JP2855162B2 - Magnetic recording media - Google Patents

Magnetic recording media

Info

Publication number
JP2855162B2
JP2855162B2 JP63235482A JP23548288A JP2855162B2 JP 2855162 B2 JP2855162 B2 JP 2855162B2 JP 63235482 A JP63235482 A JP 63235482A JP 23548288 A JP23548288 A JP 23548288A JP 2855162 B2 JP2855162 B2 JP 2855162B2
Authority
JP
Japan
Prior art keywords
carbon
magnetic recording
layer
oxide
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63235482A
Other languages
Japanese (ja)
Other versions
JPH0283820A (en
Inventor
健二 伊藤
舜平 山崎
修 青柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP63235482A priority Critical patent/JP2855162B2/en
Publication of JPH0283820A publication Critical patent/JPH0283820A/en
Application granted granted Critical
Publication of JP2855162B2 publication Critical patent/JP2855162B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 「発明の利用分野」 本発明は、炭素系被膜を保護層として応用する上で、
酸化物表面を有する磁気記録媒体に対し、界面特性、特
に密着性を向上させ、炭素系被膜の特徴である耐摩耗
性、高平滑性、高硬度等の諸特性を最大限に引き出すも
のである。
DETAILED DESCRIPTION OF THE INVENTION "Field of Application of the Invention" The present invention relates to the application of a carbon-based coating as a protective layer.
It improves interface properties, especially adhesion, to magnetic recording media with an oxide surface, and maximizes the characteristics of carbon-based coatings such as wear resistance, high smoothness, and high hardness. .

「従来技術」 従来より、多種多様な基材に炭素または炭素を主成分
とする被膜を形勢することが試みられているが、下地基
材の違いによって必ずしも満足のいく密着性が得られて
いないのが現状である。
"Prior art" Conventionally, attempts have been made to form carbon or carbon-based coatings on a wide variety of substrates, but satisfactory adhesion has not always been obtained due to differences in underlying substrates. is the current situation.

特に、酸化物磁気記録媒体上に関しては、本質的に炭
素系被膜と良好な界面特性、主に密着性が得られないこ
とから、新しい技術の開発が急がれる。
In particular, on oxide magnetic recording media, the development of new technologies is urgently required because good interface characteristics with carbon-based coatings and essentially no adhesion can be obtained.

「従来技術の問題点」 界面密着性が良好でない原因として、カーボン系有機
汚染物あるいは酸化性汚染物が下地基材に含浸または表
面に吸着している為と考えられているが、これらがどの
ように作用しているかは不明な点が多い。
"Problems of the prior art" It is thought that the cause of poor interfacial adhesion is that carbon-based organic contaminants or oxidative contaminants are impregnated into the base material or adsorbed on the surface. There are many unclear points as to how it works.

そして上記汚染物に関してはUV(紫外線)を用いたオ
ゾン処理または真空加熱処理およびイオンボンバート処
理等で軽減できることは周知のことである。
It is well known that the contaminants can be reduced by ozone treatment using UV (ultraviolet rays), vacuum heating treatment, ion bombardment treatment and the like.

しかし基材自身が酸化物の場合、基材表面には酸素を
介した結合を有している。そこに炭素系被膜を形成する
際、界面付近において、炭素と酸素が反応し、COが形成
されこの界面に吸着または含有される。これは本来、気
体であるために表面から離脱する。結果として、これら
の上面に炭素または炭素を主成分とする被膜が形成され
たとしても、界面にC−O結合が混在していればこの結
合は本来気体性であるため。初期及び経時に密着性が低
下することは明らかである。
However, when the base material itself is an oxide, the base material surface has a bond via oxygen. When a carbon-based coating is formed there, carbon and oxygen react near the interface to form CO, which is adsorbed or contained at the interface. Since this is originally a gas, it separates from the surface. As a result, even if carbon or a film containing carbon as a main component is formed on these upper surfaces, if a C—O bond is present at the interface, this bond is inherently gaseous. It is clear that the adhesion decreases at the beginning and with time.

原子間結合エネルギを以下に示す。 The interatomic bond energy is shown below.

C−O 256Kcal/mol C−C 144 〃 O−H 102 〃 Fe−O 98 〃 C−H 81Kcal/mol Si−O 192 〃 Si−C 104 〃 H−H 104 〃 Si−H 75 〃 またこの酸化物表面にアモルファスシリコン膜(酸素
を含有していない)を形成する試みもあるが、この場
合、このシリコン内の酸化力が強いため、母材の酸化物
磁気記録媒体の酸素の化学量論比を狂わせてしまい、記
録特性の低下を促しやすい。
C-O 256 Kcal / mol C-C 144 〃 O-H 102 〃 Fe-O 98 〃 C-H 81 Kcal / mol Si-O 192 〃 Si-C 104 〃 H-H 104 〃 Si-H 75 〃 Attempts have been made to form an amorphous silicon film (containing no oxygen) on the surface of the material. In this case, however, the oxidizing power in the silicon is so strong that the stoichiometric ratio of oxygen in the base oxide magnetic recording medium And the recording characteristics are likely to deteriorate.

「問題を解決すべき手段」 本発明は、炭素または炭素を主成分とする被膜を酸化
物磁気記録媒体表面を有する基材上に形成する前に、格
子定数、熱膨張係数または応力歪を緩和するとともに、
母材の酸化物磁気記録媒体の記録能力を何ら損傷しない
シリコン酸化物層を下地基材と炭素系被膜との間にバッ
ファ層として設けることを特徴とするものである。
"Means to Solve the Problem" The present invention relaxes the lattice constant, the coefficient of thermal expansion or the stress strain before forming a carbon or carbon-based coating on a substrate having an oxide magnetic recording medium surface. Along with
The present invention is characterized in that a silicon oxide layer which does not impair the recording performance of the base oxide magnetic recording medium at all is provided as a buffer layer between the base substrate and the carbon-based film.

特に−5〜−20×109dyn/cm2の圧縮応力を有す炭素系
被膜と下地酸化物表面を有する基材との間での応力緩和
と、下地基材との界面のC−O結合を排除することで、
従来困難とされていた酸化物基材上に密着性を向上させ
た炭素または炭素を主成分とする被膜形成を可能とした
ものである。
In particular, stress relaxation between the carbon-based film having a compressive stress of -5 to -20 × 10 9 dyn / cm 2 and the substrate having the surface of the underlying oxide, and CO at the interface with the underlying substrate By eliminating the bond,
The present invention enables formation of a carbon-based or carbon-based film with improved adhesion on an oxide substrate, which has been considered difficult.

炭素膜のコーティングに介しては、本出願人の出願に
なる特許願「炭素または炭素を主成分とする被膜を形成
する方法」(昭和63年3月2日出願)が知られている。
上記の目的を達成する為に、本発明の実施に使用したバ
ッファ層および炭素系被膜の作製装置の概要を実施例に
従って説明する。
A patent application filed by the present applicant, entitled "Method of Forming Coating Film Containing Carbon or Carbon as a Main Component" (filed on March 2, 1988), is known through the coating of a carbon film.
In order to achieve the above object, an outline of an apparatus for producing a buffer layer and a carbon-based coating used in the practice of the present invention will be described with reference to examples.

「実施例」 第1図は平行平板型プラズマ装置で、ガス系(1)に
おいて、キャリアガスである水素を(2)より、反応性
気体である珪素水素気体、例えばシラン、ジシランを
(3)より、炭素水素気体、例えばメタン、エチレンを
(4)、それらのエッチング用気体である弗化物気体、
例えば三弗化窒素、六弗化硫黄等を(5)より、また酸
素の添加用気体として亜酸化窒素(N2O)(6)より、
バルブ(7),流量計(8)を介して反応系(9)中の
ノズル(10)より導入する。
"Example" FIG. 1 shows a parallel plate type plasma apparatus. In a gas system (1), hydrogen as a carrier gas is replaced with hydrogen gas as a reactive gas, for example, silane and disilane in a gas system (2). More specifically, a hydrocarbon gas, for example, methane or ethylene, is converted into (4) a fluoride gas which is an etching gas thereof,
For example, nitrogen trifluoride, sulfur hexafluoride, etc. from (5), and nitrous oxide (N 2 O) (6) as a gas for adding oxygen,
It is introduced from a nozzle (10) in the reaction system (9) via a valve (7) and a flow meter (8).

反応系(9)では減圧下にて珪素系被膜、炭化珪素系
被膜および炭素系被膜の成膜およびそれらのエッチング
処理を行う。反応系(9)では第1の電極(11)、第2
の電極(12)を有し、一対の電極(11)、(12)間には
高周波電源(13),マッチングトランス(14)、直流バ
イアス電源(15)より電気エネルギが加えられ、プラズ
マが発生する。反応性気体のより一層の分解を促進する
為には、2.45GHzのマイクロ波にて、200W〜2KWのマイク
ロ波励起を用いるのはよい。
In the reaction system (9), a silicon-based coating, a silicon carbide-based coating, and a carbon-based coating are formed under reduced pressure, and etching is performed on them. In the reaction system (9), the first electrode (11) and the second electrode (11)
, A high frequency power supply (13), a matching transformer (14), and a DC bias power supply (15) are applied between the pair of electrodes (11) and (12) to generate plasma. I do. In order to further promote the decomposition of the reactive gas, it is preferable to use microwave excitation of 200 W to 2 KW with microwaves of 2.45 GHz.

本実施例によると、酸化物基材、例えばアルミニウム
基板上にγ−Fe2O3またはこれに添加物を加えた磁性材
料を第1の電極即ち切り換えスイッチ(18)(19)を選
択して、接地側にセットした。
According to the present embodiment, γ-Fe 2 O 3 or a magnetic material to which an additive is added is formed on an oxide substrate, for example, an aluminum substrate, by selecting the first electrodes, ie, the changeover switches (18) and (19). , Set on the ground side.

これはバッファ層の形成に際して、母材にバイアスが
かかって損傷することを防ぐためである。
This is to prevent the base material from being biased and damaged when forming the buffer layer.

次にこの反応系を1×10-5torr以下に真空引きして基
材上および反応容器内の残存気体を除去した。その後、
反応性気体であるモノシラン、例えばH2ベース3%シラ
ンとN2Oとを導入した。そしてN2O/SiH4を1〜0.01に可
変した。反応容器内圧力は0.01〜1torr,代表的には0.1t
orrに圧力調整バルブ(21)にて調整し、高周波電圧を
印加し、反応性気体をプラズマ化させた。
Next, the reaction system was evacuated to 1 × 10 −5 torr or less to remove residual gas on the substrate and in the reaction vessel. afterwards,
Monosilane, which is a reactive gas, for example, 3% silane based on H 2 and N 2 O was introduced. Then, N 2 O / SiH 4 was varied from 1 to 0.01. The pressure inside the reaction vessel is 0.01 to 1 torr, typically 0.1 t
Orr was adjusted with a pressure adjusting valve (21), a high frequency voltage was applied, and the reactive gas was turned into plasma.

次に、第2図はその縦断面図を示しているが、γ−Fe
2O3(24)上に珪素酸化物を形成し、さらにその上に炭
素または炭素を主成分とする保護層(26)を形成した。
Next, FIG. 2 shows a vertical cross-sectional view of the γ-Fe
A silicon oxide was formed on 2 O 3 (24), and a protective layer (26) containing carbon or carbon as a main component was further formed thereon.

即ち、珪素酸化物層(25)の形成は、成膜とともにN2
Oの添加量を少なくしていき、バッファ層の終わる端部
ではその添加を零とした。
That is, the formation of the silicon oxide layer (25) is performed simultaneously with the deposition of N 2
The addition amount of O was reduced, and the addition was zero at the end of the buffer layer.

成膜速度は10Å/分に制御し、厚さは20〜500Å代表
的には100Åとした。
The deposition rate was controlled at 10 ° / min, and the thickness was 20-500 °, typically 100 °.

次に切り換えスイッチ(18),(19)を選択して、基
材が高周波印加電極側(カソード側)になるようにす
る。これは炭素膜の形成に際しては直流バイアスを印加
するためである。この状態で反応性気体であるメタンと
水素とを2:1の割合で導入し、0.01〜1.0torr代表的には
0.1torrに調整して、高周波電圧を印加して反応性気体
をプラズマ化させた。すると、プラズマ中の電子がイオ
ンと移動度の差および質量の差により、高周波が印加さ
れた電極に電荷が蓄積される。するとプラズマの電位と
の間に電界が発生し、プラズマ中にとり残された正イオ
ン(例えばC,CH,CH2,H)が加速され、炭素系被膜の堆積
過程において耐エッチング性の低いグラファイト成分が
エッチング除去されながらSP3結合を有するアモルファ
スカーボンを堆積させることが可能となる。その結果、
硬質の炭素性被膜が20Å/min.の成膜速度で100〜5000Å
代表的には1000Å形成される。反応後の不要物は排気系
(20)より圧力調整バルブ(21)、ターボ分子ポンプ
(22)、ロータリーポンプ(23)を経て排気される。こ
うして得られた炭素系被膜はビッカース硬度が1000〜70
00Kg/mm2代表的には2000〜2500Kg/mm2前後である。
Next, the changeover switches (18) and (19) are selected so that the base material is on the high frequency application electrode side (cathode side). This is because a DC bias is applied when forming the carbon film. In this state, methane and hydrogen, which are reactive gases, are introduced at a ratio of 2: 1 and typically 0.01 to 1.0 torr.
After adjusting to 0.1 torr, a high frequency voltage was applied to convert the reactive gas into plasma. Then, due to a difference in mobility and a difference in mass between the ions and the ions in the plasma, charges are accumulated in the electrode to which the high frequency is applied. Then, an electric field is generated between the plasma potential and the positive ions (eg, C, CH, CH 2 , H) left in the plasma are accelerated, and a graphite component having low etching resistance during the deposition process of the carbon-based film. While etching is removed, amorphous carbon having SP 3 bonds can be deposited. as a result,
Hard carbonaceous film is 100 ~ 5000Å at a deposition rate of 20Å / min.
Typically, 1000 mm is formed. Unnecessary substances after the reaction are exhausted from an exhaust system (20) through a pressure adjusting valve (21), a turbo molecular pump (22), and a rotary pump (23). The carbon-based coating thus obtained has a Vickers hardness of 1,000 to 70.
00 kg / mm 2 is typically around 2000-2500 kg / mm 2 .

以上により、第2図に示す酸化物磁気記録媒体、例え
ばγ−Fe2O3(24)、例えばガラスは500〜600Kg/mm2
バッファ層(25)が1000Kg/mm2、炭素系被膜(26)が20
00〜2500Kg/mm2の構成が得られ、これのA−A′の深さ
方向の分布をSIMS(二次イオン質量分析機)で測定した
結果、第3図(A)を得た。この図面で鉄(31),珪素
(33),炭素(34)に対し、酸素(32)が記録媒体(2
4)側より炭素(26)側において漸減していることがわ
かる。この結果、下地酸化物媒体の記録特性を低下させ
ることなく、密着性のよい炭素保護膜を形成させること
ができた。このバッファ層中の酸素の平均濃度は1×10
19cm-3以上を有し、Si:O=1:1を有する酸素量以下であ
った。
As described above, the oxide magnetic recording medium shown in FIG. 2, for example, γ-Fe 2 O 3 (24), for example, glass is 500 to 600 kg / mm 2 ,
Buffer layer (25): 1000 kg / mm 2 , carbon-based coating (26): 20
A configuration of 00 to 2500 kg / mm 2 was obtained, and the distribution of AA ′ in the depth direction was measured by SIMS (secondary ion mass spectrometer). As a result, FIG. 3 (A) was obtained. In this drawing, oxygen (32) is replaced by iron (31), silicon (33), and carbon (34) on the recording medium (2).
It can be seen that it gradually decreases on the carbon (26) side from the 4) side. As a result, a carbon protective film with good adhesion could be formed without deteriorating the recording characteristics of the underlying oxide medium. The average concentration of oxygen in this buffer layer is 1 × 10
The oxygen content was 19 cm −3 or more, and was not more than the oxygen content having Si: O = 1: 1.

「実施例2」 この実施例は、実施例1と同じ装置を用いた。酸素の
添加を酸化物記録媒体側のみとし、その後N2Oの添加を
中止し、シリコン層または炭化シリコン層、第1のバッ
ファ層(32−1),第2のバッファ層(32−2)との2
層構造としたものである。これら多層構造にバッファ層
(25)を積層させた。この後、実施例1と同じく、炭素
または炭素を主成分とする被膜(26)を形成した。する
と酸化物磁気記録媒体側は酸素が添加され、記録特性の
低下を除き、炭素または炭素を主成分とする保護層側で
は酸素と炭素とが互いに混合してC−O結合を発生させ
ることを防いだ。その結果、良好な密着性と、記録特性
の向上を図ることができた。
"Example 2" In this example, the same apparatus as in Example 1 was used. Oxygen is added only to the oxide recording medium side, and then the addition of N 2 O is stopped. The silicon layer or silicon carbide layer, the first buffer layer (32-1), and the second buffer layer (32-2) With 2
It has a layered structure. A buffer layer (25) was laminated on these multilayer structures. Thereafter, as in Example 1, carbon or a film (26) containing carbon as a main component was formed. Then, oxygen is added to the oxide magnetic recording medium side, and except for deterioration of recording characteristics, oxygen and carbon are mixed with each other on the protective layer side mainly containing carbon or carbon to generate a CO bond. I prevented it. As a result, good adhesion and improved recording characteristics were achieved.

「効果」 本発明によれば、従来難しいとされていた基材、特に
酸化物基材上に対し、界面応力緩和効果、即ち応力を階
段状に制御可変すること、および本質的に整合性の悪い
とされる酸化物と炭化物を直接接触させないことによる
界面C−O結合の阻止効果がバッファ層により期待でき
る。
[Effect] According to the present invention, an interfacial stress relaxation effect, that is, a stepwise controllable change of stress on a substrate, particularly an oxide substrate, which has been considered to be difficult, and an inherent consistency The buffer layer can be expected to have the effect of preventing interfacial CO bonding by not bringing the bad oxide and carbide into direct contact.

そしてCSS(コンタクト・スタート・ストップ)にお
いて、104〜105回で何らの特性低下をもたらさない保護
膜を作ることができた。
In CSS (contact start / stop), a protective film that did not cause any deterioration in characteristics could be formed in 10 4 to 10 5 times.

以上により、界面特性、特に密着性の初期および経時
変化に対し、多大な改善効果があることを見出したもの
である。
From the above, it has been found that there is a great improvement effect on the interface characteristics, especially on the initial stage and the change over time of the adhesion.

本発明は炭素を磁性材料に密着させる、珪素の酸化物
上に密着させることにより、初めて工業的に実用可能な
磁気記録媒体を作ることができた。
According to the present invention, an industrially practical magnetic recording medium can be manufactured for the first time by bringing carbon into close contact with a magnetic material and making it adhere onto a silicon oxide.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施に使用した平行平板型プラズマ装
置の概要を示す。 第2図は本発明により作製されたバッファ層を介して形
成した炭素系被膜の断面を示す。 第3図は本発明により作製された磁気記録媒体の深さ方
向の分布である。
FIG. 1 shows an outline of a parallel plate type plasma apparatus used for carrying out the present invention. FIG. 2 shows a cross section of a carbon-based film formed via a buffer layer produced according to the present invention. FIG. 3 shows the distribution in the depth direction of the magnetic recording medium manufactured according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−109219(JP,A) ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-62-109219 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】酸化物磁気記録層と、該記録層上に設けら
れたシリコン酸化物層と、該シリコン酸化物層上に炭素
または炭素を主成分とする層とを有し、前記シリコン酸
化物層中の酸素濃度は前記記録層側を高濃度に、または
前記炭素または炭素を主成分とする層側を低濃度に設け
られたことを特徴とする磁気記録媒体。
An oxide magnetic recording layer, a silicon oxide layer provided on the recording layer, and a layer containing carbon or carbon as a main component on the silicon oxide layer; The magnetic recording medium according to claim 1, wherein the oxygen concentration in the material layer is high on the recording layer side or low on the carbon side or the layer containing carbon as a main component.
【請求項2】特許請求の範囲第1項において、前記シリ
コン酸化物層はSiOx(0<x<1)で示され、かつ酸素
はその平均濃度で1×1019cm-3〜SiO(Si:O=1:1)の濃
度に含有したことを特徴とする磁気記録媒体。
2. The method according to claim 1, wherein the silicon oxide layer is represented by SiOx (0 <x <1), and oxygen has an average concentration of 1 × 10 19 cm −3 to SiO (Si : O = 1: 1) in a magnetic recording medium.
JP63235482A 1988-09-19 1988-09-19 Magnetic recording media Expired - Lifetime JP2855162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63235482A JP2855162B2 (en) 1988-09-19 1988-09-19 Magnetic recording media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63235482A JP2855162B2 (en) 1988-09-19 1988-09-19 Magnetic recording media

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP8212062A Division JP2791655B2 (en) 1996-07-22 1996-07-22 Manufacturing method of magnetic recording medium
JP9114270A Division JP3032803B2 (en) 1997-04-16 1997-04-16 Manufacturing method of laminated structure

Publications (2)

Publication Number Publication Date
JPH0283820A JPH0283820A (en) 1990-03-23
JP2855162B2 true JP2855162B2 (en) 1999-02-10

Family

ID=16986717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63235482A Expired - Lifetime JP2855162B2 (en) 1988-09-19 1988-09-19 Magnetic recording media

Country Status (1)

Country Link
JP (1) JP2855162B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62109219A (en) * 1985-11-07 1987-05-20 Fujitsu Ltd Magnetic recording medium

Also Published As

Publication number Publication date
JPH0283820A (en) 1990-03-23

Similar Documents

Publication Publication Date Title
KR910005836B1 (en) Method of depositing thin films consisting mainly of carbon
Martinu et al. Critical ion energy and ion flux in the growth of films by plasma‐enhanced chemical‐vapor deposition
US5227196A (en) Method of forming a carbon film on a substrate made of an oxide material
Endo et al. Fluorinated amorphous carbon thin films grown by plasma enhanced chemical vapor deposition for low dielectric constant interlayer dielectrics
KR100368100B1 (en) Method of forming a fluorine-added insulating film
US20020168483A1 (en) Method for forming film by plasma
Hong et al. Lee
JP2571957B2 (en) Carbon-based or carbon-based coating via buffer layer and method of making same
JP2744970B2 (en) Magnetic recording media
JP2855162B2 (en) Magnetic recording media
JP3032803B2 (en) Manufacturing method of laminated structure
JP2791655B2 (en) Manufacturing method of magnetic recording medium
JP3355892B2 (en) Method of forming carbon film
JP2852380B2 (en) Method for forming carbon or carbon-based coating
JP2775263B2 (en) Member covered with carbon film
JP3195301B2 (en) Substrate having carbon-based coating
Park et al. Relationship between field emission characteristics and hydrogen content in diamondlike carbon deposited by the layer-by-layer technique using plasma enhanced chemical vapor deposition
JP3057072B2 (en) Method for producing diamond-like carbon film
JP3236594B2 (en) Member with carbon film formed
JPH0510426B2 (en)
JP3256212B2 (en) Method for producing diamond-like carbon film
Romand et al. Spectroscopic and mechanical studies of RF plasma-polymerized films deposited at low temperature from organosilane precursors
JP3267959B2 (en) Method for producing diamond-like carbon film
JP4034841B2 (en) Carbon nitride and method for producing the same
JP3254202B2 (en) A member provided with a carbon film or a film containing carbon as a main component

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081127

Year of fee payment: 10

EXPY Cancellation because of completion of term