JP3011411B2 - Superconducting element - Google Patents

Superconducting element

Info

Publication number
JP3011411B2
JP3011411B2 JP63270206A JP27020688A JP3011411B2 JP 3011411 B2 JP3011411 B2 JP 3011411B2 JP 63270206 A JP63270206 A JP 63270206A JP 27020688 A JP27020688 A JP 27020688A JP 3011411 B2 JP3011411 B2 JP 3011411B2
Authority
JP
Japan
Prior art keywords
film
superconductor
superconducting
ago
yba
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63270206A
Other languages
Japanese (ja)
Other versions
JPH0277179A (en
Inventor
公一 水島
二朗 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Publication of JPH0277179A publication Critical patent/JPH0277179A/en
Application granted granted Critical
Publication of JP3011411B2 publication Critical patent/JP3011411B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明,酸化物セラミックス超電導体を用いた超電導
素子とその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial application field) The present invention relates to a superconducting element using an oxide ceramic superconductor and a method of manufacturing the same.

(従来の技術) 最近,高温超電導体として酸化物セラミックス超電導
体が注目されている。これらの多くは,希土類元素を含
有するペロブスカイト構造を有する酸化物である。この
様なセラミックス超電導体は、組成を選ぶことにより液
体窒素温度以上の高温で超電導を示すことが確認されて
おり,材料作製技術の進歩により更に臨界温度の高いも
のが得られる可能性がある。またセラミックス超電導体
は,従来の金属或いは金属間化合物超電導体と比べて簡
単に作製できる点で優れている。
(Prior Art) Recently, oxide ceramic superconductors have been attracting attention as high-temperature superconductors. Most of these are oxides having a perovskite structure containing a rare earth element. It has been confirmed that such a ceramic superconductor exhibits superconductivity at a high temperature equal to or higher than the liquid nitrogen temperature by selecting the composition, and there is a possibility that a material having a higher critical temperature may be obtained by the progress of material fabrication technology. Ceramic superconductors are also superior in that they can be easily manufactured as compared with conventional metal or intermetallic compound superconductors.

超電導素子の多くは,ジョセフソン素子に代表される
ように,超電導体−絶縁体−超電導体,または超電導体
−半導体−超電導体接合を基本構造として含んでいる。
しかし,セラミックス超電導体では良好な絶縁膜が得ら
れない,コヒーレンス長が短いため素子特性が絶縁膜の
界面状態に大きく依存する,等の問題がある。このため
従来より,超電導体−絶縁体−超電導体接合に代えて,
点接触型やスリット型の接合方式により素子の試作が行
われている。また,セラミックス超電導体はSiやGaAs等
の半導体との接合特性も良くなく,実際には超電導体−
半導体−超電導体接合構造の素子は殆ど試作も行われて
いない。更にセラミックス超電導体と通常金属との接合
特性も良くなく,十分低い接触抵抗のオーミック電極を
得ることが難しい。
Many superconducting elements include a superconductor-insulator-superconductor or superconductor-semiconductor-superconductor junction as a basic structure, as represented by a Josephson element.
However, ceramic superconductors have problems such as that a good insulating film cannot be obtained, and that the coherence length is so short that the device characteristics greatly depend on the interface state of the insulating film. For this reason, conventionally, instead of a superconductor-insulator-superconductor junction,
Prototypes of elements have been manufactured by a point contact type or a slit type bonding method. In addition, ceramic superconductors do not have good bonding characteristics with semiconductors such as Si and GaAs.
Almost no prototype has been manufactured for a device having a semiconductor-superconductor junction structure. Further, the bonding characteristics between the ceramic superconductor and the ordinary metal are not good, and it is difficult to obtain an ohmic electrode having a sufficiently low contact resistance.

従ってセラミックス超電導体を用いて具体的な素子を
実現するためには,良好な接合特性を示す超電導体−絶
縁体,超電導体−半導体,或いは超電導体−通常金属の
接合を如何にして作るかが問題である。
Therefore, in order to realize a specific device using a ceramic superconductor, how to make a superconductor-insulator, superconductor-semiconductor, or superconductor-normal metal junction that exhibits good bonding characteristics is required. It is a problem.

(発明が解決しようとする課題) 以上のように臨界温度の高い酸化物セラミックス超電
導体が注目され,各種素子への応用が期待されている
が,これを実用に供するためには,セラミックス超電導
体と他の物質との接合特性の改善が必須である。
(Problems to be Solved by the Invention) As described above, oxide ceramic superconductors having a high critical temperature have attracted attention and are expected to be applied to various elements. It is indispensable to improve the bonding characteristics between the material and other materials.

本発明はこの様な点に鑑み,接合特性の改善を図った
酸化物セラミックス超電導体を用いた素子およびその製
造方法を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the foregoing, an object of the present invention is to provide an element using an oxide ceramic superconductor with improved bonding characteristics and a method for manufacturing the same.

[発明の構成] (課題を解決するための手段) 本発明に係る超電導素子は、酸化物セラミックス超電
導体と半導体との接合を有する超電導素子において、前
記接合界面にAgOX(0≦x≦1/2)からなる導電膜を介
在させたことを特徴とする。またAgを主成分とする導電
膜は,AgOXと表わした場合(但し,xはAg膜中のOの量),
0≦x≦1/2が好ましい。xが小さい場合はOはAg中の固
溶酸素となる。この導電膜は均一であることは必ずしも
必要ではなく,AgとAg2Oの積層膜または混合膜として構
成してもよい。
[Constitution of the Invention] (Means for Solving the Problems) A superconducting element according to the present invention is a superconducting element having a junction between an oxide ceramic superconductor and a semiconductor, wherein AgO X (0 ≦ x ≦ 1 / 2) interposed therebetween. When the conductive film containing Ag as a main component is expressed as AgO X (where x is the amount of O in the Ag film),
0 ≦ x ≦ 1/2 is preferred. When x is small, O becomes solid solution oxygen in Ag. This conductive film is not necessarily required to be uniform, and may be formed as a laminated film or a mixed film of Ag and Ag 2 O.

本発明に係る超電導素子は、導電膜と半導体との間に
Au膜またはPt膜を介在させたことを特徴とする。
The superconducting element according to the present invention is provided between the conductive film and the semiconductor.
It is characterized by interposing an Au film or a Pt film.

上記のような接合を有する超電導体素子を製造するに
は、例えば酸化物セラミックス超電導体上にAg膜を形成
し、これを酸化性雰囲気中で、好ましくは300〜350℃の
温度で熱処理した後、この上に半導体を接合すれば良
い。このAg膜は処理条件によってAg2Oになったり,表面
のみAg2OとなりAgとの積層膜や混合膜になったりする。
In order to manufacture a superconductor element having the above-described junction, for example, an Ag film is formed on an oxide ceramic superconductor, and this is heated in an oxidizing atmosphere, preferably at a temperature of 300 to 350 ° C. Then, a semiconductor may be bonded thereon. This Ag film becomes Ag 2 O depending on the processing conditions, or becomes Ag 2 O only on the surface and becomes a laminated film or a mixed film with Ag.

本発明で用いられる酸化物セラミックス超電導体は,
特に材料が限定されるものではなく,例えば,酸素欠陥
を有するABa2Cu3O7−δ(Aは,Y,Yb,Ho,Dy,Eu,Er,Tm,L
uなどの希土類元素)等の欠陥ペロブスカイト型,Sr−La
−Cu−O系等の層状ペロブスカイト型,或いはBi−Sr−
Ca−Cu−OなどのBi系酸化物の超電導体,Tl−Sr−Cu−
OなどのTl系酸化物超電導体等が用いられる。
The oxide ceramic superconductor used in the present invention is:
The material is not particularly limited. For example, ABa 2 Cu 3 O 7-δ having oxygen defects (A is Y, Yb, Ho, Dy, Eu, Er, Tm, L
defect perovskite, such as rare earth elements such as u, Sr-La
-Layered perovskite type such as Cu-O type or Bi-Sr-
Bi-based oxide superconductor such as Ca-Cu-O, Tl-Sr-Cu-
A Tl-based oxide superconductor such as O is used.

(作用) 本発明によれば,接合部にAg膜或いはAg膜とAu膜また
はPt膜との積層膜を介在させることにより,セラミック
ス超電導体と他の物質との接合特性が改善される。その
理由は,セラミックス超電導体の表面の酸素不足状態が
Ag膜からの酸素補給により補償される結果,表面部での
超電導特性が良好になり,しかもAg膜そのものも近接効
果により超電導体になることにある。また大気中におい
ても,酸化物セラミックス超電導体表面をAg膜で覆った
状態にすると安定な超電導表面が得られ,この上に他の
物質を形成して優れた接合を得ることができる。
(Function) According to the present invention, the bonding characteristics between the ceramic superconductor and another substance are improved by interposing the Ag film or the laminated film of the Ag film and the Au film or the Pt film at the bonding portion. The reason is that the lack of oxygen on the surface of the ceramic superconductor
As a result of compensation by oxygen supplementation from the Ag film, the superconducting characteristics on the surface are improved, and the Ag film itself becomes a superconductor due to the proximity effect. Even in the atmosphere, when the surface of the oxide ceramics superconductor is covered with the Ag film, a stable superconducting surface can be obtained, and another material can be formed thereon to obtain excellent bonding.

ジョセフソン素子のように,セラミックス超電導体上
に絶縁膜が必要な素子においては,セラミックス超電導
体上にまずAg膜を形成してこの上にAl等の金属膜を形成
し,これを酸化することにより,セラミックス超電導体
の特性を良好に保ちながら良質の絶縁膜を得ることがで
きる。
For an element such as a Josephson element that requires an insulating film on the ceramic superconductor, first form an Ag film on the ceramic superconductor, then form a metal film such as Al and oxidize it. Thereby, a good quality insulating film can be obtained while maintaining the characteristics of the ceramic superconductor in good condition.

Ag膜とAu膜またはPt膜の積層構造は,Au膜またはPt膜
がマイグレーションを起こし易いAgの拡散等を防止する
良好なバッファとして働き,有効である。特に超電導ト
ランジスタのように,セラミックス超電導体と半導体の
接合をもつ素子において,その接合界面にこのような積
層膜を介在させることにより,Au膜またはPt膜はAg膜のA
gのみならず,セラミックス超電導体の構成元素であるC
u,Baなどの半導体への拡散を阻止する障壁となり,優れ
た接合特性が得られる。
The laminated structure of the Ag film and the Au film or the Pt film is effective because the Au film or the Pt film functions as a good buffer for preventing the diffusion of Ag, which easily causes migration. In particular, in an element such as a superconducting transistor, which has a junction between a ceramic superconductor and a semiconductor, by interposing such a laminated film at the joint interface, the Au film or the Pt film can be converted to the A film of the Ag film.
Not only g, but also C, a constituent element of ceramic superconductors
It acts as a barrier to prevent diffusion into semiconductors such as u and Ba, and provides excellent junction characteristics.

本発明の方法によれば,Agの存在により酸化物セラミ
ックス超電導体の表面部の状態を良好に保ってこの上に
絶縁膜等の物質膜を積層することができ,これにより優
れた素子が得られる。
According to the method of the present invention, the surface condition of the oxide ceramic superconductor can be kept in good condition by the presence of Ag, and a material film such as an insulating film can be laminated thereon, whereby an excellent device can be obtained. Can be

(実施例) 以下,本発明の実施例を図面を参照して説明する。Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図は,一実施例のジョセフソン素子である。チタ
ン酸ストロンチウム(SrTiO3)基板1上に約1μm厚の
YBa2Cu3O7−δ膜2(TC=75K)が形成されている。こ
のYBa2Cu3O7−δ膜2上には,0.5mmφのAgOX膜3が形成
され,この上にPbOX膜4を介してPb膜5が0.3mmφの大
きさで形成されている。Pb膜5上には,電流,電圧端子
となるAu電極6が形成されている。超電導接合部に隣接
してYBa2Cu3O7−δ膜2上に,電流,電圧端子となるAu
電極7,8が形成されている。
FIG. 1 shows a Josephson element of one embodiment. On a strontium titanate (SrTiO 3 ) substrate 1, an approximately 1 μm thick
A YBa 2 Cu 3 O 7-δ film 2 (T C = 75 K) is formed. On the YBa 2 Cu 3 O 7-δ film 2, an AgO X film 3 of 0.5 mmφ is formed, and on this, a Pb film 5 is formed with a size of 0.3 mmφ via a PbO X film 4. . On the Pb film 5, an Au electrode 6 serving as a current and voltage terminal is formed. Au serving as a current and voltage terminal is placed on the YBa 2 Cu 3 O 7-δ film 2 adjacent to the superconducting junction.
Electrodes 7 and 8 are formed.

このジョセフソン素子の具体的な製造工程は次の通り
である。まずYBa2Cu3O7−δ膜2は,多元スパッタ法を
利用して形成する。このYBa2Cu3O7−δ膜2上に,0.5mm
φのAg膜および0.3mmφのAu電極7,8をそれぞれマスク蒸
着法により3000Åの厚さに形成する。その後,酸素雰囲
気中で350℃,10時間の熱処理を行なう。これにより,Ag
膜は部分的に酸化されてAg+Ag2OのAgOX膜3になる。次
いでAgOX膜3上に3000ÅのPb膜5を蒸着法により形成す
る。このときAgOX/Pb界面のPbがAgOXにより酸化されて
絶縁膜である薄いPbOX膜4が得られる。最後にPb膜5上
にAu電極6を蒸着形成する。
The specific manufacturing process of this Josephson element is as follows. First, the YBa 2 Cu 3 O 7-δ film 2 is formed by using a multi-source sputtering method. On this YBa 2 Cu 3 O 7-δ film 2, 0.5 mm
The φ Ag film and the 0.3 mm φ Au electrodes 7 and 8 are each formed to a thickness of 3000 mm by a mask vapor deposition method. Thereafter, heat treatment is performed at 350 ° C. for 10 hours in an oxygen atmosphere. As a result, Ag
The film is partially oxidized to become an AgO X film 3 of Ag + Ag 2 O. Next, a 3000 ° Pb film 5 is formed on the AgO X film 3 by a vapor deposition method. At this time, Pb at the AgO X / Pb interface is oxidized by AgO X to obtain a thin PbO X film 4 which is an insulating film. Finally, an Au electrode 6 is formed on the Pb film 5 by vapor deposition.

第2図は,この実施例のジョセフソン素子の電圧−電
流特性である。図示のように大きい超電導ギャップ(2
Δ≒10mV)が観測され,良好なジョセフソン接合が形成
されていることが確認された。3000ÅのAgOX膜3が,YBa
2Cu3O7−δ膜2の表面状態を保護し,またこれが近接
効果により超電導状態となっていることが理解される。
FIG. 2 shows the voltage-current characteristics of the Josephson element of this embodiment. As shown, a large superconducting gap (2
Δ ≒ 10 mV), confirming that a good Josephson junction was formed. 3000 mm of AgO X film 3
2 Cu 3 O 7-δ protects the surface state of the film 2, also this it is understood that a superconducting state due to the proximity effect.

第3図は,本発明の他の実施例の超電導トランジスタ
である。この実施例は,ソース,ドレイン電極を超電導
電極としたものである。即ちSi基板11に,ソース,ドレ
イン電極が,AgOX膜12(121,122),YBa2Cu3O7−δ膜13
(131,132)およびAg膜14(141,142)の積層膜により形
成されている。ゲート領域にはSiO2膜15をゲート酸化膜
としてこの上にAgゲート電極16が形成されている。
FIG. 3 shows a superconducting transistor according to another embodiment of the present invention. In this embodiment, the source and drain electrodes are superconductive electrodes. That is, the Si substrate 11, a source, a drain electrode, AgO X film 12 (12 1, 12 2) , YBa 2 Cu 3 O 7-δ film 13
(13 1 , 13 2 ) and an Ag film 14 (14 1 , 14 2 ). In the gate region, an Ag gate electrode 16 is formed on the SiO 2 film 15 as a gate oxide film.

この実施例の場合,ソース,ドレイン電極のYBa2Cu3O
7−δ膜13のSi基板11との界面近傍は,AgOX膜12により
酸素不足が補償されて良好な超電導体を保ち,またAgOX
膜12が近接効果により超電導状態になる結果,殆ど発熱
のない状態でオン電流を流すことのできる優れたトラン
ジスタ特性が得られる。
In the case of this embodiment, the source and drain electrodes YBa 2 Cu 3 O
Near the interface between the Si substrate 11 of the 7-[delta] film 13 is lack of oxygen is compensated maintaining good superconductor by AgO X film 12, also AgO X
As a result of the film 12 being brought into a superconducting state due to the proximity effect, excellent transistor characteristics can be obtained in which an on-current can flow with little heat generation.

第4図は,第3図の実施例を変形した実施例であり,
第3図におけるAgOX膜12の下地にAu膜17(171,172)を
介在させたものである。
FIG. 4 is an embodiment obtained by modifying the embodiment of FIG.
This is one in which an Au film 17 (17 1 , 17 2 ) is interposed under the AgO X film 12 in FIG.

この実施例によれば,ソース,ドレイン電極部のAu膜
17が,AgOX膜12中のAgやYBa2Cu3O7−δ膜13中のCu,Baな
どの基板11への拡散を防止する働きをし,基板および超
電導体膜の特性の変化を防止することができる。従って
信頼性の高いトランジスタ特性が得られる。
According to this embodiment, the Au film at the source and drain electrode portions
17 prevents the diffusion of Ag in the AgO X film 12 and Cu and Ba in the YBa 2 Cu 3 O 7-δ film 13 to the substrate 11 and suppresses the change in the characteristics of the substrate and the superconductor film. Can be prevented. Therefore, highly reliable transistor characteristics can be obtained.

第5図は,Au膜のバッファ層としての働きを確認する
実験に用いたMOSキャパシタである。図示のようにSi基
板21上にSiO2膜22を形成し,この上にAu膜23およびAg膜
24を介してYBa2Cu3O7−δ膜25を形成している。SiO2
22は500Åであり,Au膜23,Ag膜24は共に1000Å,YBa2Cu3O
7−δ膜25は1μmである。表裏面にはAu電極26,27を
形成している。Au電極26,27形成後,酸素雰囲気中で300
〜350℃,5時間の熱処理を行なった。
FIG. 5 shows a MOS capacitor used in an experiment for confirming the function of the Au film as a buffer layer. As shown, an SiO 2 film 22 is formed on a Si substrate 21, and an Au film 23 and an Ag film are formed thereon.
A YBa 2 Cu 3 O 7-δ film 25 is formed through the film 24. SiO 2 film
22 is 500 °, the Au film 23 and the Ag film 24 are both 1000 °, YBa 2 Cu 3 O
The 7-δ film 25 is 1 μm. Au electrodes 26 and 27 are formed on the front and back surfaces. After forming Au electrodes 26 and 27, 300 in an oxygen atmosphere
Heat treatment was performed at ~ 350 ° C for 5 hours.

こうして得られたMOSキャパシタのC−V特性を,変
位電流法により0.1Hz(鋸歯状波)で測定した結果を第
6図に示す。このC−V特性は,熱処理前の試料に付い
ての結果と測定誤差範囲内で一致した。Au膜を設けない
試料に関しては,熱処理後のリーク電流が大きく,理想
的なC−V特性からのずれが大きく認められた。以上に
より,Au膜のバッファとしての有効性が明らかになっ
た。
FIG. 6 shows the results of measuring the CV characteristics of the MOS capacitor thus obtained at 0.1 Hz (sawtooth wave) by the displacement current method. This CV characteristic coincided with the result of the sample before the heat treatment within the range of the measurement error. For the sample without the Au film, the leakage current after the heat treatment was large, and the deviation from the ideal CV characteristics was large. From the above, the effectiveness of Au film as a buffer became clear.

本発明は,上記実施例に限られるものにではない。例
えばバッファ層として,Au膜の代わりにPt膜を用いて同
様の効果が得られる。また本発明は,酸化物セラミック
スを用いたあらゆる素子に適用することができる。ここ
で素子は,能動素子に限らず,単なる超電導配線である
場合にも本発明は有効である。また,金属電極と酸化物
セラミックス超電導体の接合界面にAgOX膜を介在させる
構造も,良好な超電導体−金属接合が得られ,有効であ
る。
The present invention is not limited to the above embodiment. For example, a similar effect can be obtained by using a Pt film instead of the Au film as the buffer layer. Further, the present invention can be applied to all devices using oxide ceramics. Here, the present invention is effective not only when the element is an active element but also when it is a simple superconducting wiring. The structure of interposing the AgO X film at the bonding interface of the metal electrode and the oxide ceramic superconductor is also good superconductor - metal bonding is obtained is effective.

[発明の効果] 以上述べたように本発明によれば,酸化物セラミック
ス超電導体と半導体との接合界面にAg膜,またはこれと
Au膜,Pt膜の積層膜を設けることにより,優れた接合特
性や優れた超電導特性をもった超電導素子を得ることが
できる。
[Effects of the Invention] As described above, according to the present invention, the Ag film or the Ag film is formed on the bonding interface between the oxide ceramic superconductor and the semiconductor.
By providing a laminated film of an Au film and a Pt film, a superconducting element having excellent bonding characteristics and superconducting characteristics can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は,本発明の一実施例のジョセフソン素子を示す
図,第2図は,その電流−電圧特性を示す図,第3図
は,他の実施例の超電導トランジスタを示す図,第4図
は,更に他の実施例の超電導トランジスタを示す図,第
5図は,Auバッファ層の有効性を確認する実験に用いたM
OSキャパシタを示す図,第6図は,そのMOSキャパシタ
のC−V特性を示す図である。 1……チタン酸ストロンチウム基板,2……YBa2Cu3O
7−δ膜,3……AgOX膜,4……PbOX膜,5……Pb膜,6,7,8…
…Au電極,11……Si基板,12……AgOX膜,13……YBa2Cu3O
7−δ膜,14……Ag膜,15……SiO2膜,16……Agゲート電
極,17……Au膜。
FIG. 1 is a diagram showing a Josephson element of one embodiment of the present invention, FIG. 2 is a diagram showing its current-voltage characteristics, FIG. 3 is a diagram showing a superconducting transistor of another embodiment, FIG. 4 is a diagram showing a superconducting transistor according to still another embodiment, and FIG.
FIG. 6 is a diagram showing an OS capacitor, and FIG. 6 is a diagram showing CV characteristics of the MOS capacitor. 1 ... Strontium titanate substrate, 2 ... YBa 2 Cu 3 O
7-[delta] film, 3 ...... AgO X film, 4 ...... PbO X film, 5 ...... Pb film, 6,7,8 ...
... Au electrode, 11 ...... Si substrate, 12 ...... AgO X film, 13 ...... YBa 2 Cu 3 O
7-δ film, 14 ... Ag film, 15 ... SiO 2 film, 16 ... Ag gate electrode, 17 ... Au film.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−211872(JP,A) 特開 昭64−25553(JP,A) 特開 昭64−90575(JP,A) 特開 昭64−31475(JP,A) 特開 平1−286920(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 39/00 H01L 39/02 H01L 39/22 H01L 39/24 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-1-218772 (JP, A) JP-A-64-25553 (JP, A) JP-A-64-90575 (JP, A) JP-A 64- 31475 (JP, A) JP-A-1-286920 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 39/00 H01L 39/02 H01L 39/22 H01L 39/24

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】酸化物セラミックス超電導体と半導体との
接合を有する超電導素子において、前記接合界面にAgOX
(0≦x≦1/2)からなる導電膜を介在させたことを特
徴とする超電導素子。
1. A superconducting element having a junction between an oxide ceramic superconductor and a semiconductor, wherein the junction interface is composed of AgO X
A superconducting element characterized by interposing a conductive film of (0 ≦ x ≦ 1/2).
【請求項2】前記導電膜と前記半導体との間にAu膜また
はPt膜を介在させたことを特徴とする請求項1に記載の
超電導素子。
2. The superconducting device according to claim 1, wherein an Au film or a Pt film is interposed between said conductive film and said semiconductor.
JP63270206A 1988-05-25 1988-10-26 Superconducting element Expired - Fee Related JP3011411B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP12740488 1988-05-25
JP15283088 1988-06-21
JP63-127404 1988-06-21
JP63-152830 1988-06-21

Publications (2)

Publication Number Publication Date
JPH0277179A JPH0277179A (en) 1990-03-16
JP3011411B2 true JP3011411B2 (en) 2000-02-21

Family

ID=26463373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63270206A Expired - Fee Related JP3011411B2 (en) 1988-05-25 1988-10-26 Superconducting element

Country Status (1)

Country Link
JP (1) JP3011411B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03124075A (en) * 1989-10-06 1991-05-27 Sumitomo Electric Ind Ltd Superconducting element
EP0523275B1 (en) * 1991-07-19 1996-02-28 International Business Machines Corporation Enhanced superconducting field-effect transistor with inverted MISFET structure and method for making the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01211872A (en) * 1988-02-18 1989-08-25 Nec Corp Superconductive connection

Also Published As

Publication number Publication date
JPH0277179A (en) 1990-03-16

Similar Documents

Publication Publication Date Title
KR910007901B1 (en) Super conductor device
EP0314484B1 (en) Superconductor element and method of manufacturing the same
JP3011411B2 (en) Superconducting element
US5422336A (en) Superconducting FET with Pr-Ba-Cu-O channel
EP0488837A2 (en) Method for manufacturing superconducting device having a reduced thickness of oxide superconducting layer and superconducting device manufactured thereby
US5232905A (en) High Tc superconducting device with weak link between two superconducting electrodes
JP2746990B2 (en) Superconducting element
JPS63299281A (en) Superconducting device
JP2585269B2 (en) Superconducting transistor
JP2955407B2 (en) Superconducting element
JP2650188B2 (en) Method of forming electrical contact between superconductor and semiconductor
JPH02186682A (en) Josephson junction device
JPS63313877A (en) Superconducting transistor
JP3221037B2 (en) Current modulator
EP0478463A1 (en) Superconducting device having an extremely thin superconducting channel formed of oxide superconductor material
JP2698364B2 (en) Superconducting contact and method of manufacturing the same
JP2599500B2 (en) Superconducting element and fabrication method
JP2888650B2 (en) Superconducting member manufacturing method
JP2825391B2 (en) Superconducting element
JPH02186681A (en) Superconductive junction device
JP3232642B2 (en) Current modulator
JP2691065B2 (en) Superconducting element and fabrication method
JPH02271684A (en) Tunnel type josephson junction element
JPH0289380A (en) Josephson junction element
JPH0294677A (en) Superconducting schottky junction structure and superconducting device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees