JPH02271684A - Tunnel type josephson junction element - Google Patents

Tunnel type josephson junction element

Info

Publication number
JPH02271684A
JPH02271684A JP1094540A JP9454089A JPH02271684A JP H02271684 A JPH02271684 A JP H02271684A JP 1094540 A JP1094540 A JP 1094540A JP 9454089 A JP9454089 A JP 9454089A JP H02271684 A JPH02271684 A JP H02271684A
Authority
JP
Japan
Prior art keywords
electrode
lower electrode
tunnel barrier
oxide
tunnel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1094540A
Other languages
Japanese (ja)
Inventor
Hisanao Tsuge
久尚 柘植
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1094540A priority Critical patent/JPH02271684A/en
Publication of JPH02271684A publication Critical patent/JPH02271684A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To obtain a gap voltage of oxide superconductor itself and small subgap leakage by forming a tunnel barrier of oxide of an element having minimum energy per one atom of oxygen of constituent element of a lower electrode. CONSTITUTION:A tunnel barrier 13 is formed of oxide of an element having minimum energy per one atom of oxygen as a constituent element of a lower electrode 12. The barrier 13 is thermally stable and not easily reacted with the electrode 12 and oxide superconductor of an upper electrode 14. Even if part of the material of the barrier 13 is diffused in the electrode with each other in a high temperature process, since the barrier 13 and the electrode 12 are formed of the same element, deterioration of superconducting properties in a junction boundary scarcely occurs. Thus, problems such as a gap voltage of a junction element, the increase of a subgap leakage current can be eliminated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、上下電極共に酸化物超伝導体であるトンネル
型ジョセフソン接合素子に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a tunnel-type Josephson junction element in which both the upper and lower electrodes are made of oxide superconductor.

(従来の技術) ジョセフソン接合で構成される論理回路や記憶回路は半
導体素子の回路に比べて消費電力が小さく、高速で動作
するという大きな利点がある。近年発見された酸化物超
伝導体は超伝導転位温度Tcが100に前後と高く、こ
の値に相当する大きなエネルギーギャップ値をもつ。そ
のため上下電極共に酸化物超伝導体を用いたジョセフソ
ン接合では、液体窒素温度(77,3K)など従来の超
伝導体にない高温での動作や高速動作が期待される。
(Prior Art) Logic circuits and memory circuits constructed using Josephson junctions have the great advantage of consuming less power and operating at high speed compared to circuits using semiconductor elements. Oxide superconductors discovered in recent years have a high superconducting transition temperature Tc of around 100, and a large energy gap value corresponding to this value. Therefore, Josephson junctions that use oxide superconductors for both the upper and lower electrodes are expected to operate at high temperatures and high speeds that conventional superconductors do not have, such as liquid nitrogen temperatures (77.3 K).

従来、酸化物超伝導体を電極材料とするトンネル型ジョ
セフソン接合素子に関しては、日中らによって1988
年に発表された第20凹円体素子・材料ゴンファレンス
予稿集(Extended Abstract of 
the 20thConference on 5ol
id 5tate Device and Mater
ials)の455〜458ページの論文などがある。
Conventionally, tunnel-type Josephson junction devices using oxide superconductors as electrode materials were developed by Nichi et al. in 1988.
Extended Abstract of the 20th Concave Elements and Materials Conference, published in
the 20thConference on 5ol
id 5tate Device and Mater
ials) on pages 455-458.

ここで提案されたジョセフソン接合素子は、第3図に示
すように、基板31上に形成してYBa2Cu3Ox膜
でなる下部電極32と、この下部電極32上に形成した
厚さ数10人のAl2O3膜でなるトンネル障壁33と
、このトンネル障壁33を介して下部電極32と対向し
て形成した白金(pt)膜または銀(Ag)膜でなる上
部電極34とで構成される。
As shown in FIG. 3, the Josephson junction device proposed here includes a lower electrode 32 formed on a substrate 31 and made of a YBa2Cu3Ox film, and an Al2O3 film with a thickness of several tens of layers formed on the lower electrode 32. It is composed of a tunnel barrier 33 made of a film, and an upper electrode 34 made of a platinum (PT) film or a silver (Ag) film, which is formed to face the lower electrode 32 with the tunnel barrier 33 interposed therebetween.

この素子は次のような工程で製造される。まず、チタン
酸ストロンチウム(SrTi03X100)単結晶から
なる基板31上に、1O−2Torrの酸素雰囲気中で
イツトリウム(Y)、バリウム(Ba)、銅(Cu)を
共蒸着し、厚さ1000人のYBa2Cu3Ox膜を成
長する。引き続き、この膜を200Torrの酸素雰囲
気で熱処理してas−grownで不足している酸素を
供給し、高温超伝導性の下部電極32を形成する。次に
、下部電極32上に厚さ60人のAl2O3を蒸着して
トンネル障壁33を形成した後、さらに厚さ100OA
のptまたはAgを蒸着して上部電極34を形成してジ
ョセフソン接合素子の基本構造を完成する。下部電極3
2及び上部電極34のパターニングは蒸着時に金属マス
クを用いる方法で行なう。
This device is manufactured through the following steps. First, yttrium (Y), barium (Ba), and copper (Cu) were co-evaporated onto a substrate 31 made of strontium titanate (SrTi03 Grow a membrane. Subsequently, this film is heat-treated in an oxygen atmosphere of 200 Torr to supply insufficient oxygen in as-grown form, thereby forming a high-temperature superconducting lower electrode 32. Next, after forming a tunnel barrier 33 by vapor depositing Al2O3 to a thickness of 60 OA on the lower electrode 32, a further thickness of 100 OA is formed.
The basic structure of the Josephson junction device is completed by depositing PT or Ag to form the upper electrode 34. Lower electrode 3
Patterning of the upper electrode 2 and the upper electrode 34 is performed by using a metal mask during vapor deposition.

(発明が解決しようとする課題) 従来例は、上部電極にノーマル金属を用いているが、窒
素温度以上で動作するジョセフソン接合素子を実現する
ためには、上下電極共に酸化物超伝導体を用いなければ
ならない。高温超伝導性の酸化物超伝導体膜の作製には
成膜時あるいは成膜後に600°C以上の高温処理プロ
セスが不可欠であるため、良好な接合特性を得るために
は特に上部電極形成時におけるトンネル障壁材料の熱的
安定性および相互拡散防止効果が重要となる。従来例の
ように、トンネル障壁にAl2O3を用いる場合には、
下部電極の構成元素であるYの方がAlよりも酸素物と
して安定であるため、Al2O3が分解してその絶縁性
が失われる可能性がある。また、電極を構成する酸化物
超伝導体とトンネル障壁材料との相互拡散により、接合
界面に低Tc層やノーマル層からな゛る遷移領域が形成
され易い。その結果、ジョセフソン接合素子のギャップ
電圧の現象やサブギャップリーク電流の増加といった問
題を生じる。一般に酸化物超伝導体のコヒーレンス長(
モ)の値は故人から20人と小さいため、接合界面にお
ける超伝導特性の変化は重大である。
(Problem to be solved by the invention) In conventional examples, normal metal is used for the upper electrode, but in order to realize a Josephson junction element that operates above the nitrogen temperature, oxide superconductor is used for both the upper and lower electrodes. must be used. To create a high-temperature superconducting oxide superconductor film, a high-temperature treatment process of 600°C or higher is essential during or after film formation. Thermal stability and interdiffusion prevention effect of tunnel barrier materials are important. When using Al2O3 for the tunnel barrier as in the conventional example,
Since Y, which is a constituent element of the lower electrode, is more stable as an oxygen substance than Al, there is a possibility that Al2O3 will decompose and its insulating properties will be lost. Further, due to interdiffusion between the oxide superconductor constituting the electrode and the tunnel barrier material, a transition region consisting of a low Tc layer or a normal layer is likely to be formed at the junction interface. As a result, problems such as a gap voltage phenomenon of the Josephson junction element and an increase in sub-gap leakage current occur. In general, the coherence length of oxide superconductors (
Since the value of (mo) is as small as 20 from the deceased, the change in superconducting properties at the junction interface is significant.

本発明の目的は、このような従来の欠点を取り除いたト
ンネル型ジョセフソン接合素子を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a tunnel-type Josephson junction device that eliminates such conventional drawbacks.

(課題を解決するための手段) 本発明によれば、基板上に形成した酸化物超伝導体でな
る下部電極と、この下部電極上に形成したトンネル障壁
と、このトンネル障壁を介して前記下部電極と対向して
形成した酸化物超伝導体でなる上部電極とを有するトン
ネル型ジョセフソン接合素子において、前記トンネル障
壁が前記下部電極の構成元素のうち酸素一原子当たりの
生成エネルギーが最小の元素の酸化物でなることを特徴
とするトンネル型ジョセフソン接合素子が得られる。
(Means for Solving the Problem) According to the present invention, a lower electrode made of an oxide superconductor formed on a substrate, a tunnel barrier formed on the lower electrode, and a lower electrode formed on the lower electrode through the tunnel barrier. In a tunnel-type Josephson junction element having an upper electrode made of an oxide superconductor formed opposite to an electrode, the tunnel barrier is an element having the lowest production energy per oxygen atom among the constituent elements of the lower electrode. A tunnel-type Josephson junction device is obtained, which is characterized by being made of an oxide of.

(作用) 本発明では、トンネル障壁に下部電極の構成元素で、し
かも酸素一原子当たりの生成エネルギーが最小の元素の
酸化物を用いる。このトンネル障壁は熱的に安定であり
、容易には下部電極や上部電極の酸化物超伝導体とは反
応しない。また、仮に高温プロセスでトンネル障壁材料
の一部が電極との間で相互拡散しても、トンネル障壁と
電極は同一元素で構成されているため接合界面での超伝
導特性の劣化を生じにくい。
(Function) In the present invention, an oxide of an element that is a constituent element of the lower electrode and has the minimum production energy per oxygen atom is used for the tunnel barrier. This tunnel barrier is thermally stable and does not easily react with the oxide superconductor of the lower and upper electrodes. Furthermore, even if part of the tunnel barrier material interdiffuses with the electrode during a high-temperature process, the superconducting properties at the junction interface are unlikely to deteriorate because the tunnel barrier and the electrode are composed of the same element.

(実施例) 本発明のトンネル型ジョセフソン接合素子の実施例を図
面を参照して説明する。このトンネル型ジョセフソン接
合素子は第1図に示すように、5rTi03基板11上
に形成したYBa2Cu3Oxなどの下部電極12と、
この下部電極12上に形成したY2O3などのトンネル
障壁13と、さらにこの上に形成したYBa2Cu3O
xなどの上部電極14とで構成される。下部電極12と
上部電極14の膜厚は3000人、トンネル障壁13の
膜厚は数人〜30人である。下部電極12及び上部電極
14に用いたYBa2Cu3Oxの構成下その酸化物は
Y2O3、BaO2、CuOで、それぞれに対する酸素
一原子当たりの生成エネルギーは一152kcal/m
a1゜76kcal/mol、−38kcal/mol
である。従って、本実施例ではトンネル障壁13にY2
O3を用いた。Y2O3膜はYBa2Cu3Ox膜には
さまれた(1η造でも熱的に安定であるため、両者の界
面における反応は起こりにくい。従って従来の構造に比
べ、接合界面での低Tc層やノーマル層による遷移領域
幅を軽減できるため、酸化物超伝導体本来の値に近いギ
ャップ電圧をもちサブギャップリークの小さいトンネル
型ジョセフソン接合素子が得られる。
(Example) An example of the tunnel type Josephson junction device of the present invention will be described with reference to the drawings. As shown in FIG. 1, this tunnel type Josephson junction element includes a lower electrode 12 made of YBa2Cu3Ox or the like formed on a 5rTi03 substrate 11,
A tunnel barrier 13 such as Y2O3 formed on this lower electrode 12 and YBa2Cu3O formed further on this
x and the upper electrode 14. The thickness of the lower electrode 12 and the upper electrode 14 is 3000, and the thickness of the tunnel barrier 13 is several to 30. In the structure of YBa2Cu3Ox used for the lower electrode 12 and upper electrode 14, the oxides thereof are Y2O3, BaO2, and CuO, and the production energy per oxygen atom for each is -152 kcal/m
a1゜76kcal/mol, -38kcal/mol
It is. Therefore, in this embodiment, the tunnel barrier 13 has Y2
O3 was used. The Y2O3 film is sandwiched between the YBa2Cu3Ox films (even the 1η structure is thermally stable, so reactions at the interface between the two are less likely to occur. Therefore, compared to the conventional structure, the transition due to the low Tc layer or normal layer at the bonding interface is Since the region width can be reduced, a tunnel-type Josephson junction device with a gap voltage close to the original value of the oxide superconductor and low sub-gap leakage can be obtained.

本実施例では、電極を構成する酸化物超伝導体としてY
Ba2Cu3Ox膜を用いた場合について説明したが、
B1−8r−Ca−Cu−0やTl−Ba−Ca−Cu
−○などの他の酸化物超伝導体を用いてもよい。例えば
、このBi系やTl系に対するトンネル障壁としては、
酸素一原子当たりの生成エネルギーか最も小さいCaの
酸化物(CaO)が望ましい。
In this example, Y was used as the oxide superconductor constituting the electrode.
Although the case where a Ba2Cu3Ox film was used was explained,
B1-8r-Ca-Cu-0 and Tl-Ba-Ca-Cu
Other oxide superconductors such as −○ may also be used. For example, as a tunnel barrier for Bi-based and Tl-based systems,
Ca oxide (CaO) having the lowest production energy per oxygen atom is desirable.

次に本発明のトンネル型ジョセフソン接合素子の製造方
法を図面を用いて説明する。
Next, a method for manufacturing a tunnel-type Josephson junction device according to the present invention will be explained with reference to the drawings.

まず、Y−Ba−Cu−0焼結体ターゲットを用いたス
パッタ法により、5rTi○3(100)単結晶基板2
1上に厚さ3000人のYBa2Cu3Ox膜を被着し
、引き続きこの膜上に厚さ約10人のY2O3膜を被着
する。この2層膜を通常のりソグラフィ技術と加工技術
を用いてパターニングし、下部電極22とトンネル障壁
23を形成する(第2図(a))。YBa2Cu3Ox
膜のスパッタ時の雰囲気はAr−20%02、基板温度
は550〜750’Cである。
First, a 5rTi○3 (100) single crystal substrate 2 was prepared by sputtering using a Y-Ba-Cu-0 sintered target.
A YBa2Cu3Ox film with a thickness of 3000 thick is deposited on top of 1, followed by a Y2O3 film about 10 thick on top of this film. This two-layer film is patterned using ordinary lithography and processing techniques to form a lower electrode 22 and a tunnel barrier 23 (FIG. 2(a)). YBa2Cu3Ox
The atmosphere during sputtering of the film was Ar-20%02, and the substrate temperature was 550 to 750'C.

Y2O3膜のスパッタ条件はAr−50%o2、基板温
度100°Cである。次に、トンネル障壁23上の接合
となる領域にレジストマスクを設けた後、厚さ200O
AのY2O3膜をスパッタし、リフトオフしてスペーサ
24を形成する(第2図(b))。次に、第2図(a)
の下部電極22と同様な方法で厚さaoooAのYBa
2Cu3Ox膜を被着、パターニング上部電極25を形
成する(第2図(C))。本実施例では、上部及び下部
電極にスパッタ法により被着したYBa2Cu3Oxを
用いた、蒸着法やCVD法など他の成膜技術を用いても
よいし、Y系薄膜の代りBi系やTl系などの多々の酸
化物超伝導薄膜を用いることもできる。
The sputtering conditions for the Y2O3 film were Ar-50% O2 and a substrate temperature of 100°C. Next, after providing a resist mask on the region on the tunnel barrier 23 that will become the junction, a resist mask with a thickness of 200
The Y2O3 film of A is sputtered and lifted off to form a spacer 24 (FIG. 2(b)). Next, Figure 2(a)
YBa of thickness aoooA is formed in the same manner as the lower electrode 22 of
A 2Cu3Ox film is deposited and a patterned upper electrode 25 is formed (FIG. 2(C)). In this example, YBa2Cu3Ox is deposited by sputtering on the upper and lower electrodes. Other film forming techniques such as vapor deposition or CVD may also be used, and instead of the Y-based thin film, Bi-based, Tl-based, etc. Various oxide superconducting thin films can also be used.

(発明の効果) 本発明によれば、上下電極に酸化物超伝導体を場合でも
、電極とトンネル障壁との反応で生じる低Tc層やノー
マル層を介することはなく、酸化物超伝導体本来のギャ
ップ電圧をもちサブギャップリークの小さいトンネル型
ジョセフソン接合素子が得られる。
(Effects of the Invention) According to the present invention, even when oxide superconductors are used in the upper and lower electrodes, the oxide superconductors are naturally A tunnel-type Josephson junction device with a gap voltage of 1 and a small sub-gap leakage can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のトンネル型ジョセフソン接合素子を示
す断面図、第2図は本発明のトンネル型ジョセフソン接
合素子の製造方法を工程順に示す断面図、第3図は従来
のトンネル型ジョセフソン接合素子を示す断面図である
。 図において、11,21,31.は基板、12,22,
32.は下部電極、13,23,33.はトンネル障壁
、14,25.34は上部電極、24はスペーサである
FIG. 1 is a cross-sectional view showing a tunnel-type Josephson junction device of the present invention, FIG. 2 is a cross-sectional view showing the manufacturing method of a tunnel-type Josephson junction device of the present invention in the order of steps, and FIG. 3 is a cross-sectional view showing a conventional tunnel-type Josephson junction device. FIG. 2 is a cross-sectional view showing a Son junction element. In the figure, 11, 21, 31. is the substrate, 12, 22,
32. are lower electrodes, 13, 23, 33. is a tunnel barrier, 14, 25, and 34 are upper electrodes, and 24 is a spacer.

Claims (1)

【特許請求の範囲】[Claims] 基板上に形成した酸化物超伝導体でなる下部電極と、こ
の下部電極上に形成したトンネル障壁と、このトンネル
障壁を介して前記下部電極と対向して形成した酸化物超
伝導体でなる上部電極とを有するトンネル型ジョセフソ
ン接合素子において、前記トンネル障壁が前記下部電極
の構成元素のうち酸素一原子当りの生成エネルギーが最
小の元素の酸化物でなることを特徴とするトンネル型ジ
ョセフソン接合素子。
A lower electrode made of an oxide superconductor formed on a substrate, a tunnel barrier formed on this lower electrode, and an upper part made of an oxide superconductor formed opposite to the lower electrode via this tunnel barrier. A tunnel type Josephson junction element having an electrode, wherein the tunnel barrier is made of an oxide of an element having the lowest production energy per oxygen atom among the constituent elements of the lower electrode. element.
JP1094540A 1989-04-13 1989-04-13 Tunnel type josephson junction element Pending JPH02271684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1094540A JPH02271684A (en) 1989-04-13 1989-04-13 Tunnel type josephson junction element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1094540A JPH02271684A (en) 1989-04-13 1989-04-13 Tunnel type josephson junction element

Publications (1)

Publication Number Publication Date
JPH02271684A true JPH02271684A (en) 1990-11-06

Family

ID=14113149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1094540A Pending JPH02271684A (en) 1989-04-13 1989-04-13 Tunnel type josephson junction element

Country Status (1)

Country Link
JP (1) JPH02271684A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01106481A (en) * 1987-10-20 1989-04-24 Fujitsu Ltd Superconductive material structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01106481A (en) * 1987-10-20 1989-04-24 Fujitsu Ltd Superconductive material structure

Similar Documents

Publication Publication Date Title
JPS63239990A (en) Superconducting transistor
JPH02271684A (en) Tunnel type josephson junction element
US5462918A (en) Superconducting field effect device with vertical channel formed of oxide superconductor material
EP0534811B1 (en) Method of manufacturing superconducting thin film formed of oxide superconductor having non superconducting region in it, and method of manufacturing superconducting device utilizing the superconducting thin film
JP3011411B2 (en) Superconducting element
JP2644284B2 (en) Superconducting element
JP2517085B2 (en) Superconducting thin film
JPS63299281A (en) Superconducting device
JP2825374B2 (en) Superconducting element
JP2708673B2 (en) Method of manufacturing superconducting thin film vertical junction device
JPH02194667A (en) Superconducting transistor and manufacture thereof
JP2680949B2 (en) Method for manufacturing superconducting field effect device
JP2002141564A (en) Superconducting element and manufacturing method thereof
JP2691065B2 (en) Superconducting element and fabrication method
JP2647251B2 (en) Superconducting element and fabrication method
JP2667289B2 (en) Superconducting element and fabrication method
JP2931779B2 (en) Superconducting element
JP2773456B2 (en) Manufacturing method of laminated film
JPH0284781A (en) Junction by high-temperature superconductor
JP2599500B2 (en) Superconducting element and fabrication method
JPS63318176A (en) Manufacture of oxide superconductive junction
JP2977935B2 (en) Superconducting three-terminal element
JP2663856B2 (en) Superconducting circuit using edge-type Josephson junction and method of manufacturing the same
JPH05190926A (en) Forming method of superconducting device and superconducting device formed by the same
JPH02271686A (en) Josephson junction element and manufacture thereof