止するために、加熱処理後の冷却は穏やかに
行うのが好ましい。
The laminated ceramics joined by the heat treatment is a stable laminate having little residual stress due to a difference in thermal expansion coefficient. However, in order to prevent the occurrence of cracks due to a rapid temperature change, the heat treatment is performed. The subsequent cooling is preferably performed gently.

【0017】本発明に係る積層セラミックスは、図1の
(b)のように、酸化珪素層2を介して炭化珪素層3と
接合されたジシリケート層1を覆うモノシリケート層4
を有していてもよい。モノシリケート層は、ジシリケー
ト層に直接積層しても、あるいは図1の(c)のように
酸化珪素2’を介して積層しても接合できる。従って、
炭化珪素焼結体に酸化珪素粉末層及びジシリケート成形
体層を積層した後に、このジシリケート成形体層上にモ
ノシリケート粉末又は成形体を直接あるいは酸化珪素粉
末層を介して積層し、前述と同様に約1400〜170
0℃に加熱することによって、モノシリケート層を有す
る積層セラミックスが得られる。酸化珪素層2’を介在
させる場合には、酸化珪素粉末を接合界面について約
0.001〜0.04g/cm2 の割合で積層するのが好
ましい。モノシリケートは、ジシリケートより緻密な層
を形成し易いので、モノシリケート層を用いることによ
って強度の低下を抑え、酸化に対してより高い抵抗をも
った積層セラミックスとなる。この構成の積層セラミッ
クスは、酸素透過を防止するための酸化珪素層と酸化珪
素がモノシリケートに吸収されるのを防止するためのジ
シリケート層とを介してモノシリケート層を炭化珪素層
に接合したものと見ることもできる。
As shown in FIG. 1B, the monolithic ceramic layer 4 covering the disilicate layer 1 joined to the silicon carbide layer 3 via the silicon oxide layer 2 is provided in the multilayer ceramic according to the present invention.
May be provided. The monosilicate layer can be bonded directly to the disilicate layer, or can be bonded via the silicon oxide 2 'as shown in FIG. Therefore,
After laminating a silicon oxide powder layer and a disilicate molded body layer on a silicon carbide sintered body, a monosilicate powder or a molded body is laminated directly or via a silicon oxide powder layer on this disilicate molded body layer, and in the same manner as described above. About 1400-170
By heating to 0 ° C., a laminated ceramic having a monosilicate layer is obtained. When the silicon oxide layer 2 ′ is interposed, it is preferable that silicon oxide powder be laminated at a rate of about 0.001 to 0.04 g / cm 2 on the bonding interface. Monosilicate is easier to form a denser layer than disilicate, and therefore, by using a monosilicate layer, a decrease in strength is suppressed, and a multilayer ceramic having higher resistance to oxidation is obtained. The laminated ceramic of this configuration has a monosilicate layer bonded to a silicon carbide layer via a silicon oxide layer for preventing oxygen permeation and a disilicate layer for preventing silicon oxide from being absorbed by the monosilicate. Can also be seen.

【0018】又、本発明に係る積層セラミックスは、図
1の(d)〜(g)のように、炭化珪素層3とジシリケ
ート層1との間に更にムライト(3Al23 ・2Si
2)層5やアルミナ層6を有していてもよい。ムライ
ト層は、炭化珪素層と酸化珪素層との間にあっても、酸
化珪素層とジシリケート層との間にあってもよく、各層
間が良好に接合された積層セラミックスが得られる。ア
ルミナ(Al23 )と酸化珪素との混合物を加熱する
と、ムライトが生成するので、ムライト層はムライト粉
末の加熱処理に限らず、アルミナと酸化珪素の混合粉末
の積層及び加熱処理によっても形成できる。あるいは、
隣接したアルミナ層及び酸化珪素層の加熱処理によって
も2層の接触部分においてムライトが生成する。従っ
て、炭化珪素焼結体に酸化珪素層及びジシリケート層を
積層する際に、ムライト層、アルミナ/酸化珪素混合物
層あるいはアルミナ層及び酸化珪素層の2層を積層し、
加熱処理することによってムライト層を有する積層セラ
ミックスが得られる。酸化珪素を用いずにムライト層に
よって炭化珪素とジシリケートとを接合した場合、炭化
珪素層とジシリケート層とは良好に接合される。しか
し、ムライトの酸素透過防止作用は、酸化珪素層程高く
はない。
The laminated ceramic according to the present invention further comprises a mullite (3Al 2 O 3 .2Si) between the silicon carbide layer 3 and the disilicate layer 1 as shown in FIGS.
An O 2 ) layer 5 and an alumina layer 6 may be provided. The mullite layer may be between the silicon carbide layer and the silicon oxide layer or between the silicon oxide layer and the disilicate layer, and a multilayer ceramic in which the layers are well bonded can be obtained. When a mixture of alumina (Al 2 O 3 ) and silicon oxide is heated, mullite is generated. Therefore, the mullite layer is formed not only by heat treatment of mullite powder but also by lamination and heat treatment of mixed powder of alumina and silicon oxide. it can. Or,
Heat treatment of the adjacent alumina layer and silicon oxide layer also generates mullite at the contact portion between the two layers. Therefore, when the silicon oxide layer and the disilicate layer are laminated on the silicon carbide sintered body, the mullite layer, the alumina / silicon oxide mixture layer or the alumina layer and the silicon oxide layer are laminated,
By performing the heat treatment, a multilayer ceramic having a mullite layer is obtained. When silicon carbide and disilicate are joined by a mullite layer without using silicon oxide, the silicon carbide layer and the disilicate layer are favorably joined. However, the effect of mullite on preventing oxygen transmission is not as high as that of a silicon oxide layer.

【0019】炭化珪素層とジシリケート層との接合自体
は、アルミナを用いても可能であるので、ジシリケート
層及びモノシリケート層を有する積層セラミックの場合
には、図1の(h)のように、炭化珪素層3とジシリケ
ート層1との間にはアルミナ層6を介在させ、ジシリケ
ート層1とモノシリケート層4との間に酸化珪素層2’
を介在させて接合することにより、良好に接合され且つ
炭化珪素層への酸素透過を防止することができる。
Since the bonding between the silicon carbide layer and the disilicate layer itself can be performed by using alumina, in the case of a multilayer ceramic having a disilicate layer and a monosilicate layer, as shown in FIG. An alumina layer 6 is interposed between the silicon carbide layer 3 and the disilicate layer 1, and a silicon oxide layer 2 'is interposed between the disilicate layer 1 and the monosilicate layer 4.
By joining with intervening, it is possible to achieve good joining and prevent oxygen permeation to the silicon carbide layer.

【0020】炭化珪素セラミックスは導電性があるの
で、炭化珪素焼結体を酸化珪素懸濁液中に投入して炭化
珪素焼結体に正電圧を印加すると、電気泳動効果により
炭化珪素焼結体の表面に酸化珪素粒子が引き付けられ、
酸化珪素薄層が形成される。従って、この様な方法で酸
化珪素薄層を形成した炭化珪素焼結体にジシリケート成
形体を接触させて加熱処理を行えば、ジシリケート層と
炭化珪素層とが酸化珪素により接合された積層セラミッ
クスが得られる。電気泳動効果によるアルミナ層の形成
は、厚さが数百μm以下の薄い酸化珪素層を形成するの
に適しており、電圧の印加時間の調節によって形成する
酸化珪素層の厚さを容易に制御できる。又、接合界面が
曲面の場合にも均一な酸化珪素層を形成することができ
る。あるいは、ディッピング法、電気泳動法、ゾル−ゲ
ル法、CVD等を用いて酸化珪素を析出・堆積させる方
法、シート成形・積層法等によって酸化珪素を積層して
もよい。
Since silicon carbide ceramics are conductive, when a silicon carbide sintered body is put into a silicon oxide suspension and a positive voltage is applied to the silicon carbide sintered body, the silicon carbide sintered body is electrophoretically effected. Silicon oxide particles are attracted to the surface of
A thin silicon oxide layer is formed. Therefore, if the silicon carbide sintered body having the silicon oxide thin layer formed in such a manner is brought into contact with the disilicate molded body and heat-treated, the laminated ceramics in which the disilicate layer and the silicon carbide layer are joined by silicon oxide can be obtained. can get. The formation of an alumina layer by the electrophoretic effect is suitable for forming a thin silicon oxide layer with a thickness of several hundred μm or less, and the thickness of the formed silicon oxide layer can be easily controlled by adjusting the voltage application time. it can. Further, even when the bonding interface is a curved surface, a uniform silicon oxide layer can be formed. Alternatively, silicon oxide may be stacked by a method of depositing and depositing silicon oxide using a dipping method, an electrophoresis method, a sol-gel method, a CVD method, or the like, a sheet forming / stacking method, or the like.

【0021】本発明においては、焼結助剤、潤滑剤等の
通常用いられるような添加物を一般的な手法に従って使
用することが可能であり、炭化珪素及びジシリケートを
各々主成分とする2層が良好に接合される。炭化珪素層
については、繊維強化材等のような複合材であっても本
発明の方法を適用して好適な積層セラミックスが得られ
る。又、反応焼結法によって作成される内部に未反応の
珪素が残留した炭化珪素焼結体であってもよい。特にこ
の場合、耐酸化性向上の効果がある。
In the present invention, commonly used additives such as a sintering aid and a lubricant can be used in accordance with a general method, and two layers each containing silicon carbide and disilicate as main components are used. Are bonded well. Regarding the silicon carbide layer, even if it is a composite material such as a fiber reinforced material, a suitable laminated ceramic can be obtained by applying the method of the present invention. Further, a silicon carbide sintered body in which unreacted silicon remains inside formed by a reaction sintering method may be used. Particularly in this case, there is an effect of improving the oxidation resistance.

【0022】[0022]

【実施例】以下、実験例により、本発明をさらに詳細に
説明する。
The present invention will be described below in more detail with reference to experimental examples.

【0023】[炭化珪素焼結体の製造]炭化珪素粉末と
微細なカーボン粉末を均一に混合して成形し、この成形
体を金属珪素の液相と高温(珪素の融点以上の温度)で
反応させ、炭化珪素焼結体を得た。
[Production of Silicon Carbide Sintered Body] Silicon carbide powder and fine carbon powder are uniformly mixed and molded, and this molded body is reacted with a liquid phase of metallic silicon at a high temperature (a temperature higher than the melting point of silicon). Thus, a silicon carbide sintered body was obtained.

【0024】[シリケート層用原料粉末の調製]又、各
希土類元素について、希土類酸化物粉末:RE23
(式中のREは、Y,Yb,Er及びDyからなる群よ
り選ばれる希土類元素を示す)と酸化珪素(SiO2
粉末とを、以下に示すように混合比(モル比)が1:1
(モノシリケートRE2 SiO5 を生成する場合)又は
1:2(ジシリケートRE2 Si27 を生成する場
合)となるようにボールミル中で混合した後乾燥して、
シリケート層を形成するための粉末a1〜a8を調製し
た。
[Preparation of Raw Material Powder for Silicate Layer] For each rare earth element, a rare earth oxide powder: RE 2 O 3
(Wherein RE represents a rare earth element selected from the group consisting of Y, Yb, Er and Dy) and silicon oxide (SiO 2 )
Powder and a mixing ratio (molar ratio) of 1: 1 as shown below.
(When producing monosilicate RE 2 SiO 5 ) or 1: 2 (when producing disilicate RE 2 Si 2 O 7 ) in a ball mill and then drying
Powders a1 to a8 for forming a silicate layer were prepared.

【0025】 粉末 形成シリケート層 粉末 形成シリケート層 a1: Y2 Si27 , a2: Yb2 Si27 a3: Er2 Si27 , a4: Dy2 Si27 a5: Y2 SiO5 , a6: Yb2 SiO5 a7: Er2 SiO5 , a8: Dy2 SiO5 上記粉末a1〜a8の各々を金型に投入して、10MP
aのプレス圧力でコールドプレスにより加圧成形して粉
末a1〜a8による圧粉体を得た。
Powder-formed silicate layer Powder-formed silicate layer a1: Y 2 Si 2 O 7 , a2: Yb 2 Si 2 O 7 a3: Er 2 Si 2 O 7 , a4: Dy 2 Si 2 O 7 a5: Y 2 SiO 5, a6: Yb 2 SiO 5 a7: Er 2 SiO 5, a8: with each of Dy 2 SiO 5 above powder a1~a8 was placed into a mold, 10MP
Press molding was performed by cold pressing at a pressing pressure of a to obtain green compacts of powders a1 to a8.

【0026】[試料の作製]表1〜4に従って、試料1
〜47の各試料を下記の操作によって作製した。
[Preparation of Sample] Sample 1 was prepared according to Tables 1-4.
To 47 were prepared by the following operations.

【0027】(試料1〜20)エタノール中に酸化珪素
(SiO2 )粉末を10重量%の割合で加えてボールミ
ルに投入し、一昼夜混合して酸化珪素ゾルを得た。試料
1〜20の各々において、上記炭化珪素焼結体及びカー
ボン板を酸化珪素ゾルに浸漬し、炭化珪素焼結体を正極
とし、カーボン板を負極として直流電圧を印加した。そ
の結果、炭化珪素焼結体の表面に酸化珪素が析出し、印
加電圧及び電圧印加時間を調整して、表1に示す量の酸
化珪素の薄層で表面を被覆した炭化珪素焼結体を得た。
表面を被覆した炭化珪素焼結体をカーボンモールドに入
れ、この上に表1に記載するジシリケート用の原料粉末
a1〜a4による圧粉成形体を載せて、アルゴン雰囲気
中で表1に記載する加熱温度に加熱しながら30MPa
のプレス圧で1時間ホットプレス焼結した後、室温まで
徐々に冷却して試料1〜20の積層セラミックスを得
た。
(Samples 1 to 20) Silicon oxide (SiO 2 ) powder was added to ethanol at a ratio of 10% by weight, and the mixture was charged into a ball mill and mixed overnight to obtain a silicon oxide sol. In each of samples 1 to 20, the silicon carbide sintered body and the carbon plate were immersed in silicon oxide sol, and a DC voltage was applied using the silicon carbide sintered body as a positive electrode and the carbon plate as a negative electrode. As a result, silicon oxide precipitates on the surface of the silicon carbide sintered body, and the applied voltage and the voltage application time are adjusted to obtain a silicon carbide sintered body whose surface is covered with a thin layer of silicon oxide in the amount shown in Table 1. Obtained.
The silicon carbide sintered body coated on the surface is placed in a carbon mold, and the green compact formed from the raw material powders a1 to a4 for disilicate described in Table 1 is placed thereon, and heated in an argon atmosphere described in Table 1 in an argon atmosphere. 30MPa while heating to temperature
, And then gradually cooled to room temperature to obtain multilayer ceramics of Samples 1 to 20.

【0028】(試料21〜38)試料21〜38の各々
において、前記炭化珪素焼結体をカーボンモールドに入
れ、表2及び3に従って、アルミナ(Al23 )粉末
あるいはムライト(3Al23 ・2SiO2 )粉末を
炭化珪素焼結体上に薄層状に積層し、更に酸化珪素粉末
を薄層状に積層し、表に記載するジシリケート用の原料
粉末a1〜a4による圧粉成形体を載せて、アルゴン雰
囲気中で1550℃に加熱しながら30MPaのプレス
圧で1時間ホットプレス焼結した後、室温まで徐々に冷
却して試料21〜38の積層セラミックスを得た。
(Samples 21 to 38) In each of Samples 21 to 38, the silicon carbide sintered body was placed in a carbon mold, and according to Tables 2 and 3, alumina (Al 2 O 3 ) powder or mullite (3Al 2 O 3)・ 2SiO 2 ) powder is laminated in a thin layer on a silicon carbide sintered body, silicon oxide powder is further laminated in a thin layer, and a green compact made of the raw material powders a1 to a4 for disilicate described in the table is placed. After hot press sintering for 1 hour at a pressure of 30 MPa while heating to 1550 ° C. in an argon atmosphere, the resultant was gradually cooled to room temperature to obtain multilayer ceramics of Samples 21 to 38.

【0029】(試料39)エタノール中に酸化珪素(S
iO2 )粉末を10重量%の割合で加えてボールミルに
投入し、一昼夜混合して酸化珪素ゾルを得た。前記炭化
珪素焼結体及びカーボン板を酸化珪素ゾルに浸漬し、炭
化珪素焼結体を正極とし、カーボン板を負極として直流
電圧を印加した。その結果、炭化珪素焼結体の表面に酸
化珪素が析出し、印加電圧及び電圧印加時間を調整し
て、0.005g/cm2 の酸化珪素の薄層で表面を被覆
した炭化珪素焼結体を得た。表面を被覆した炭化珪素焼
結体をカーボンモールドに入れ、この上にジシリケート
用の原料粉末a1による圧粉成形体を載せて、更に0.
006g/cm2 の酸化珪素粉末を積層し、モノシリケー
ト用の原料粉末a5による圧粉成形体を載せた。この積
層体をアルゴン雰囲気中で1550℃に加熱しながら3
0MPaのプレス圧で1時間ホットプレス焼結した後、
室温まで徐々に冷却して試料39の積層セラミックスを
得た。
(Sample 39) Silicon oxide (S) was dissolved in ethanol.
iO 2 ) powder was added at a ratio of 10% by weight, and charged into a ball mill. The mixture was mixed day and night to obtain a silicon oxide sol. The silicon carbide sintered body and the carbon plate were immersed in a silicon oxide sol, and a DC voltage was applied using the silicon carbide sintered body as a positive electrode and the carbon plate as a negative electrode. As a result, silicon oxide precipitates on the surface of the silicon carbide sintered body, and the applied voltage and the voltage application time are adjusted to cover the surface with a thin layer of 0.005 g / cm 2 of silicon oxide. I got The surface-coated silicon carbide sintered body is placed in a carbon mold, and a green compact made of the raw material powder a1 for disilicate is placed thereon.
006 g / cm 2 of silicon oxide powder were laminated, and a green compact of raw material powder a5 for monosilicate was placed. While heating this laminate at 1550 ° C. in an argon atmosphere, 3
After hot press sintering at 0MPa press pressure for 1 hour,
By gradually cooling to room temperature, a laminated ceramic of Sample 39 was obtained.

【0030】(試料40)原料粉末a1による圧粉成形
体と原料粉末a5による圧粉成形体との間に酸化珪素を
積層しなかったこと以外は試料39と同様の操作を繰り
返して試料40の積層セラミックスを得た。
(Sample 40) The same operation as that of Sample 39 was repeated except that silicon oxide was not laminated between the green compact of raw material powder a1 and the green compact of raw material powder a5. A laminated ceramic was obtained.

【0031】(試料41)エタノール中にアルミナ(A
23 )粉末を10重量%の割合で加えてボールミル
に投入し、一昼夜混合してアルミナゾルを調製し、前述
の酸化珪素ゾルに代えてこのアルミナゾルを用いて0.
01g/cm2 のアルミナを炭化珪素焼結体上に析出させ
たこと以外は試料39と同様の操作を繰り返して試料4
1の積層セラミックスを得た。
(Sample 41) Alumina (A
l 2 O 3 ) powder was added at a ratio of 10% by weight, and charged into a ball mill. The mixture was mixed day and night to prepare an alumina sol, and the alumina sol was used in place of the silicon oxide sol described above.
Sample 4 was prepared by repeating the same operation as in Sample 39 except that 01 g / cm 2 of alumina was precipitated on the silicon carbide sintered body.
Thus, No. 1 multilayer ceramic was obtained.

【0032】(試料42)原料粉末a1による圧粉成形
体と原料粉末a5による圧粉成形体との間に酸化珪素を
積層しなかったこと以外は試料41と同様の操作を繰り
返して試料42の積層セラミックスを得た。
(Sample 42) The same operation as that of Sample 41 was repeated except that silicon oxide was not laminated between the green compact of raw material powder a1 and the green compact of raw material powder a5. A laminated ceramic was obtained.

【0033】(試料43)エタノール中にアルミナ粉末
を10重量%の割合で加えてボールミルに投入し、一昼
夜混合してアルミナゾルを得た。前記炭化珪素焼結体及
びカーボン板をアルミナゾルに浸漬し、炭化珪素焼結体
を負極とし、カーボン板を正極として直流電圧を印加し
た。その結果、炭化珪素焼結体の表面にアルミナが析出
し、印加電圧及び電圧印加時間を調整して、0.01g
/cm2 のアリミナの薄層で表面を被覆した炭化珪素焼結
体を得た。表面を被覆した炭化珪素焼結体をカーボンモ
ールドに入れ、この上に0.01g/cm2 の酸化珪素粉
末を積層し、ジシリケート用の原料粉末a1による圧粉
成形体を載せて、更に0.006g/cm2 の酸化珪素粉
末を積層し、モノシリケート用の原料粉末a5による圧
粉成形体を載せた。この積層体をアルゴン雰囲気中で1
550℃に加熱しながら30MPaのプレス圧で1時間
ホットプレス焼結した後、室温まで徐々に冷却して試料
43の積層セラミックスを得た。
(Sample 43) Alumina powder was added to ethanol at a ratio of 10% by weight and charged into a ball mill, followed by mixing all day and night to obtain an alumina sol. The silicon carbide sintered body and the carbon plate were immersed in alumina sol, and a DC voltage was applied using the silicon carbide sintered body as a negative electrode and the carbon plate as a positive electrode. As a result, alumina was precipitated on the surface of the silicon carbide sintered body, and the applied voltage and the voltage application time were adjusted to 0.01 g.
Thus, a silicon carbide sintered body whose surface was covered with a thin layer of Arimina / cm 2 was obtained. The surface-coated silicon carbide sintered body was placed in a carbon mold, and a silicon oxide powder of 0.01 g / cm 2 was laminated thereon, and a green compact of raw material powder a1 for disilicate was placed thereon. 006 g / cm 2 of silicon oxide powder were laminated, and a green compact of raw material powder a5 for monosilicate was placed. This laminate is placed in an argon atmosphere for 1 hour.
After hot press sintering for 1 hour at a pressure of 30 MPa while heating to 550 ° C., the mixture was gradually cooled to room temperature to obtain a laminated ceramic of Sample 43.

【0034】(試料44)エタノール中にムライト粉末
を10重量%の割合で加えてボールミルに投入し、一昼
夜混合してムライトゾルを得た。前記炭化珪素焼結体及
びカーボン板をムライトゾルに浸漬し、炭化珪素焼結体
を負極とし、カーボン板を正極として直流電圧を印加し
た。その結果、炭化珪素焼結体の表面にムライトが析出
し、印加電圧及び電圧印加時間を調整して、0.01g
/cm2 のムライトの薄層で表面を被覆した炭化珪素焼結
体を得た。表面を被覆した炭化珪素焼結体をカーボンモ
ールドに入れ、この上に0.005g/cm2 の酸化珪素
粉末を積層し、ジシリケート用の原料粉末a1による圧
粉成形体を載せて、更に0.006g/cm2 の酸化珪素
粉末を積層し、モノシリケート用の原料粉末a5による
圧粉成形体を載せた。この積層体をアルゴン雰囲気中で
1550℃に加熱しながら30MPaのプレス圧で1時
間ホットプレス焼結した後、室温まで徐々に冷却して試
料44の積層セラミックスを得た。
(Sample 44) Mullite powder was added to ethanol at a ratio of 10% by weight, and the mixture was charged into a ball mill and mixed overnight to obtain a mullite sol. The silicon carbide sintered body and the carbon plate were immersed in mullite sol, and a DC voltage was applied using the silicon carbide sintered body as a negative electrode and the carbon plate as a positive electrode. As a result, mullite precipitates on the surface of the silicon carbide sintered body, and the applied voltage and the voltage application time are adjusted to 0.01 g.
A silicon carbide sintered body whose surface was covered with a thin layer of mullite / cm 2 was obtained. The surface-coated silicon carbide sintered body was placed in a carbon mold, and a silicon oxide powder of 0.005 g / cm 2 was laminated thereon, and a green compact of raw material powder a1 for disilicate was placed thereon. 006 g / cm 2 of silicon oxide powder were laminated, and a green compact of raw material powder a5 for monosilicate was placed. This laminate was hot-press sintered for 1 hour at a press pressure of 30 MPa while heating to 1550 ° C. in an argon atmosphere, and then gradually cooled to room temperature to obtain a laminate 44 of sample 44.

【0035】(試料45)ジシリケート用の原料粉末a
1による圧粉成形体に代えて原料粉末a2による圧粉成
形体を用い、モノシリケート用の原料粉末a5による圧
粉成形体に代えて原料粉末a6による圧粉成形体を用い
た点以外は試料39と同様の操作を繰り返して試料45
の積層セラミックスを得た。
(Sample 45) Raw material powder a for disilicate
1 except that a green compact of raw material powder a2 was used instead of the green compact of 1 and a green compact of raw material powder a6 was used instead of the green compact of raw material powder a5 for monosilicate. By repeating the same operation as in step 39, sample 45
Was obtained.

【0036】(試料46)ジシリケート用の原料粉末a
1による圧粉成形体に代えて原料粉末a3による圧粉成
形体を用い、モノシリケート用の原料粉末a5による圧
粉成形体に代えて原料粉末a7による圧粉成形体を用い
た点以外は試料39と同様の操作を繰り返して試料46
の積層セラミックスを得た。
(Sample 46) Raw material powder a for disilicate
1 except that a green compact of raw material powder a3 was used instead of the green compact of raw material a3, and a green compact of raw material powder a7 was used instead of the green compact of raw material powder a5 for monosilicate. By repeating the same operation as in step 39, sample 46
Was obtained.

【0037】(試料47)ジシリケート用の原料粉末a
1による圧粉成形体に代えて原料粉末a4による圧粉成
形体を用い、モノシリケート用の原料粉末a5による圧
粉成形体に代えて原料粉末a8による圧粉成形体を用い
た点以外は試料39と同様の操作を繰り返して試料47
の積層セラミックスを得た。
(Sample 47) Raw material powder a for disilicate
1 except that the green compact of raw material powder a4 was used instead of the green compact of 1 and the green compact of raw material powder a8 was used instead of the green compact of raw material powder a5 for monosilicate. By repeating the same operation as in step 39, sample 47
Was obtained.

【0038】[評価]試料1〜47の積層セラミックス
の炭化珪素層、酸化珪素層及びシリケート層の状態を下
記に従って評価した。
[Evaluation] The states of the silicon carbide layer, silicon oxide layer and silicate layer of the laminated ceramics of Samples 1 to 47 were evaluated as follows.

【0039】目視及び顕微鏡による検査によって以下の
A〜Dのいずれに該当するかによって評価を決定した。
評価の結果を表1〜4に記載する (A) 炭化珪素層、酸化珪素層及びシリケート層が良
好に接合され、顕微鏡での観察でも亀裂等の欠陥が見ら
れない。
The evaluation was determined according to any of the following A to D by visual inspection and microscopic inspection.
The results of the evaluation are shown in Tables 1 to 4. (A) The silicon carbide layer, the silicon oxide layer and the silicate layer are satisfactorily joined, and no defects such as cracks are observed even under a microscope.

【0040】(B) 顕微鏡での観察において炭化珪素
層あるいはシリケート層の一部に微少な亀裂が認められ
るが、各層間が良好に接合され、完全に一体化した積層
体である。
(B) Although microscopic cracks are observed in a part of the silicon carbide layer or the silicate layer when observed with a microscope, each layer is well bonded and is a completely integrated laminate.

【0041】(C) 酸化珪素層が消失し、炭化珪素層
とシリケート層との接合界面で剥離した。
(C) The silicon oxide layer disappeared and peeled off at the junction interface between the silicon carbide layer and the silicate layer.

【0042】(D) 酸化珪素層に亀裂が生じるか、あ
るいは、酸化珪素層の接合界面で剥離が生じ、一体化さ
れずに分離した。
(D) The silicon oxide layer was cracked or separated at the bonding interface of the silicon oxide layer, and separated without being integrated.

【0043】[0043]

【表1】 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 試料 シリケート 酸化珪素量 加熱温度 評価 用原料粉末 (g/cm2 ) (℃) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 1 a1 0.0005 1550 C 2 a1 0.005 1550 A 3 a1 0.02 1550 B 4 a1 0.05 1550 D 5 a1 0.005 1300 D 6 a1 0.005 1750 C 7 a2 0.0005 1550 C 8 a2 0.005 1550 A 9 a2 0.05 1550 D 10 a2 0.005 1750 C 11 a3 0.0005 1600 C 12 a3 0.005 1600 A 13 a3 0.02 1600 B 14 a3 0.05 1600 D 15 a3 0.005 1300 D 16 a3 0.005 1750 C 17 a4 0.0005 1550 C 18 a4 0.005 1550 A 19 a4 0.05 1550 D 20 a4 0.005 1750 C −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−[Table 1] --------------------------------------------------------- Sample silicate Silicon oxide amount Heating temperature Evaluation raw material powder (g / cm 2 ) (° C.) ----------------------------------------------------------- 1 a1 0.0005 1550 C2 a1 0.005 1550 A3 a1 0.02 1550 B4 a1 0.05 1550 D5 a1 0.005 1300 D6 a1 0.005 1750 C7 a2 0.0005 1550 C8 a2 0.005 1550 A9 a2 0.05 1550 D10 a20 0.0005 1750 C11a3 0.0005 1600 C12a3 0.005 1600 A13a3 0.02 1600 B14a3 0.05 1600 D15a3 0.005 1300 D16a3 0.005 1 50 C 17 a4 0.0005 1550 C 18 a4 0.005 1550 A19 a4 0.05 1550 D 20 a4 0.005 1750 C ------------------------------------------------- −−−−−−−−−−−−

【表2】 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 試料 シリケート ムライト量 酸化珪素量 評価 用原料粉末 (g/cm2 ) (g/cm2 ) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 21 a1 0.01 0.005 A 22 a1 0.06 0.005 D 23 a2 0.01 0.005 A 24 a2 0.06 0.005 D 25 a3 0.01 0.005 A 26 a3 0.06 0.005 D 27 a4 0.01 0.005 A 28 a4 0.06 0.005 D −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−[Table 2] ------------------------------------------------- Sample silicate mullite content Silicon oxide content Raw material powder for evaluation (g / cm 2 ) (G / cm 2 ) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 21 a1 0.01 0.005 A22 a1 0. 06 0.005 D23 a2 0.01 0.005 A 24 a2 0.06 0.005 D25 a3 0.01 0.005 A 26 a3 0.06 0.005 D27 a4 0.01 0.005 A 28 a4 0.06 0.005 D-------------------------

【表3】 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 試料 シリケート アルミナ量 酸化珪素量 焼結体の 評価 用原料粉末 (g/cm2 ) (g/cm2 ) 酸化珪素層 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 29 a1 0.01 0.01 有 A 30 a1 0.02 0.004 無 A 31 a1 0.08 0.01 無 D 32 a2 0.01 0.01 有 A 33 a2 0.02 0.004 無 A 34 a3 0.01 0.01 有 A 35 a3 0.02 0.004 無 A 36 a3 0.08 0.01 無 D 37 a4 0.01 0.01 有 A 38 a4 0.02 0.004 無 A −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Table 3 ---------------------------------------------- Sample silicate Alumina Amount Silicon oxide Amount of sintered body Raw material powder for evaluation (g / cm 2 ) (g / cm 2 ) Silicon oxide layer −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−− 29 a1 0.01 0.01 Yes A30 a1 0.02 0.004 No A31 a1 0.08 0.01 No D32a2 0.01 0.01 Yes A33 a2 0.020 0.004 without A 34 a3 0.01 0.01 with A 35 a3 0.02 0.004 without A 36 a3 0.08 0.01 without D 37 a4 0.01 0.01 with A 38 a4 0.020 .004 None A------------------------------

【表4】 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 試料 炭化珪素層− ジシリケート層− 評価 ジシリケート層 モノシリケート層 間の接合層 間の接合層 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 39 SiO2 SiO2 A 40 SiO2 − A 41 Al23 SiO2 A 42 Al23 − A 43 Al23 +SiO2 SiO2 A 44 ムライト+SiO2 SiO2 A 45 SiO2 SiO2 A 46 SiO2 SiO2 A 47 SiO2 SiO2 A −−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 試料1〜20の結果から、炭化珪素層とジシリケート層
との接合状態は、酸化珪素の量によって変化することが
わかる。接合状態は、酸化珪素の量が0.001〜0.
04g/cm2 の範囲内にある場合に特に良好であり、
0.05g/cm2以上になると酸化珪素層の接合面にお
いて剥離が生じることが試料4、9、14、19の結果
から解る。又、試料2、5、6、試料8、10及び試料
12、15、16並びに試料18、20の結果から、積
層体の加熱処理温度は約1400〜1700℃の範囲内
が好ましいことが理解される。
Table 4 ------------------------ Sample Silicon carbide layer-Disilicate layer-Evaluation Disilicate layer Monosilicate layer Between-------------------------- bonding layer between the bonding layer ------------------------------ 39 SiO 2 SiO 2 a 40 SiO 2 - a 41 Al 2 O 3 SiO 2 A 42 Al 2 O 3 -A 43 Al 2 O 3 + SiO 2 SiO 2 A 44 Mullite + SiO 2 SiO 2 A 45 SiO 2 SiO 2 A 46 SiO 2 SiO 2 A 47 SiO 2 SiO 2 A --- −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− From the results of Samples 1 to 20, the bonding state between the silicon carbide layer and the disilicate layer is It turns out that it changes with quantity. The bonding state is such that the amount of silicon oxide is 0.001 to 0.1.
Particularly good when it is within the range of 04 g / cm 2 ,
It can be seen from the results of Samples 4, 9, 14, and 19 that peeling occurs at the bonding surface of the silicon oxide layer at 0.05 g / cm 2 or more. Also, from the results of Samples 2, 5, 6, Samples 8, 10, Samples 12, 15, 16 and Samples 18, 20, it is understood that the heat treatment temperature of the laminate is preferably in the range of about 1400 to 1700 ° C. You.

【0044】試料21〜28の結果から、酸化珪素層と
ムライト層とを併用した場合にも炭化珪素層とジシリケ
ート層とを接合できることが解る。但し、試料22、2
4、26、28のようにムライト層の量が多くなると、
主として熱膨張率の差に起因する割れが生じるようにな
る。
From the results of Samples 21 to 28, it can be seen that the silicon carbide layer and the disilicate layer can be bonded even when the silicon oxide layer and the mullite layer are used together. However, samples 22, 2
When the amount of the mullite layer increases as in 4, 26, 28,
Cracks mainly occur due to the difference in thermal expansion coefficient.

【0045】試料29〜38は、アルミナ及び酸化珪素
を用いて炭化珪素層とジシリケート層とを接合したもの
である。試料29、32、34、36のように適量のア
ルミナ層及び酸化珪素層により好適に適合されることが
解る。酸化珪素層とアルミナ層との接触部分ではムライ
トが生成するので、使用する酸化珪素が少ないと酸化珪
素層は形成されない。又、アルミナが過剰であると、ア
ルミナ層の熱膨張挙動の影響が大きくなることにより割
れが生じる。
Samples 29 to 38 were obtained by bonding a silicon carbide layer and a disilicate layer using alumina and silicon oxide. It can be seen that the samples 29, 32, 34, and 36 are better suited to the appropriate amounts of the alumina layer and the silicon oxide layer. Since mullite is generated at the contact portion between the silicon oxide layer and the alumina layer, the silicon oxide layer is not formed if a small amount of silicon oxide is used. In addition, when the amount of alumina is excessive, the influence of the thermal expansion behavior of the alumina layer becomes large, thereby causing cracking.

【0046】試料39〜47の結果は、ジシリケート層
をモノシリケート層で被覆するように積層した積層セラ
ミックスが好適に形成されることを示す。
The results of Samples 39 to 47 show that the laminated ceramics laminated so that the disilicate layer is covered with the monosilicate layer is suitably formed.

【0047】[曲げ強度の測定]試料2、21、39の
積層セラミックスを用い、JIS−R1601に準じて
大きさが4mm×3mm×40mmの曲げ試験片を作製した。
この際、曲げ試験片の長手方向が積層セラミックスの接
合界面と平行になるようにし、シリケート層(試料39
の場合にはジシケート層50μmとモノシリケート層と
の合計)の厚さが0μm、200μm、400μm、6
00μmの試験片を準備した。1400℃のアルゴン雰
囲気中で、作製した曲げ試験片のシリケート層側に引っ
張り応力が作用するように破壊応力を加えて4点曲げ強
度を測定した。この結果を表5に示す。尚、表中、σn
はシリケート層の厚さがnμm(n=0,200,40
0,600)である試験片の4点曲げ強度を示す。
[Measurement of Bending Strength] Using the laminated ceramics of Samples 2, 21, and 39, a bending test piece having a size of 4 mm × 3 mm × 40 mm was prepared according to JIS-R1601.
At this time, the longitudinal direction of the bending test piece was made parallel to the bonding interface of the laminated ceramics, and the silicate layer (sample 39) was used.
In this case, the total thickness of the disilicate layer 50 μm and the monosilicate layer is 0 μm, 200 μm, 400 μm, 6
A test piece of 00 μm was prepared. In an argon atmosphere at 1400 ° C., a four-point bending strength was measured by applying a breaking stress so that a tensile stress acts on the silicate layer side of the prepared bending test piece. Table 5 shows the results. In the table, σ n
Indicates that the thickness of the silicate layer is n μm (n = 0, 200, 40
0,600) of the test piece.

【0048】[0048]

【表5】 −−−−−−−−−−−−−−−−−−−−−−−−−−− 試料 4点曲げ強度 (MPa) σ0 σ200 σ400 σ600 −−−−−−−−−−−−−−−−−−−−−−−−−−− 2 495 490 380 280 21 495 490 365 270 39 495 495 385 290 −−−−−−−−−−−−−−−−−−−−−−−−−−− 表5の結果から、シリケート層の厚さがある範囲内であ
れば、強度の低下は余り認められないことがわかる。
[Table 5] ------------------------- Sample 4-point flexural strength (MPa) σ 0 σ 200 σ 400 σ 600 −−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− -------------------------------------------------------------- 495 490 380 280 280 21 495 490 365 270 39 495 495 385 290 --------------- −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− up -down----

【0049】又、表4の試料39〜44について、14
00℃の大気雰囲気中で100時間の耐酸化試験を行っ
たところ、試料39〜41及び43〜44の酸化珪素層
を含むものは、組成的にも構造的にも変化はなく、安定
していた。これに比べ、酸化珪素層を含まない試料42
では、炭化珪素層への酸素の浸入が若干認められた。こ
れは、アルミナの酸素透過性が酸化珪素より1桁高いこ
とによると思われる。このように、炭化珪素層とシリケ
ート層との接合に酸化珪素を用いることにより、両層の
接合は良好に行われ、高温での機械特性及び耐酸化性に
優れた材料を提供することが可能である。
For samples 39 to 44 in Table 4, 14
When an oxidation resistance test was performed for 100 hours in an air atmosphere at 00 ° C., samples 39 to 41 and 43 to 44 including the silicon oxide layer showed no change in composition or structure and were stable. Was. In comparison, the sample 42 containing no silicon oxide layer
In the sample, penetration of oxygen into the silicon carbide layer was slightly observed. This is probably because alumina has an oxygen permeability one order of magnitude higher than that of silicon oxide. As described above, by using silicon oxide for the bonding between the silicon carbide layer and the silicate layer, the bonding between the two layers can be performed well, and a material having excellent mechanical properties and oxidation resistance at high temperatures can be provided. It is.

【0050】[試料の作製]試料48を下記の操作によ
って作製した。
[Preparation of Sample] A sample 48 was prepared by the following operation.

【0051】(試料48)エタノール中に酸化珪素(S
iO2 )粉末を10重量%の割合で加えてボールミルに
投入し、一昼夜混合して酸化珪素ゾルを得た。この酸化
珪素ゾル中に炭化珪素繊維で複合化した炭化珪素複合材
及びカーボン板を浸漬し、炭化珪素複合材を正極とし、
カーボン板を負極として直流電圧を印加した。その結
果、炭化珪素複合材の表面に酸化珪素が析出し、0.0
5g/cm2 の酸化珪素の薄層で表面を被覆した炭化珪素
複合材を得た。表面を被覆した炭化珪素複合材をカーボ
ンモールドに入れ、この上にジシリケート用の原料粉末
a1による圧粉成形体を載せて、アルゴン雰囲気中で表
1に記載する加熱温度に加熱しながら30MPaのプレ
ス圧で1時間ホットプレス焼結した後、室温まで徐々に
冷却して試料48の積層セラミックスを得た。
(Sample 48) Silicon oxide (S) was dissolved in ethanol.
iO 2 ) powder was added at a ratio of 10% by weight, and charged into a ball mill. The mixture was mixed day and night to obtain a silicon oxide sol. A silicon carbide composite material and a carbon plate composited with silicon carbide fibers are immersed in the silicon oxide sol, and the silicon carbide composite material is used as a positive electrode,
A DC voltage was applied using the carbon plate as a negative electrode. As a result, silicon oxide precipitates on the surface of the silicon carbide composite material,
A silicon carbide composite material whose surface was covered with a thin layer of silicon oxide of 5 g / cm 2 was obtained. The surface-coated silicon carbide composite material is placed in a carbon mold, and a green compact made of the raw material powder a1 for disilicate is placed on the carbon mold, and pressed at 30 MPa while heating to a heating temperature described in Table 1 in an argon atmosphere. After hot press sintering under pressure for 1 hour, the resultant was gradually cooled to room temperature to obtain a laminated ceramic of Sample 48.

【0052】[曲げ強度の測定]試料48の積層セラミ
ックスを用い、JIS−R1601に準じて大きさが3
mm×2.8mm×40mmの曲げ試験片を作製した。この
際、曲げ試験片の長手方向が積層セラミックスの接合界
面と平行になるようにし、ジシリケート層の厚さが0μ
m、80μm、180μm、220μm、280μmで
ある5種類の試験片を準備した。1400℃のアルゴン
雰囲気中で、作製した曲げ試験片のジシリケート層側に
引っ張り応力が作用するように破壊応力を加えて4点曲
げ強度を測定した。この結果を表6及び図2に示す。
[Measurement of Bending Strength] Using the laminated ceramic of Sample 48, the size was 3 in accordance with JIS-R1601.
A bending test piece of mm × 2.8 mm × 40 mm was prepared. At this time, the longitudinal direction of the bending test piece was made parallel to the bonding interface of the laminated ceramics, and the thickness of the disilicate layer was 0 μm.
Five types of test specimens of m, 80 μm, 180 μm, 220 μm, and 280 μm were prepared. In an argon atmosphere at 1400 ° C., a four-point bending strength was measured by applying a breaking stress so that a tensile stress acts on the disilicate layer side of the prepared bending test piece. The results are shown in Table 6 and FIG.

【0053】[0053]

【表6】 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 試料 4点曲げ強度 (MPa) σ0 σ80 σ180 σ220 σ280 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 48 220 220 160 130 80 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 図2のグラフは、希土類元素珪酸化合物(ジシリケー
ト)層の厚さと試験片が破壊したときの破壊応力(4点
曲げ強度)との関係を示す。表6の結果から理解される
ように、シリケートと接合する炭化珪素は炭化珪素繊維
複合体であってもよく、図2によれば、ジシリケート層
の厚さを適切な範囲に設定することによって炭化珪素基
材の強度を低下させることなく珪酸化合物による耐酸化
層を積層することができる。シリケート層を積層した炭
化珪素繊維複合体は、複合繊維の効果により衝撃力にも
強く、高い破壊抵抗を有するため、信頼性の高い構造用
部材に最適である。
Table 6 Sample 4-point flexural strength (MPa) σ 0 σ 80 σ 180 σ 220 σ 280 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 48 220 220 220 160 160 130 80 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 48 −−−−−−−−−−−−−−−−−−− The graph in FIG. 2 shows the thickness of the rare earth element silicate compound (disilicate) layer and the breaking stress when the test piece breaks (four-point bending strength). The relationship is shown below. As can be understood from the results in Table 6, the silicon carbide bonded to the silicate may be a silicon carbide fiber composite, and according to FIG. 2, the carbonization can be achieved by setting the thickness of the disilicate layer to an appropriate range. An oxidation-resistant layer made of a silicate compound can be laminated without reducing the strength of the silicon substrate. The silicon carbide fiber composite in which the silicate layer is laminated is strong against impact force due to the effect of the composite fiber and has high fracture resistance, and is therefore most suitable for a highly reliable structural member.

【0054】[0054]

【発明の効果】以上説明したように、本発明によれば、
高温における強度及び耐酸化性に優れた積層セラミック
スが得られ、その工業的価値は極めて大である。また、
本発明によって得られる積層セラミックスは、その優れ
た耐熱性により、高温酸化性雰囲気中で使用される構造
部材用材料として適しており、高品質の機械部品等の供
給が可能となる。
As described above, according to the present invention,
A laminated ceramic having excellent strength and oxidation resistance at high temperatures can be obtained, and its industrial value is extremely large. Also,
The laminated ceramics obtained by the present invention is suitable as a material for a structural member used in a high-temperature oxidizing atmosphere due to its excellent heat resistance, and can supply high-quality mechanical parts and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る積層セラミックスの具体例を示す
概略構成図(a)〜(h)。
FIGS. 1A to 1H are schematic configuration diagrams showing specific examples of a multilayer ceramic according to the present invention.

【図2】本発明に係る積層セラミックスにおける希土類
元素珪酸化合物層の厚さと破壊応力(曲げ強度)との関
係を示すグラフ。
FIG. 2 is a graph showing the relationship between the thickness of a rare earth element silicate compound layer and the breaking stress (flexural strength) in the multilayer ceramic according to the present invention.

【符号の説明】[Explanation of symbols]

1 ジシリケート(RE2 Si27 )層 2、2’ 酸化珪素(SiO2 )層 3 炭化珪素(SiC)層 4 モノシリケート(RE2 SiO5 )層 5 ムライト(3Al23 ・2SiO2 )層 6 アルミナ(Al23 )層REFERENCE SIGNS LIST 1 disilicate (RE 2 Si 2 O 7 ) layer 2, 2 ′ silicon oxide (SiO 2 ) layer 3 silicon carbide (SiC) layer 4 monosilicate (RE 2 SiO 5 ) layer 5 mullite (3Al 2 O 3 .2SiO 2 ) Layer 6 Alumina (Al 2 O 3 ) layer

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平10−87386(JP,A) 特開 平8−67583(JP,A) 特開 昭63−248786(JP,A) 特開 昭63−40785(JP,A) (58)調査した分野(Int.Cl.6,DB名) C04B 37/00 C04B 41/87 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-10-87386 (JP, A) JP-A-8-67583 (JP, A) JP-A-63-248786 (JP, A) JP-A-63-248786 40785 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C04B 37/00 C04B 41/87

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 炭化珪素を含有する第1層と、一般式:
RE2 Si27 (但し、式中のREは、Y,Yb,E
r及びDyからなる群より選ばれる希土類元素を示す)
で表される希土類珪酸化合物を含有する第2層と、酸化
珪素を含有し該第1層と該第2層とを接合する第3層と
を有することを特徴とする積層セラミックス。
A first layer containing silicon carbide and a general formula:
RE 2 Si 2 O 7 (where RE is Y, Yb, E
represents a rare earth element selected from the group consisting of r and Dy)
A multilayer ceramic comprising: a second layer containing a rare earth silicate compound represented by the formula: and a third layer containing silicon oxide and joining the first layer and the second layer.
【請求項2】 炭化珪素を含有する第1層と、一般式:
RE2 Si27 (但し、式中のREは、Y,Yb,E
r及びDyからなる群より選ばれる希土類元素を示す)
で表される希土類珪酸化合物を含有する第2層と、該第
1層と該第2層とを接合する第3層とを有し、該第3層
は、酸化珪素層及びムライト層の2層あるいは酸化珪素
層、ムライト層及びアルミナ層の3層を有することを特
徴とする積層セラミックス。
2. A first layer containing silicon carbide and a general formula:
RE 2 Si 2 O 7 (where RE is Y, Yb, E
represents a rare earth element selected from the group consisting of r and Dy)
A second layer containing a rare earth silicate compound represented by the following formula: and a third layer joining the first layer and the second layer, wherein the third layer comprises a silicon oxide layer and a mullite layer. A multilayer ceramic comprising a layer or three layers of a silicon oxide layer, a mullite layer and an alumina layer.
【請求項3】 炭化珪素を含有する第1層と、一般式:
RE2 Si27 (但し、式中のREは、Y,Yb,E
r及びDyからなる群より選ばれる希土類元素を示す)
で表される希土類珪酸化合物を含有する第2層と、一般
式:RE2 SiO5 (但し、式中のREは、Y,Yb,
Er及びDyからなる群より選ばれる希土類元素を示
す)で表される希土類珪酸化合物を含有する第3層と、
該第2層と該第1層又は該第3層との間に酸化珪素を含
有する第4層が設けられ、該第4層が該第2層と該第3
層との間に設けられる場合には該第1層と該第2層との
間にアルミナ又はムライトあるいは酸化珪素を含有する
第5層が設けられることを特徴とする積層セラミック
ス。
3. A first layer containing silicon carbide and a general formula:
RE 2 Si 2 O 7 (where RE is Y, Yb, E
represents a rare earth element selected from the group consisting of r and Dy)
And a second layer containing a rare earth silicate compound represented by the general formula: RE 2 SiO 5 (where RE is Y, Yb,
A third layer containing a rare earth silicate compound represented by the following formula (indicating a rare earth element selected from the group consisting of Er and Dy):
A fourth layer containing silicon oxide is provided between the second layer and the first or third layer, and the fourth layer includes the second layer and the third layer.
When provided between the first layer and the second layer, a fifth layer containing alumina, mullite or silicon oxide is provided between the first layer and the second layer.
【請求項4】 炭化珪素を含有する第1層と、一般式:
RE2 Si27 (但し、式中のREは、Y,Yb,E
r及びDyからなる群より選ばれる希土類元素を示す)
で表される希土類珪酸化合物を含有する第2層と、上記
第1層と第2層との間に積層界面に対して0.04g/
cm2 以下の割合で形成される酸化珪素層とを有する積層
体を形成し、該積層体を1400〜1700℃で加熱処
理することによって該第1層と該第2層とが酸化珪素に
よって接合されることを特徴とする積層セラミックスの
製造方法。
4. A first layer containing silicon carbide and a general formula:
RE 2 Si 2 O 7 (where RE is Y, Yb, E
represents a rare earth element selected from the group consisting of r and Dy)
The second layer containing the rare earth silicate compound represented by the formula: and 0.04 g /
forming a laminate having a silicon oxide layer formed at a ratio of not more than 2 cm 2 , and performing heat treatment on the laminate at 1400 to 1700 ° C. to join the first layer and the second layer with silicon oxide A method for producing a laminated ceramic.
JP9162900A 1997-06-19 1997-06-19 LAMINATED CERAMIC AND PROCESS FOR PRODUCING THE SAME Expired - Lifetime JP2966375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9162900A JP2966375B2 (en) 1997-06-19 1997-06-19 LAMINATED CERAMIC AND PROCESS FOR PRODUCING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9162900A JP2966375B2 (en) 1997-06-19 1997-06-19 LAMINATED CERAMIC AND PROCESS FOR PRODUCING THE SAME

Publications (2)

Publication Number Publication Date
JPH1112050A JPH1112050A (en) 1999-01-19
JP2966375B2 true JP2966375B2 (en) 1999-10-25

Family

ID=15763380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9162900A Expired - Lifetime JP2966375B2 (en) 1997-06-19 1997-06-19 LAMINATED CERAMIC AND PROCESS FOR PRODUCING THE SAME

Country Status (1)

Country Link
JP (1) JP2966375B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006264311A (en) * 2005-03-21 2006-10-05 General Electric Co <Ge> Protective layer for barrier coating of silicon containing substrate and method for manufacturing it

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6759151B1 (en) * 2002-05-22 2004-07-06 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Multilayer article characterized by low coefficient of thermal expansion outer layer
JP4531404B2 (en) 2004-01-13 2010-08-25 財団法人電力中央研究所 Environment-resistant film structure and ceramic structure
JP4145262B2 (en) * 2004-03-23 2008-09-03 三洋電機株式会社 Multilayer ceramic substrate
US7595114B2 (en) * 2005-12-09 2009-09-29 General Electric Company Environmental barrier coating for a component and method for fabricating the same
EP3243809B1 (en) * 2015-02-09 2019-04-10 Mitsubishi Heavy Industries Aero Engines, Ltd. Coated member and method for producing coated member
EP3243925B1 (en) 2015-02-09 2019-05-15 Mitsubishi Heavy Industries Aero Engines, Ltd. Coating material, coated member and method for producing coated member
RU2675638C1 (en) 2015-03-02 2018-12-21 АйЭйчАй КОРПОРЕЙШН Environment exposure protective coating
JP6696802B2 (en) * 2016-03-11 2020-05-20 一般財団法人ファインセラミックスセンター Environment-resistant coating material
JP6735164B2 (en) * 2016-06-27 2020-08-05 一般財団法人ファインセラミックスセンター Laminated structure
CN112159203B (en) * 2020-09-07 2023-03-17 宜兴摩根热陶瓷有限公司 Corrosion-resistant composite smoke-discharging brick

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006264311A (en) * 2005-03-21 2006-10-05 General Electric Co <Ge> Protective layer for barrier coating of silicon containing substrate and method for manufacturing it

Also Published As

Publication number Publication date
JPH1112050A (en) 1999-01-19

Similar Documents

Publication Publication Date Title
EP2138474B1 (en) Sic material
JP2966375B2 (en) LAMINATED CERAMIC AND PROCESS FOR PRODUCING THE SAME
CN109400164B (en) MAX phase/nitride ceramic layered gradient composite material and rapid preparation method and application thereof
CN110903074A (en) High-temperature oxidation-resistant coating on surface of silicon carbide substrate and preparation method thereof
US20100233497A1 (en) Ceramic material with a composition which is matched to a coefficient of thermal expansion specified by a metallic material
CN115043648A (en) Prestressed alumina ceramic composite material and preparation method thereof
JP3583812B2 (en) Ceramic coating member and method of manufacturing the same
JP3062139B2 (en) Manufacturing method of multilayer ceramics
JP7220527B2 (en) baking tools
JP3117433B2 (en) Manufacturing method of multilayer ceramics
US5567518A (en) Ceramic composite, particularly for use at temperatures above 1400 degrees celsius
JP3035230B2 (en) Manufacturing method of multilayer ceramics
JP3061573B2 (en) Manufacturing method of multilayer ceramics
CN101182212A (en) YAG/ZrB2 series multi-phase ceramics and preparation method thereof
CN111018555B (en) Connecting material for connecting silicon carbide with crack self-healing characteristic and application thereof
JP2984654B1 (en) Method for producing ceramic laminate having sprayed ceramic layer
JP2997645B2 (en) Manufacturing method of ceramic laminate
JP3026486B2 (en) Manufacturing method of ceramic laminate
JPS6251913B2 (en)
WO2001094273A1 (en) Method for manufacturing aluminum nitride sintered body in which via hole is made
JP3202670B2 (en) Manufacturing method of multilayer ceramics
US20060014624A1 (en) High dielectric strength monolithic Si3N4
JP3616790B2 (en) Highly resistant particle oriented porous silicon nitride and method for producing the same
KR960016071B1 (en) Plate ceramic heat building
JP2886138B2 (en) LAMINATED CERAMIC AND PROCESS FOR PRODUCING THE SAME

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070813

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 14

EXPY Cancellation because of completion of term