JP3032803B2 - Manufacturing method of laminated structure - Google Patents

Manufacturing method of laminated structure

Info

Publication number
JP3032803B2
JP3032803B2 JP9114270A JP11427097A JP3032803B2 JP 3032803 B2 JP3032803 B2 JP 3032803B2 JP 9114270 A JP9114270 A JP 9114270A JP 11427097 A JP11427097 A JP 11427097A JP 3032803 B2 JP3032803 B2 JP 3032803B2
Authority
JP
Japan
Prior art keywords
carbon
layer
silicon
substrate
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9114270A
Other languages
Japanese (ja)
Other versions
JPH1058589A (en
Inventor
健二 伊藤
舜平 山崎
修 青柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP9114270A priority Critical patent/JP3032803B2/en
Publication of JPH1058589A publication Critical patent/JPH1058589A/en
Application granted granted Critical
Publication of JP3032803B2 publication Critical patent/JP3032803B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)
  • Magnetic Record Carriers (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭素系被膜を保護
層として応用する上で、酸化物表面を有する磁気記録媒
体に対し、界面特性、特に密着性を向上させ、炭素系被
膜の特徴である耐摩耗性、高平滑性、高硬度等の諸特性
を最大限に引き出すものである。
The present invention relates to the application of a carbon-based coating as a protective layer to a magnetic recording medium having an oxide surface, which improves the interfacial properties, particularly the adhesion, and is characterized by the characteristics of the carbon-based coating. It maximizes certain properties such as abrasion resistance, high smoothness, and high hardness.

【0002】[0002]

【従来技術】従来より、多種多様な基材に炭素または炭
素を主成分とする被膜を形成することが試みられている
が、下地基材の違いによって必ずしも満足のいく密着性
が得られていないのが現状である。
2. Description of the Related Art Heretofore, attempts have been made to form carbon or a film containing carbon as a main component on a wide variety of substrates, but satisfactory adhesion has not always been obtained due to differences in underlying substrates. is the current situation.

【0003】特に、酸化物磁気記録媒体上に関しては、
本質的に炭素系被膜と良好な界面特性、主に密着性が得
られないことから、新しい技術の開発が急がれる。
In particular, on an oxide magnetic recording medium,
Since essentially no good interfacial properties and good adhesion can be obtained with carbon-based coatings, the development of new technologies is urgent.

【0004】[0004]

【発明が解決しようとする課題】界面密着性が良好でな
い原因として、カ−ボン系有機汚染物あるいは酸化性汚
染物が下地基材に含浸または表面に吸着している為と考
えられているが、これらがどのように作用しているかは
不明な点が多い。そして上記汚染物に関してはUV(紫外
線)を用いたオゾン処理または真空加熱処理およびイオ
ンボンバ−ト処理等で軽減できることは周知のことであ
る。
It is considered that the reason why the interfacial adhesion is not good is that carbon-based organic contaminants or oxidative contaminants are impregnated in the base material or adsorbed on the surface. However, there are many unclear points how these work. It is well known that the above contaminants can be reduced by ozone treatment using UV (ultraviolet rays) or vacuum heating treatment and ion bombardment treatment.

【0005】しかし基材自身が酸化物の場合、基材表面
には酸素を介した結合を有している。そこに炭素系被膜
を形成する際、界面付近において、炭素と酸素が反応
し、COが形成されこの界面に吸着または含有される。
これは本来、気体であるために表面から離脱する。結果
として、これらの上面に炭素または炭素を主成分とする
被膜が形成されたとしても、界面にC−O結合が混在し
ていればこの結合は本来気体性であるため、初期及び経
時に密着性が低下することは明らかである。原子間結合
エネルギを以下に示す。
However, when the substrate itself is an oxide, the surface of the substrate has a bond via oxygen. When a carbon-based film is formed there, carbon and oxygen react near the interface to form CO, which is adsorbed or contained at the interface.
Since this is originally a gas, it separates from the surface. As a result, even if carbon or a film containing carbon as a main component is formed on these upper surfaces, if a CO bond is present at the interface, the bond is inherently gaseous, so that the bond is initially and temporally adhered. It is clear that the sex is reduced. The interatomic bond energy is shown below.

【0006】 C−O 256 Kcal/mol C−C 144 〃 O−H 102 〃 Fe−O 98 〃 C−H 81 〃 Si−O 192 〃 Si−C 104 〃 H−H 104 〃 Si−H 75 〃C-O 256 Kcal / mol C-C 144 〃O-H 102 〃Fe-O 98 〃C-H 81 〃Si-O 192 〃Si-C 104 〃H-H 104 〃Si-H 75 〃

【0007】またこの酸化物表面にアモルファスシリコ
ン膜( 酸素を含有していない) を形成する試みもある
が、この場合、このシリコン内の酸化力が強いため、母
材の酸化物磁気記録媒体の酸素の化学量論比を狂わせて
しまい、記録特性の低下を促しやすい。
There is also an attempt to form an amorphous silicon film (containing no oxygen) on the surface of the oxide. In this case, however, since the oxidizing power in the silicon is strong, the oxide magnetic recording medium of the base material is not used. The stoichiometric ratio of oxygen is changed, and the recording characteristics are likely to deteriorate.

【0008】[0008]

【課題を解決するための手段】本発明は、炭素または炭
素を主成分とする被膜を酸化物磁気記録媒体表面を有す
る基材上に形成する前に、格子定数、熱膨張係数または
応力歪を緩和するとともに、母材の酸化物磁気記録媒体
の記録能力を何ら損傷しないシリコン酸化物層を下地基
材と炭素系被膜との間にバッファ層として設けることを
特徴とするものである。
According to the present invention, a lattice constant, a thermal expansion coefficient or a stress strain is determined before forming a carbon or carbon-based film on a substrate having an oxide magnetic recording medium surface. The present invention is characterized in that a silicon oxide layer is provided as a buffer layer between the base substrate and the carbon-based coating, while relaxing the oxide magnetic recording medium as a base material and not damaging the recording performance of the magnetic recording medium at all.

【0009】特に-5〜-20 ×109dyn/cm2の圧縮応力を有
す炭素系被膜と下地酸化物表面を有する基材との間での
応力緩和と、下地基材との界面のC-O 結合を排除するこ
とで、従来困難とされていた酸化物基材上に密着性を向
上させた炭素または炭素を主成分とする被膜形成を可能
としたものである。
In particular, stress relaxation between a carbon-based coating having a compressive stress of -5 to -20 × 10 9 dyn / cm 2 and a substrate having an underlying oxide surface, and an interface between the underlying coating and the underlying substrate. By eliminating the CO 2 bond, it is possible to form a carbon-based or carbon-based film with improved adhesion on an oxide substrate, which has been difficult in the past.

【0010】炭素膜のコ−ティングに介しては、本出願
人の出願になる特許願「炭素または炭素を主成分とする
被膜を形成する方法」(昭和63年3月2日出願) が知ら
れている。上記の目的を達成する為に、本発明の実施に
使用したバッファ層および炭素系被膜の作製装置の概要
を実施例に従って説明する。
[0010] Through the coating of a carbon film, a patent application “Method of forming a coating containing carbon or carbon as a main component” (filed on March 2, 1988) filed by the present applicant is known. Have been. In order to achieve the above object, an outline of an apparatus for producing a buffer layer and a carbon-based coating used in the practice of the present invention will be described with reference to examples.

【0011】[0011]

【実施例】【Example】

〔実施例1〕図1は平行平板型プラズマ装置で、ガス系
(1) において、キャリアガスである水素を(2) より、反
応性気体である珪化水素気体、例えばシラン、ジシラン
を(3) より、炭化水素気体、例えばメタン、エチレンを
(4) 、それらのエッチング用気体である弗化物気体、例
えば三弗化窒素、六弗化硫黄等を(5) より、また酸素の
添加用気体として亜酸化窒素(N2O)(6)より、バルブ(7),
流量計(8) を介して反応系(9) 中のノズル(10)より導入
する。
[Embodiment 1] FIG. 1 shows a parallel plate type plasma apparatus, which uses a gas
In (1), hydrogen as a carrier gas is converted from (2) to a hydrogen silicide gas as a reactive gas, such as silane or disilane, from (3) to hydrocarbon gas such as methane or ethylene.
(4) Fluoride gases such as nitrogen trifluoride, sulfur hexafluoride, etc., which are etching gases thereof, are obtained from (5), and nitrous oxide (N 2 O) (6) is used as a gas for adding oxygen. From the valve (7),
It is introduced from the nozzle (10) in the reaction system (9) via the flow meter (8).

【0012】反応系(9) では減圧下にて珪素系被膜、炭
化珪素系被膜および炭素系被膜の成膜およびそれらのエ
ッチング処理を行う。反応系(9) では第1の電極(11)、
第2の電極(12)を有し、一対の電極(11)、(12)間には高
周波電源(13), マッチングトランス(14)、直流バイアス
電源(15)より電気エネルギが加えられ、プラズマが発生
する。反応性気体のより一層の分解を促進する為には、
2.45GHz のマイクロ波にて、200W〜2KW のマイクロ波励
起を用いるのはよい。
In the reaction system (9), a silicon-based coating, a silicon carbide-based coating, and a carbon-based coating are formed under reduced pressure and their etching is performed. In the reaction system (9), the first electrode (11),
It has a second electrode (12), and electric energy is applied between a pair of electrodes (11) and (12) from a high-frequency power supply (13), a matching transformer (14), and a DC bias power supply (15), and a plasma is applied. Occurs. To promote further decomposition of the reactive gas,
It is good to use 200W ~ 2KW microwave excitation with 2.45GHz microwave.

【0013】本実施例によると、酸化物基材、例えばア
ルミニウム基板上にγ-Fe2O3またはこれに添加物を加え
た磁性材料を第1の電極即ち切り換えスイッチ(18),(1
9) を選択して、接地側にセットした。
According to this embodiment, γ-Fe 2 O 3 or a magnetic material to which an additive is added to an oxide substrate, for example, an aluminum substrate, is used as a first electrode, ie, a changeover switch (18), (1).
9) was selected and set on the ground side.

【0014】これはバッファ層の形成に際して、母材に
バイアスがかかって損傷することを防ぐためである。
次にこの反応系を1×10-5torr以下に真空引きして基材
上および反応容器内の残存気体を除去した。その後、反
応性気体であるモノシラン、例えばH2ベ−ス3%シラン
とN2O とを導入した。そしてN2O/SiH4を1〜0.01に可変
した。反応容器内圧力は0.01〜1torr,代表的には0.1tor
r に圧力調整バルブ(21)にて調整し、高周波電圧を印加
し、反応性気体をプラズマ化させた。
This is to prevent the base material from being damaged due to bias when forming the buffer layer.
Next, the reaction system was evacuated to 1 × 10 −5 torr or less to remove residual gas on the substrate and in the reaction vessel. Thereafter, a reactive gas of monosilane, for example, H 2 -based 3% silane and N 2 O were introduced. Then, N 2 O / SiH 4 was varied from 1 to 0.01. The pressure inside the reaction vessel is 0.01 to 1 torr, typically 0.1 torr
r was adjusted with a pressure adjusting valve (21), a high frequency voltage was applied, and the reactive gas was turned into plasma.

【0015】次に、図2はその縦断面図を示している
が、γ-Fe2O3(24)上に珪素酸化物を形成し、さらにその
上に炭素または炭素を主成分とする保護層(26)を形成し
た。即ち、珪素酸化物層(25)の形成は、成膜とともにN2
O の添加量を少なくしていき、バッファ層の終わる端部
ではその添加を零とした。
Next, FIG. 2 is a longitudinal sectional view showing a silicon oxide formed on γ-Fe 2 O 3 (24), and a protective material containing carbon or carbon as a main component. A layer (26) was formed. That is, formation of the silicon oxide layer (25), N 2 with deposited
The addition amount of O was reduced, and the addition was zero at the end of the buffer layer.

【0016】成膜速度は10Å/ 分に制御し、厚さは20〜
500Å代表的には100 Åとした。次に切り換えスイッチ
(18),(19) を選択して、基材が高周波印加電極側( カソ
−ド側)になるようにする。これは炭素膜の形成に際し
ては直流バイアスを印加するためである。この状態で反
応性気体であるメタンと水素とを2:1 の割合で導入し、
0.01〜1.0torr 代表的には0.1torr に調整して、高周波
電圧を印加して反応性気体をプラズマ化させた。する
と、プラズマ中の電子がイオンと移動度の差および質量
の差により、高周波が印加された電極に電荷が蓄積され
る。するとプラズマの電位との間に電界が発生し、プラ
ズマ中にとり残された正イオン( 例えばC,CH,CH2,H) が
加速され、炭素系被膜の堆積過程において耐エッチング
性の低いグラファイト成分がエッチング除去されながら
SP3 結合を有するアモルファスカ−ボンを堆積させるこ
とが可能となる。その結果、硬質の炭素性被膜が20Å/m
in. の成膜速度で100 〜5000Å代表的には1000Å形成さ
れる。反応後の不要物は排気系(20)より圧力調整バルブ
(21)、タ−ボ分子ポンプ(22)、ロ−タリ−ポンプ(23)を
経て排気される。
The deposition rate is controlled at 10 mm / min, and the thickness is 20 to
500 mm, typically 100 mm. Next switch
(18) and (19) are selected so that the base material is on the high frequency application electrode side (cathode side). This is because a DC bias is applied when forming the carbon film. In this state, the reactive gases methane and hydrogen are introduced at a ratio of 2: 1.
The reaction gas was adjusted to 0.01 to 1.0 torr, typically to 0.1 torr, and a high-frequency voltage was applied to convert the reactive gas into plasma. Then, due to a difference in mobility and a difference in mass between the ions and the ions in the plasma, charges are accumulated in the electrode to which the high frequency is applied. Then, an electric field is generated between the plasma potential and the positive ions (eg, C, CH, CH 2 , H) left in the plasma are accelerated. Is etched away
SP 3 Amorphous mosquito has binding - it is possible to deposit the carbon. As a result, a hard carbonaceous film
The film is formed at a film forming speed of in. 100 to 5000 mm, typically 1000 mm. Unnecessary substances after the reaction are pressure-adjusted from the exhaust system (20).
(21), the gas is exhausted through a turbo molecular pump (22) and a rotary pump (23).

【0017】こうして得られた炭素系被膜はビッカ−ス
硬度が1000〜7000Kg/mm2代表的には2000〜2500Kg/mm2
後である。以上により、図2に示す酸化物磁気記録媒
体、例えば下地基材(24)、例えばガラスは500 〜600 Kg
/mm2、バッファ層(25)が1000Kg/mm2、炭素系被膜(26)が
2000〜2500Kg/mm2の構成が得られ、これのA-A'の深さ方
向の分布をSIMS( 二次イオン質量分析機) で測定した結
果、図3(A) を得た。この図面で鉄(31), 珪素(33),炭
素(34)に対し、酸素(32)が記録媒体(24)側より炭素(26)
側において漸減していることがわかる。この結果、下地
酸化物媒体の記録特性を低下させることなく、密着性の
よい炭素保護膜を形成させることができた。 このバッ
ファ層中の酸素の平均濃度は1×1019cm-3以上を有し、
Si:O=1:1 を有する酸素量以下であった。
The carbon-based coating thus obtained has a Vickers hardness of 1000 to 7000 kg / mm 2, typically around 2000 to 2500 kg / mm 2 . As described above, the oxide magnetic recording medium shown in FIG. 2, for example, the base material (24), for example, glass is 500 to 600 kg.
/ mm 2 , buffer layer (25) 1000 kg / mm 2 , carbon-based coating (26)
A configuration of 2000 to 2500 kg / mm 2 was obtained, and the distribution of AA ′ in the depth direction was measured by SIMS (secondary ion mass spectrometer). As a result, FIG. 3 (A) was obtained. In this drawing, iron (31), silicon (33), and carbon (34), while oxygen (32) is carbon (26) from the recording medium (24) side
It can be seen that it gradually decreases on the side. As a result, a carbon protective film with good adhesion could be formed without deteriorating the recording characteristics of the underlying oxide medium. The average concentration of oxygen in this buffer layer is 1 × 10 19 cm −3 or more,
It was less than the amount of oxygen having Si: O = 1: 1.

【0018】〔実施例2〕 この実施例は、実施例1と同じ装置を用いた。本実施例
は、図3(B)に示すように、バッファ層(25)として第1
のバッファ層(32-1)および第2のバッファ層(32-2)の多
層構造にしたものであるまず、珪化水素化物気体とN 2
Oを導入し、第1のバッファ層(32-1)としてシリコン酸
化物層を形成した。次に、酸素の添加を酸化物記録媒体
側のみでN 2Oの添加を中止し、シリコン層または炭化水
素気体を添加し炭化シリコン層を第2のバッファ層(32-
2)として形成した。この後、実施例1と同じく、炭素ま
たは炭素を主成分とする被膜(26)を形成した。すると酸
化物磁気記録媒体側は酸素が添加され、記録特性の低下
を除き、炭素または炭素を主成分とする保護層側では酸
素と炭素とが互いに混合してC-O結合を発生させること
を防いだ。その結果、良好な密着性と、記録特性の向上
を図ることができた。
Example 2 In this example, the same apparatus as in Example 1 was used. This embodiment
Is the first buffer layer (25) as shown in FIG.
Buffer layer (32-1) and second buffer layer (32-2)
It has a layered structure . First, borohydride gas and N 2
O is introduced and silicon oxide is used as the first buffer layer (32-1).
An oxide layer was formed. Then, the addition of oxygen to stop the addition of N 2 O only oxide recording medium side, the silicon layer or hydrocarbon
The silicon carbide layer is added to the second buffer layer (32-
Formed as 2) . Thereafter, as in Example 1, carbon or a film (26) containing carbon as a main component was formed. Then, oxygen was added to the oxide magnetic recording medium side, and except for the deterioration of recording characteristics, oxygen and carbon were prevented from being mixed with each other on the protective layer side containing carbon or carbon to generate a CO bond. . As a result, good adhesion and improved recording characteristics were achieved.

【0019】[0019]

【発明の効果】本発明によれば、従来難しいとされてい
た基材、特に酸化物基材上に対し、界面応力緩和効果、
即ち応力を階段状に制御可変すること、および本質的に
整合性の悪いとされる酸化物と炭化物を直接接触させな
いことによる界面C-O 結合の阻止効果がバッファ層によ
り期待できる。
According to the present invention, an interfacial stress relieving effect can be obtained on a substrate which has been considered difficult, especially on an oxide substrate.
That is, the buffer layer can be expected to have the effect of controlling the stress in a stepwise manner and preventing interfacial CO 2 bonding by preventing direct contact between the oxide and the carbide, which are considered to be essentially inconsistent.

【0020】そしてCSS(コンタクト・スタ−ト・ストッ
プ)において、104 〜105 回で何らの特性低下をもたら
さない保護膜を作ることができた。以上により、界面特
性、特に密着性の初期および経時変化に対し、多大な改
善効果があることを見出したものである。
[0020] and CSS - in (contact Star door stop), I was able to create a protective film that does not result in any of the properties decreased in 10 4 to 10 5 times. From the above, it has been found that there is a great improvement effect on the interface characteristics, especially on the initial stage and the change over time of the adhesion.

【0021】本発明は炭素を磁性材料に密着させる、珪
素の酸化物上に密着させることにより、初めて工業的に
実用可能な磁気記録媒体を作ることができた。
According to the present invention, an industrially practicable magnetic recording medium can be manufactured for the first time by bringing carbon into close contact with a magnetic material and by bringing it into close contact with silicon oxide.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施に使用した平行平板型プラズマ装
置の概要を示す。
FIG. 1 shows an outline of a parallel plate type plasma apparatus used for carrying out the present invention.

【図2】本発明により作製されたバッファ層を介して形
成した炭素系被膜の断面を示す。
FIG. 2 shows a cross section of a carbon-based coating formed via a buffer layer manufactured according to the present invention.

【図3】本発明により作製された磁気記録媒体の深さ方
向の分布である。
FIG. 3 is a distribution in a depth direction of a magnetic recording medium manufactured according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C23C 16/26 B32B 9/00 C01B 31/02 101 C30B 29/04 G11B 5/66 G11B 5/72 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) C23C 16/26 B32B 9/00 C01B 31/02 101 C30B 29/04 G11B 5/66 G11B 5/72

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基体の上にシリコン酸化物層と、前記シリ
コン酸化物層上にシリコン層と、前記シリコン層上に炭
素または炭素を主成分とする被膜とを有する積層構造体
の作製方法において、 前記シリコン酸化物層およびシリコン層を成膜する際に
は前記基体を接地し、前記炭素または炭素を主成分とす
る被膜を成膜する際には前記基体にバイアスを印加する
ことを特徴とする積層構造体の作製方法。
1. A silicon oxide layer on a substrate, said silicon oxide layer
A silicon layer on the oxide layer and a charcoal layer on the silicon layer.
LAMINATED STRUCTURE HAVING COATING CONTAINING SILICON OR CARBON AS A MAIN COMPONENT
In the method of manufacturing, when forming the silicon oxide layer and the silicon layer,
Grounds the base, and mainly contains the carbon or carbon.
A bias is applied to the substrate when forming a coating
A method for manufacturing a laminated structure, characterized in that:
【請求項2】基体の上にシリコン酸化物層と、前記シリ
コン酸化物層上に炭化シリコン層と、前記炭化シリコン
層上に炭素または炭素を主成分とする被膜とを有する積
層構造体の作製方法において、 前記シリコン酸化物層および炭化シリコン層を成膜する
際には前記基体を接地し、前記炭素または炭素を主成分
とする被膜を成膜する際には前記基体にバイアスを印加
することを特徴とする積層構造体の作製方法。
2. A silicon oxide layer on a substrate, said silicon oxide layer
A silicon carbide layer on the oxide layer;
Having carbon or a carbon-based coating on the layer
In the method for manufacturing a layer structure, the silicon oxide layer and the silicon carbide layer are formed.
When the base is grounded, the carbon or carbon is the main component
Apply a bias to the substrate when forming a film
A method for manufacturing a laminated structure.
【請求項3】請求項1または請求項2において、前記炭
素または炭素を主成分とする被膜はアモルファス構造で
あることを特徴とする積層構造体の作製方法。
3. The method according to claim 1, wherein the
The coating mainly composed of silicon or carbon has an amorphous structure
A method for manufacturing a laminated structure, comprising:
JP9114270A 1997-04-16 1997-04-16 Manufacturing method of laminated structure Expired - Lifetime JP3032803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9114270A JP3032803B2 (en) 1997-04-16 1997-04-16 Manufacturing method of laminated structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9114270A JP3032803B2 (en) 1997-04-16 1997-04-16 Manufacturing method of laminated structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP63235482A Division JP2855162B2 (en) 1988-09-19 1988-09-19 Magnetic recording media

Publications (2)

Publication Number Publication Date
JPH1058589A JPH1058589A (en) 1998-03-03
JP3032803B2 true JP3032803B2 (en) 2000-04-17

Family

ID=14633618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9114270A Expired - Lifetime JP3032803B2 (en) 1997-04-16 1997-04-16 Manufacturing method of laminated structure

Country Status (1)

Country Link
JP (1) JP3032803B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5148783B1 (en) * 2011-11-14 2013-02-20 シャープ株式会社 Composite manufacturing method and silicon purification apparatus
WO2013073204A1 (en) * 2011-11-14 2013-05-23 シャープ株式会社 Composite material, composite material manufacturing method, and silicon refining apparatus

Also Published As

Publication number Publication date
JPH1058589A (en) 1998-03-03

Similar Documents

Publication Publication Date Title
Martinu et al. Critical ion energy and ion flux in the growth of films by plasma‐enhanced chemical‐vapor deposition
US5227196A (en) Method of forming a carbon film on a substrate made of an oxide material
US20030026990A1 (en) Method for forming carbonaceous hard films
EP1156134A3 (en) Method and apparatus of depositing a layer of nitrogen-doped fluorinated silicate glass
JP5084426B2 (en) Method for forming silicon nitride film
JP2571957B2 (en) Carbon-based or carbon-based coating via buffer layer and method of making same
JP2744970B2 (en) Magnetic recording media
JP3032803B2 (en) Manufacturing method of laminated structure
JP2791655B2 (en) Manufacturing method of magnetic recording medium
JP3355892B2 (en) Method of forming carbon film
JP2855162B2 (en) Magnetic recording media
JP2852380B2 (en) Method for forming carbon or carbon-based coating
JP2002115061A (en) Method for manufacturing diamond-like carbon film
Park et al. Relationship between field emission characteristics and hydrogen content in diamondlike carbon deposited by the layer-by-layer technique using plasma enhanced chemical vapor deposition
JP3057072B2 (en) Method for producing diamond-like carbon film
JP2775263B2 (en) Member covered with carbon film
JP2775278B2 (en) Preparation method of carbon-based coating
JP3236594B2 (en) Member with carbon film formed
Shinoda et al. Adhesion between polycarbonate substrate and SiO2 film formed from silane and nitrous oxide by plasma‐enhanced chemical vapor deposition
Gorczyca et al. Plasma-enhanced chemical vapor deposition of dielectrics
Romand et al. Spectroscopic and mechanical studies of RF plasma-polymerized films deposited at low temperature from organosilane precursors
Lin et al. Deposition of hydrogenated amorphous carbon and silicon-carbon thin films in low energy RF magnetron plasmas
JP3267959B2 (en) Method for producing diamond-like carbon film
JPH06212430A (en) Formation of hardened protective film on surface of plastic substrate
JP3256212B2 (en) Method for producing diamond-like carbon film

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080218

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 9