JP2650188B2 - Method of forming electrical contact between superconductor and semiconductor - Google Patents

Method of forming electrical contact between superconductor and semiconductor

Info

Publication number
JP2650188B2
JP2650188B2 JP62245856A JP24585687A JP2650188B2 JP 2650188 B2 JP2650188 B2 JP 2650188B2 JP 62245856 A JP62245856 A JP 62245856A JP 24585687 A JP24585687 A JP 24585687A JP 2650188 B2 JP2650188 B2 JP 2650188B2
Authority
JP
Japan
Prior art keywords
thin film
superconductor
semiconductor
forming
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62245856A
Other languages
Japanese (ja)
Other versions
JPS6490575A (en
Inventor
泰孝 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP62245856A priority Critical patent/JP2650188B2/en
Publication of JPS6490575A publication Critical patent/JPS6490575A/en
Application granted granted Critical
Publication of JP2650188B2 publication Critical patent/JP2650188B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】 〔概 要〕 超伝導体と半導体の接触の形成方法、特に超伝導ベー
ストランジスタの超伝導体ベースと半導体コレクタとの
良好なコンタクトを形成する方法に関し、 酸化物系超伝導体薄膜を作製するために高温における
酸化性雰囲気での熱処理を行なうと、半導体表面が変質
する等の問題を解決することを目的とし、 半導体基板状に金属薄膜を保護膜として形成した後、
酸化物系超伝導体薄膜を堆積し、その際金属薄膜を耐酸
化性の金属でかつ薄く形成するか、又は酸化物系超伝導
薄膜を構成する金属元素で形成するように構成する。
The present invention relates to a method for forming a contact between a superconductor and a semiconductor, and more particularly to a method for forming a good contact between a superconductor base of a superconducting base transistor and a semiconductor collector. When performing heat treatment in an oxidizing atmosphere at high temperature to produce a conductor thin film, the purpose is to solve problems such as deterioration of the semiconductor surface, and after forming a metal thin film as a protective film on a semiconductor substrate,
An oxide-based superconductor thin film is deposited, and at this time, the metal thin film is formed of an oxidation-resistant metal and thin, or is formed of a metal element constituting the oxide-based superconductor thin film.

〔産業上の利用分野〕[Industrial applications]

本発明は半導体と超伝導薄膜の接触(コンタクト)の
形成方法に係り、とりわけ超伝導ベーストランジスタの
半導体コレクタと超伝導体ベースの良好な接触を形成す
ることに向けられている。
The present invention relates to a method of forming a contact between a semiconductor and a superconducting thin film, and more particularly to forming a good contact between a semiconductor collector of a superconducting base transistor and a superconductor base.

〔従来の技術〕[Conventional technology]

本発明者は、超伝導体ベースによるエミッタより準粒
子を注入し、超伝導体−半導体接触によりなるコレクタ
で準粒子を取り出す構成の超伝導ベーストランジスタを
提案し(特開昭60−117691号公報)、関連する改良をい
くつか提案した(特開昭61−264769号及び同61−272983
号公報、ならびに特願昭61−5312号及び同61−153485号
明細書等)。これらはエミッタからトンネル接合を介し
て超伝導ベースへ準粒子を注入し、コレクタで準粒子捕
獲するに当って、ベース・コレクタ接合もトンネル接合
を利用した場合にはコレクタの準粒子で捕獲確率が率い
ためにトランジスタの利得が小さいという欠点を解決す
るためにベース・コレクタ間を超伝導−半導体接触で形
成したものである。
The present inventors have proposed a superconducting base transistor having a configuration in which quasiparticles are injected from a superconductor-based emitter and quasiparticles are taken out by a collector formed by a superconductor-semiconductor contact (Japanese Patent Application Laid-Open No. 60-11791). ), And some related improvements (JP-A-61-264769 and 61-272983).
And Japanese Patent Application Nos. 61-5312 and 61-153485. These inject quasiparticles from the emitter into the superconducting base through the tunnel junction and capture the quasiparticles at the collector.When the base-collector junction also uses a tunnel junction, the trapping probability is quasiparticles at the collector. In order to solve the drawback that the gain of the transistor is small due to the heading, a superconducting-semiconductor contact is formed between the base and the collector.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

ところで、このような超伝導ベーストランジスタでは
超伝導体のエネルギーギャップΔと同等かそれ以下のエ
ネルギーバリヤ高さの半導体をコレクタに用いる必要が
ある。しかしながら、通常の単体金属や金属間化合物で
は超伝導体のエネルギーギャップΔは数meV以下である
ため、コレクタの設計が困難になっている。
Incidentally, in such a superconducting base transistor, it is necessary to use a semiconductor having an energy barrier height equal to or less than the energy gap Δ of the superconductor for the collector. However, the energy gap Δ of the superconductor is less than a few meV in a normal single metal or an intermetallic compound, so that it is difficult to design the collector.

この問題は、エネルギーギャップΔが大きい超伝導体
を用いることによって解決できることは容易に思いつけ
る。例えばLa−Sr−Cu−O系、Y−Ba−Cu−O系等の酸
化物系超伝導体は極めて高い臨界温度TC(30K〜90K)を
持つ低いキャリヤ濃度の超伝導体であり、エネルギーギ
ャップΔも数10meVに達する。従って、このような超伝
導体をベースに用いれば、コレクタのバリヤ高さは数10
meVでよく、これを半導体で実現することは技術的に可
能である。
It is easy to think that this problem can be solved by using a superconductor having a large energy gap Δ. For example La-Sr-Cu-O-based, oxide-based superconductors such as Y-Ba-Cu-O system is a superconductor of the low carrier concentration having a very high critical temperature T C (30K~90K), The energy gap Δ also reaches several tens of meV. Therefore, if such a superconductor is used as a base, the barrier height of the collector is several tens.
meV may be used, and it is technically possible to realize this with a semiconductor.

しかしながら、酸化物系超伝導材料は一般に1000℃近
く(900℃前後)の高温の酸化性雰囲気で合成されるこ
とが多いので、このような酸化物系超伝導材料をベース
に用いると、コレクタをなす半導体表面に酸化物等が形
成されるため、超伝導薄膜と半導体基板の間の良好な接
触(コンタクト)特性が実現されない。
However, oxide-based superconducting materials are generally synthesized in a high-temperature oxidizing atmosphere near 1000 ° C. (around 900 ° C.). Since an oxide or the like is formed on the semiconductor surface to be formed, good contact characteristics between the superconducting thin film and the semiconductor substrate cannot be realized.

〔問題点を解決するための手段〕[Means for solving the problem]

そこで、本発明では、酸化物系超伝導薄膜を形成する
ときに下地の半導体表面が劣化することのないように、
半導体表面に金属薄膜を保護膜として形成してから超伝
導薄膜を形成する。そして、この金属薄膜は最終的に超
伝導状態で作用するか、酸化物系超伝導体薄膜の一部と
成るように構成する。
Thus, in the present invention, when forming the oxide-based superconducting thin film, so that the underlying semiconductor surface does not deteriorate,
After forming a metal thin film as a protective film on a semiconductor surface, a superconducting thin film is formed. Then, the metal thin film is configured to operate in a superconducting state or to be a part of the oxide-based superconductor thin film.

すなわち、本発明によれば、第1に、半導体基板上に
耐酸化性の金属薄膜を保護膜として形成した後、金属薄
膜上に酸化物系超伝導体薄膜を形成することによって、
超伝導体と半導体のオーミック特性の電気的接触を形成
し、かつ金属薄膜は超伝導体薄膜と共に超伝導状態で作
用するのに十分に薄いことを特徴とする超伝導体と半導
体の接触の形成方法が提供される。
That is, according to the present invention, first, after forming an oxidation-resistant metal thin film as a protective film on a semiconductor substrate, an oxide-based superconductor thin film is formed on the metal thin film.
Forming a superconductor-semiconductor contact characterized by forming an ohmic electrical contact between the superconductor and the semiconductor and the metal film being thin enough to work in superconducting state with the superconductor film. A method is provided.

第2に、半導体基板上に、次に形成すべき超伝導体薄
膜を構成する金属元素から選んだ金属の薄膜を保護膜と
して形成した後、半導体基板上に金属薄膜を構成する金
属を取り込んで超伝導体となる酸化物系超伝導体薄膜を
形成することによって、超伝導体と半導体のオーミック
特性の電気的接触を形成することを特徴とする超伝導体
と半導体の接触形成方法が提供される。
Second, after forming a thin film of a metal selected from metal elements constituting a superconductor thin film to be formed next on a semiconductor substrate as a protective film, the metal constituting the metal thin film is taken in on the semiconductor substrate. A method for forming a contact between a superconductor and a semiconductor, comprising forming an electrical contact with the ohmic characteristics of the superconductor and the semiconductor by forming an oxide-based superconductor thin film to be a superconductor is provided. You.

本発明において、半導体基板は特に限定されず、例え
ば絶縁性基板上に形成された半導体層も含まれ、特に前
出の超伝導ベーストランジスタの提案において用いられ
ている各種のコレクタ半導体構造のすべてに適用できる
ものである。
In the present invention, the semiconductor substrate is not particularly limited, and includes, for example, a semiconductor layer formed on an insulating substrate, and particularly includes all of the various collector semiconductor structures used in the above-described superconducting base transistor proposal. Applicable.

半導体基板上に酸化物系超伝導体薄膜を堆積する方法
は、従来通りの方法によることができ、例えばスパッタ
法、蒸着法、CVD法等のいずれでもよい。このとき、堆
積薄膜の組成は目的の超伝導体の組成と一致させるよう
にするが、酸素だけは一致させるのが困難であり、必ず
しも一致しなくてもよく、一般には酸素は所望の組成よ
りも不足する。そこで、薄膜を堆積した後、一般には、
前記の如く、1000℃近くの高温の酸化性雰囲気で処理し
て酸素を取り込むと共に結晶化させる。酸化物系超伝導
体の例としては前出のY1Ba2Cu3O7−δ(δ<1)のほ
か、A1B2Cu3O7−δ(A=Y,La,Nd,Sm,Eu,Gd,Dy,Ho,Er,
Tm,Yb,Lu;B=Ba,Sr)などのいずれにも本発明は適用さ
れる。
The method for depositing the oxide-based superconductor thin film on the semiconductor substrate can be a conventional method, and may be any of a sputtering method, a vapor deposition method, a CVD method, and the like. At this time, the composition of the deposited thin film is made to match the composition of the target superconductor, but it is difficult to match only oxygen, and it does not always need to match.In general, oxygen is more than the desired composition. Also run out. Therefore, after depositing a thin film,
As described above, the substrate is treated in a high-temperature oxidizing atmosphere near 1000 ° C. to capture oxygen and crystallize. Examples of the oxide-based superconductor include, in addition to the aforementioned Y 1 Ba 2 Cu 3 O 7-δ (δ <1), A 1 B 2 Cu 3 O 7-δ (A = Y, La, Nd, Sm, Eu, Gd, Dy, Ho, Er,
Tm, Yb, Lu; B = Ba, Sr).

本発明の第1の形態において、耐酸化性の金属薄膜を
保護膜として形成する場合、金属薄膜は十分薄くするこ
とによって、その上に形成する酸化物系超伝導体薄膜を
超伝導体として作用させるとき、金属薄膜も薄いゆえに
超伝導体として作用する。このように超伝導状態で作用
するための金属薄膜の厚さは、金属薄膜の界面や表面の
状態に強く依存するが、一般的には、0.5〜80nmの範囲
内程度でよい。耐酸化性の金属とは、酸化物系超伝導体
薄膜を形成する条件下で耐酸化性であるものをいい、例
えば、金、白金、ロジウム、オスミウム、イリジウム、
銀、金/チタン、金/タンクステン、などである。
In the first embodiment of the present invention, when an oxidation-resistant metal thin film is formed as a protective film, the metal thin film is made sufficiently thin so that an oxide-based superconductor thin film formed thereon acts as a superconductor. In this case, the metal thin film also acts as a superconductor because it is thin. As described above, the thickness of the metal thin film for operating in the superconducting state strongly depends on the state of the interface and the surface of the metal thin film, but generally, it may be about 0.5 to 80 nm. An oxidation-resistant metal refers to a material that is oxidation-resistant under conditions for forming an oxide-based superconductor thin film, for example, gold, platinum, rhodium, osmium, iridium,
Silver, gold / titanium, gold / tank stainless, and the like.

本発明の第2の形態において、酸化物系超伝導体を構
成する金属の薄膜を形成した後、その上に堆積する組成
は金属薄膜の金属を酸化物系超伝導体の組成を構成する
一部分となるものとして考慮した組成とする。酸化物系
超伝導薄膜を形成する高温の条件下では、金属薄膜を構
成する金属は、酸化物系超伝導体を構成する元素である
がゆえに、その上の薄膜中を十分に拡散して均一な酸化
物系超伝導体を形成するに至る。この場合、金属薄膜の
厚さは、下地の半導体基板の表面を保護しうる厚さであ
ればよいが、一般に、10〜100nm程度の厚さとする。
In the second embodiment of the present invention, after forming a thin film of a metal constituting the oxide-based superconductor, the composition deposited on the thin film is a part of the metal constituting the metal-based thin film constituting the composition of the oxide-based superconductor. The composition is taken into consideration. Under high-temperature conditions that form an oxide-based superconducting thin film, the metal that constitutes the metal thin film is an element that constitutes the oxide-based superconductor, so it diffuses sufficiently in the thin film on top of it and becomes uniform. Oxide superconductors. In this case, the thickness of the metal thin film may be any thickness that can protect the surface of the underlying semiconductor substrate, but is generally about 10 to 100 nm.

本発明を超伝導バリヤトランジスタに応用する場合、
所定のコレクタ半導体基板上に超伝導ベース薄膜を形成
後、その上にトンネルバリヤ層及びエミッタ金属層を順
次形成する。
When the present invention is applied to a superconducting barrier transistor,
After forming a superconducting base thin film on a predetermined collector semiconductor substrate, a tunnel barrier layer and an emitter metal layer are sequentially formed thereon.

〔実施例〕〔Example〕

第1図に本発明を応用して作製した超伝導ベーストラ
ンジスタを示し、第2図にそのエネルギーバンド図を示
す。
FIG. 1 shows a superconducting base transistor manufactured by applying the present invention, and FIG. 2 shows its energy band diagram.

図中、1は半絶縁性Inp基板、2は厚さ1μmのn+−I
n0.52Ga0.48Asエピタキシャル層(コレクタ)である
が、n+−In0.52Ga0.48As層2は通常、図示しないノンド
ープのIn0.52Al0.48As層(200Å程度)の上に形成され
る。3は厚さ100nmのノンドープIn0.52Al0.10Ga0.38As
層、4は厚さ20nmのn−In0.52Ga0.48As層、5は本発明
の方法により作製されるY1Ba2Cu2O7−δ薄膜(ベー
ス)、6は厚さ50ÅのYCuO3膜(バリヤ層)、7は厚さ2
000Åのニオブ層(エミッタ)である。又、8は絶縁
層、9はコレクタの引出電極、10はベース引出電極、11
はエミッタ引出電極である。
In the figure, 1 is a semi-insulating Inp substrate, 2 is a 1 μm thick n + -I
Although the n 0.52 Ga 0.48 As epitaxial layer (collector) is used, the n + -In 0.52 Ga 0.48 As layer 2 is usually formed on a non-doped In 0.52 Al 0.48 As layer (not shown) (about 200 °). 3 is non-doped In 0.52 Al 0.10 Ga 0.38 As with a thickness of 100 nm
Layer, 4 is an n-In 0.52 Ga 0.48 As layer having a thickness of 20 nm, 5 is a Y 1 Ba 2 Cu 2 O 7-δ thin film (base) produced by the method of the present invention, 6 is YCuO 3 having a thickness of 50 ° Film (barrier layer), 7 is thickness 2
It is a niobium layer (emitter) of 000 mm. 8 is an insulating layer, 9 is a collector lead electrode, 10 is a base lead electrode, 11 is a base lead electrode.
Is an emitter extraction electrode.

エミッタ7からトンネルで超伝導ベース5に注入され
た準粒子は超伝導体のギャップ・エネルギーΔの上方の
バンドを走行して、半導体層4を半導体層3の間に形成
されるバリヤを越えてコレクタに到達し、コレクタから
電子として流れ出す。半導体層4は超伝導ベース5とオ
ーミック接触を形成している。このオーミック接触によ
り準粒子は超伝導ベースから半導体内へ容易に注入さ
れ、一方ベース・コレクタ界面に必要なバリヤは半導体
層4と半導体層3のヘテロ接合によって形成されている
のでその制御性が優れている。
Quasiparticles injected into the superconducting base 5 by tunneling from the emitter 7 travel in the band above the gap energy Δ of the superconductor and pass the semiconductor layer 4 over the barrier formed between the semiconductor layers 3. Reach the collector and flow out of the collector as electrons. The semiconductor layer 4 forms an ohmic contact with the superconducting base 5. Due to this ohmic contact, the quasi-particles are easily injected into the semiconductor from the superconducting base, while the barrier required at the base-collector interface is formed by the heterojunction between the semiconductor layer 4 and the semiconductor layer 3 so that the controllability is excellent. ing.

ところで、このような超伝導ベーストランジスタを製
造するに当って、半導体基板即ちInGaAs/InAlGaAs/InGa
As/InAlAs/InP上に超伝導薄膜(Y1Ba2Cu2O7−δ)を形
成する工程が含まれているが、以下にこの工程を詳しく
説明する。
By the way, in manufacturing such a superconducting base transistor, a semiconductor substrate, that is, InGaAs / InAlGaAs / InGa
A step of forming a superconducting thin film (Y 1 Ba 2 Cu 2 O 7-δ ) on As / InAlAs / InP is included, and this step will be described in detail below.

第3図を参照すると、上記の半導体基板11の上に白金
薄膜12を厚さ100Å堆積する。この上に高周波マグネト
ロンパッタにより、Ar+10%O2、基板温度800℃でY1Ba2
Cu2O7−δ(0<y<0.5)の膜13を厚さ1000Å堆積す
る。この薄膜を電気炉により酸素を流しながら温度850
℃で3時間アニールする。その後温度300℃まで6時間
かけて冷却する。こうして得られるY1Ba2Cu3Oy超伝導薄
膜13上にYCuO3をバリヤとして堆積し、次いでエミッタ
を堆積した後、パターニング、エミッタ、ベース、コレ
クタ電極の形成を行なってトランジスタとする。
Referring to FIG. 3, a platinum thin film 12 is deposited on the semiconductor substrate 11 to a thickness of 100.degree. Ar + 10% O 2 , Y 1 Ba 2 at 800 ° C substrate temperature
A film 13 of Cu 2 O 7−δ (0 <y <0.5) is deposited to a thickness of 1000 °. This thin film was heated at a temperature of 850 while flowing oxygen through an electric furnace.
Anneal at ℃ for 3 hours. Then, it cools to temperature 300 degreeC over 6 hours. YCuO 3 is deposited as a barrier on the Y 1 Ba 2 Cu 3 O y superconducting thin film 13 thus obtained, and then an emitter is deposited. Then, patterning, formation of an emitter, a base, and a collector electrode are performed to form a transistor.

こうして得られたトランジスタのベース・コレクタ間
の接触は超伝導体と半導体界面に電子透過のバリヤとな
る酸化物層が形成されないため、主たるキャリヤに対し
その透過率が十分高い(具体的には0.2以上)良好なも
のが得られる。
The contact between the base and the collector of the transistor thus obtained does not have an oxide layer serving as an electron transmission barrier at the interface between the superconductor and the semiconductor. Above) Good products can be obtained.

第4図を参照すると、半導体基板21上に先ずイットリ
ウム22を厚さ30Å堆積する。この上に高周波マグネトロ
ンスパッタによりAr+10%O2、基板温度800℃でY−Ba
−Cu−Oの薄膜23を形成する。この薄膜23の組成はイッ
トリウム膜22のイットリウムを取り込んでY:Ba:Cu=1:
2:3の組成比になるようにする。この堆積(高周波マグ
ネトロンスパッタ)の際、基板は酸化雰囲気にさらされ
るが、基板表面のイットリウムの一部が酸化されるだけ
で、半導体表面は酸化されない。この後、Y−Ba−Cu−
O薄膜23を第1の実施例と同様の条件で熱処理を行なう
と、イットリウム膜22のイットリウムはY−Ba−Cu−O
薄膜23に取り込まれて、YBa2Cu2Oy(y=6.9)の組成に
なり、超伝導薄膜24(第4図(2))となる。以下、第
3図の場合と同様の工程によりトランジスタを得る。
Referring to FIG. 4, a yttrium 22 is first deposited on a semiconductor substrate 21 to a thickness of 30 °. Ar + 10% O 2 was applied by high frequency magnetron sputtering, and Y-Ba
-A thin film 23 of Cu-O is formed. The composition of the thin film 23 is such that Y: Ba: Cu = 1: Yttrium of the yttrium film 22 is incorporated.
The composition ratio should be 2: 3. During this deposition (high-frequency magnetron sputtering), the substrate is exposed to an oxidizing atmosphere, but only a part of the yttrium on the substrate surface is oxidized, and the semiconductor surface is not oxidized. After this, Y-Ba-Cu-
When the O thin film 23 is subjected to a heat treatment under the same conditions as in the first embodiment, the yttrium of the yttrium film 22 becomes Y-Ba-Cu-O
It is taken into the thin film 23 and becomes a composition of YBa 2 Cu 2 O y (y = 6.9), and becomes a superconducting thin film 24 (FIG. 4 (2)). Hereinafter, a transistor is obtained by the same steps as in the case of FIG.

このトランジスタのベース・コレクタ間の接触は、半
導体表面が劣化していないので超伝導体と半導体の良好
な接触になり、その結果トランジスタの特性はベース接
地電流伝達率が0.9以上という良好な増幅特性を示す。
The contact between the base and collector of this transistor is a good contact between the superconductor and the semiconductor because the semiconductor surface is not degraded. As a result, the transistor has good amplification characteristics with a grounded base current transfer rate of 0.9 or more. Is shown.

〔発明の効果〕〔The invention's effect〕

本発明の方法によれば、酸化物系超伝導薄膜を半導体
基板上に作製するに当って半導体表面が金属薄膜で保護
されることによって高温酸化性雰囲気にさらされること
がなく、しかも金属薄膜は超伝導薄膜の一部分となるの
で、良好な超伝導体−半導体界面(接触)が形成され
る。その結果、コレクタの準粒子捕獲確率の高い優れた
超伝導ベーストランジスタを作製することができる。
According to the method of the present invention, when the oxide-based superconducting thin film is formed on the semiconductor substrate, the semiconductor surface is protected by the metal thin film, so that it is not exposed to a high-temperature oxidizing atmosphere, and the metal thin film is As a part of the superconducting thin film, a good superconductor-semiconductor interface (contact) is formed. As a result, an excellent superconducting base transistor having a high probability of trapping quasiparticles in the collector can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例の超伝導ベーストランジスタの
模式断面図、第2図は第1図のトランジスタのエネルギ
・バンド図、第3図及び第4図は実施例の半導体−超伝
導体接触を形成する工程を示す断面図である。 1……半絶縁性InP基板、 2……n+−In0.56Ga0.48As層、 3……ノンドープIn0.52Al0.10Ga0.38As層、 4……n−In0.52Ga0.48As層、 5……超伝導Y1Ba2Cu3O7−δ薄膜、 6……YCuO3膜、7……ニオブ層、 11……半導体基板、12……白金薄膜、 13……超伝導Y1Ba2Cu3O7−δ薄膜、 21……半導体基板、 22……イットリウム薄膜、 23……Y−Ba−Cu−O薄膜、 24……超伝導Y1Ba2Cu3O7−δ薄膜。
FIG. 1 is a schematic sectional view of a superconducting base transistor according to an embodiment of the present invention, FIG. 2 is an energy band diagram of the transistor of FIG. 1, and FIGS. 3 and 4 are semiconductor-superconductors of the embodiment. It is sectional drawing which shows the process of forming a contact. 1 ... Semi-insulating InP substrate, 2 ... n + -In 0.56 Ga 0.48 As layer, 3 ... Non-doped In 0.52 Al 0.10 Ga 0.38 As layer, 4 ... n-In 0.52 Ga 0.48 As layer, 5 ... superconducting Y 1 Ba 2 Cu 3 O 7 -δ films, 6 ...... YCuO 3 film, 7 ...... niobium layer, 11 ...... semiconductor substrate, 12 ...... platinum film, 13 ...... superconducting Y 1 Ba 2 Cu 3 O 7-δ thin film, 21 semiconductor substrate, 22 yttrium thin film, 23 Y-Ba-Cu-O thin film, 24 superconducting Y 1 Ba 2 Cu 3 O 7-δ thin film.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】半導体基板上に耐酸化性の金属薄膜を保護
膜として形成した後、金属薄膜上に酸化物系超伝導体薄
膜を形成することによって、超伝導体と半導体のオーミ
ック特性の電気的接触を形成し、かつ金属薄膜は超伝導
体薄膜と共に超伝導状態で作用するのに十分に薄いこと
を特徴とする超伝導体と半導体の接触の形成方法。
An oxide-based superconductor thin film is formed on a metal thin film after forming an oxidation-resistant metal thin film as a protective film on a semiconductor substrate, so that the electrical conductivity of the ohmic characteristics of the superconductor and the semiconductor is reduced. Forming a contact between the superconductor and the semiconductor, wherein the metal thin film is thin enough to act in a superconducting state with the superconductor thin film.
【請求項2】半導体基板上に、次に形成すべき超伝導体
薄膜を構成する金属元素から選んだ金属の薄膜を保護膜
として形成した後、半導体基板上に金属薄膜を構成する
金属を取り込んで超伝導体となる酸化物系超伝導体薄膜
を形成することによって、超伝導体と半導体の電気的接
触を形成することを特徴とする超伝導体と半導体の接触
形成方法。
2. A method according to claim 1, wherein a metal thin film selected from metal elements forming a superconductor thin film to be formed next is formed as a protective film on the semiconductor substrate, and then the metal forming the metal thin film is loaded onto the semiconductor substrate. A method for forming a contact between a superconductor and a semiconductor, comprising forming an electrical contact between the superconductor and the semiconductor by forming an oxide-based superconductor thin film that is to be a superconductor in Step (a).
JP62245856A 1987-10-01 1987-10-01 Method of forming electrical contact between superconductor and semiconductor Expired - Fee Related JP2650188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62245856A JP2650188B2 (en) 1987-10-01 1987-10-01 Method of forming electrical contact between superconductor and semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62245856A JP2650188B2 (en) 1987-10-01 1987-10-01 Method of forming electrical contact between superconductor and semiconductor

Publications (2)

Publication Number Publication Date
JPS6490575A JPS6490575A (en) 1989-04-07
JP2650188B2 true JP2650188B2 (en) 1997-09-03

Family

ID=17139852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62245856A Expired - Fee Related JP2650188B2 (en) 1987-10-01 1987-10-01 Method of forming electrical contact between superconductor and semiconductor

Country Status (1)

Country Link
JP (1) JP2650188B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03274773A (en) * 1990-03-23 1991-12-05 Toshiba Corp Superconducting element
JP2721439B2 (en) * 1991-06-13 1998-03-04 沖電気工業株式会社 Method of forming oxide superconductor on semiconductor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6486577A (en) * 1987-05-01 1989-03-31 Nippon Telegraph & Telephone Preparation of superconductive oxide film
JPS63299281A (en) * 1987-05-29 1988-12-06 Toshiba Corp Superconducting device

Also Published As

Publication number Publication date
JPS6490575A (en) 1989-04-07

Similar Documents

Publication Publication Date Title
US5034374A (en) Method of producing high temperature superconductor Josephson element
JPH02177381A (en) Tunnel junction element of superconductor
JPH0730161A (en) Laminated film of insulator thin film and oxide superconducting thin film and its manufacture
JP2650188B2 (en) Method of forming electrical contact between superconductor and semiconductor
JP3020524B2 (en) Oxide superconducting element
EP0488837A2 (en) Method for manufacturing superconducting device having a reduced thickness of oxide superconducting layer and superconducting device manufactured thereby
JPH0221676A (en) Tunnel junction between superconductors
EP0144217B1 (en) Superconducting device
JP2908346B2 (en) Superconducting structure
JP3282748B2 (en) Superconducting base transistor
JP3061634B2 (en) Oxide superconducting tape conductor
JP2944238B2 (en) Method for forming superconductor and superconducting element
JP3011411B2 (en) Superconducting element
JP3002010B2 (en) Superconducting transistor
JPH0272685A (en) Method for forming weakly coupled superconductor part
JP3216089B2 (en) Superconducting device manufacturing method and superconducting transistor using the same
JP2950958B2 (en) Superconducting element manufacturing method
JP3121940B2 (en) Superconducting base transistor
JPH02186682A (en) Josephson junction device
JP3076503B2 (en) Superconducting element and method of manufacturing the same
JP2691065B2 (en) Superconducting element and fabrication method
JP3155641B2 (en) Superconducting tunnel junction device
JP2667289B2 (en) Superconducting element and fabrication method
JP2888650B2 (en) Superconducting member manufacturing method
JP3005434B2 (en) Superconducting device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees