JP2971183B2 - Estimation method of charge accumulation shape in vertical furnace - Google Patents

Estimation method of charge accumulation shape in vertical furnace

Info

Publication number
JP2971183B2
JP2971183B2 JP15087891A JP15087891A JP2971183B2 JP 2971183 B2 JP2971183 B2 JP 2971183B2 JP 15087891 A JP15087891 A JP 15087891A JP 15087891 A JP15087891 A JP 15087891A JP 2971183 B2 JP2971183 B2 JP 2971183B2
Authority
JP
Japan
Prior art keywords
deposition
shape
coefficient
furnace
relating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15087891A
Other languages
Japanese (ja)
Other versions
JPH0694367A (en
Inventor
眞六 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP15087891A priority Critical patent/JP2971183B2/en
Publication of JPH0694367A publication Critical patent/JPH0694367A/en
Application granted granted Critical
Publication of JP2971183B2 publication Critical patent/JP2971183B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は高炉のような竪型炉にお
いて、あるいはホッパーから排出する際に堆積される装
入物の堆積形状の推定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for estimating the shape of a charge deposited in a vertical furnace such as a blast furnace or when discharged from a hopper.

【0002】[0002]

【従来の技術】従来、高炉装入装置により装入された装
入物の堆積形状を推定する方法として、実際の高炉にマ
イクロ波式等を利用した堆積形状検知装置(以下プロフ
ィールメーターと表記)により堆積形状を実際に測定
し、その測定結果から回帰式を作成する方法(A法)が
知られている。また、理論的に堆積形状を推定する方法
として、炉中間部から炉中心にかけては近似的に安息角
となり、更にガス流速の影響を考慮することによってか
なり精度良く推定可能なことは良く知られている。一
方、装入物の落下点より炉壁部分までの堆積形状の推定
方法としては、落下点付近に生じる稜線より炉壁部分ま
での傾斜角を直線近似した式を用いる方法がある(B
法)(例えば鉄と鋼73(1987)1,P91)。
2. Description of the Related Art Conventionally, as a method for estimating the deposition shape of a charge charged by a blast furnace charging device, a deposition shape detection device (hereinafter referred to as a profile meter) using a microwave or the like in an actual blast furnace. There is known a method (method A) of actually measuring a deposition shape by using a method and creating a regression equation from the measurement result. Also, as a method of theoretically estimating the deposition shape, it is well known that the angle of repose is approximately from the middle of the furnace to the center of the furnace, and that it is possible to estimate with fairly high accuracy by considering the influence of the gas flow velocity. I have. On the other hand, as a method for estimating the deposition shape from the falling point of the charge to the furnace wall portion, there is a method using a linear approximation of the inclination angle from the ridge line generated near the falling point to the furnace wall portion (B
Method) (for example, Iron and Steel 73 (1987) 1, P91).

【0003】[0003]

【発明が解決しようとする課題】しかるにこのような従
来の推定方法については次に述べるような問題点があ
る。従来の推定法A法では過去に実施済みの装入方法で
の推定精度は良いが、装入条件を大きく変えた時の推定
精度の信頼性はかなり落ちる。また、この方法では堆積
形状を検出する手段のない高炉においては堆積形状を推
定することそのものが困難である。
However, such a conventional estimation method has the following problems. In the conventional estimation method A, the estimation accuracy of the charging method that has been implemented in the past is good, but the reliability of the estimation accuracy when the charging conditions are significantly changed is considerably reduced. In addition, in this method, it is difficult to estimate the deposition shape itself in a blast furnace having no means for detecting the deposition shape.

【0004】従来の推定法B法では、装入条件を大きく
変えた場合でも推定精度の信頼性は余り変わらないが、
そもそも推定精度が必ずしも高いとはいえなかった。こ
のような不具合点を解消し、より精度の高い推定を行う
ため以下に述べる推定方法を発明した。
In the conventional estimation method B, the reliability of the estimation accuracy does not change much even when the charging conditions are greatly changed.
In the first place, the estimation accuracy was not always high. In order to solve such disadvantages and perform more accurate estimation, the following estimation method has been invented.

【0005】[0005]

【課題を解決するための手段】本発明は上記の従来方法
の問題点を解決するものであって、炉頂部ホッパーから
の落下点より炉壁寄りの部分の装入物堆積形状を推定す
るさい、堆積形状として下記(1)式のガウス分布関数
と1次関数との和の関数を仮定し、装入装置、装入物に
よってあらかじめ実測したデータにもとづき、前記ガウ
ス分布関数と1次関数との和の関数の各係数を定めるこ
とにより、堆積形状を求めることを特徴とする竪型炉に
おける装入物堆積形状の推定方法である。 PF(X)=A・exp [−{(X−B)/C} 2 ]+D・X+E ・・・・・(1) ここで、 A;堆積高さに関する係数 B;堆積位置に関する係数 C;堆積幅に関する係数 D;ベースの堆積形状の影響を補正する係数 E;堆積深さに関する係数 X;計算位置(原点は炉中心、炉壁方向を正)
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the conventional method, and estimates a charge accumulation shape in a portion closer to a furnace wall from a drop point from a furnace top hopper. Assuming a function of the sum of a Gaussian distribution function and a linear function of the following equation (1) as the deposition shape, the Gaussian distribution function and the linear function are calculated based on data previously measured by the charging apparatus and the charged object. This is a method for estimating a charge accumulation shape in a vertical furnace, wherein the accumulation shape is determined by determining each coefficient of a function of the sum of the above. PF (X) = A · exp [− {(X−B) / C} 2 ] + D · X + E (1) where: A; coefficient B relating to the deposition height ; coefficient C relating to the deposition position ; Coefficient D relating to the deposition width ; Coefficient E for correcting the influence of the base deposition shape ; Coefficient X relating to the deposition depth ; Calculation position (origin is the furnace center, furnace wall direction is positive)

【0006】[0006]

【作用】まず、炉壁部分の堆積形状を求める際、1回の
装入を図1に示すように、いくつかに区分けして太線の
部分を本発明方法で計算する。各区分毎の堆積形状は次
に述べる方法で計算する。図2は炉壁部分の堆積形状と
傾斜角分布の模式図である。落下点より炉中心側では従
来の知見にもあるように、ガス流速を考慮した傾斜角に
なる。
First, when obtaining the deposited shape of the furnace wall portion, one charge is divided into several parts as shown in FIG. 1 and the thick line portion is calculated by the method of the present invention. The deposition shape for each section is calculated by the method described below. FIG. 2 is a schematic diagram of a deposition shape and a tilt angle distribution of a furnace wall portion. On the furnace center side from the drop point, the inclination angle takes into account the gas flow velocity, as known in the past.

【0007】一方、落下点より炉壁側部分においては、
堆積形状は数1で示すガウス分布関数(正規分布関数)
と1次関数との和の関数で近似可能と仮定する。
On the other hand, on the furnace wall side from the drop point,
Gaussian distribution function (normal distribution function) is shown in Equation 1.
It is assumed that the approximation can be made by a function of the sum of a linear function and a linear function.

【数1】 (Equation 1)

【0008】ここで、 A;堆積高さに関する係数 B;堆積位置に関する係数 C;堆積幅に関する係数 D;ベースの堆積形状の影響を補正する係数 E;堆積深さに関する係数 X;計算位置(原点は炉中心、炉壁方向を正)Here, A: a coefficient relating to the deposition height B; a coefficient relating to the deposition position C: a coefficient relating to the deposition width D: a coefficient for correcting the influence of the base deposition shape E: a coefficient relating to the deposition depth X: a calculation position (origin) Is the center of the furnace and the direction of the furnace wall is positive)

【0009】また、傾斜角分布は数1の1階微分の逆正
接すなわちarctan(PF’)で定義でき、数2の
ようになる。
Further, the inclination angle distribution can be defined by the arc tangent of the first derivative of equation (1), ie, arctan (PF '), as shown in equation (2).

【数2】 (Equation 2)

【0010】ここで、A,C,Dは主として堆積形状に
関する係数、Bは堆積位置に関与する係数であり、これ
らの未定係数は次の3つの境界条件を設定することによ
り求められる。 (1)PF(X)の炉内側の変曲点での傾きの逆正接は
安息角(θ R)に相当する。 (2)PF(X)の炉壁側の変曲点での傾きの逆正接は
炉壁側での最大傾斜(符号は負)、すなわち傾斜角の極
小値(θ m)に相当する。 (3)Xの無限遠方でのPF(X)の傾きは、一定値
(θ M U)になる。
Here, A, C, and D are mainly coefficients relating to the deposition shape, and B is a coefficient relating to the deposition position. These undetermined coefficients can be obtained by setting the following three boundary conditions. (1) The arc tangent of the inclination of the PF (X) at the inflection point inside the furnace corresponds to the angle of repose (θ R ). (2) The arc tangent of the inclination of the PF (X) at the inflection point on the furnace wall side corresponds to the maximum inclination (the sign is negative) on the furnace wall side, that is, the minimum value (θ m ) of the inclination angle. (3) the slope of PF (X) at infinity of X becomes a constant value (theta M U).

【0011】式の形に書き直せば次の様になる。 PF”(X)=0となるXで、θ(X)=θ R PF”(X)=0となるXで、θ(X)=θ m Xが正の無限大の時、θ(X)=θ M U Rewriting in the form of an equation gives the following. When X becomes PF "(X) = 0 and θ (X) = θ R PF" (X) = 0, and θ (X) = θ m X is positive infinity, θ (X ) = Θ M U

【0012】以上の境界条件からA,B,C,Dは次の
ように求まる。
From the above boundary conditions, A, B, C, and D are obtained as follows.

【数3】 または(Equation 3) Or

【数4】 (Equation 4)

【数5】 (Equation 5)

【数6】 (Equation 6)

【数7】 または(Equation 7) Or

【数8】 (Equation 8)

【0013】ここで X R;安息角から傾斜角が急激に低下する点(PF
(X)の変曲点) X m;傾斜角が極小になる点(PF(X)の変曲点) θ R;安息角(X Rでの傾斜角) θ m;傾斜角の極小値(X mでの傾斜角) θ M U;無限遠方での傾斜角 X R,X m,θ R,θ mは厳密には装入方法、装入物等
によって異なるものの、縮小模型実験、実炉測定で基本
的なデータを測定すれば求められ、従って、A,B,
C,Dが推定可能となる。表1に高炉でのA,C,Dの
測定例を示す。
X R ; a point at which the inclination angle sharply decreases from the angle of repose (PF)
(Inflection point of (X)) X m ; point at which the inclination angle becomes minimum (inflection point of PF (X)) θ R ; repose angle (inclination angle at X R ) θ m ; minimum value of the inclination angle ( Angle of inclination at X m ) θ M U ; Angle of inclination at infinity X R , X m , θ R , θ m Strictly depends on the charging method and the charged material, etc. It can be obtained by measuring the basic data in the measurement, so that A, B,
C and D can be estimated. Table 1 shows examples of A, C, and D measurements in a blast furnace.

【表1】 [Table 1]

【0014】θ R,θ M U,Cは装入装置、装入物が決
まればほぼ決まる定数で、一定値とみなせる。一方、θ
mは、θ Rと旋回シュートの傾動角の関数で、測定結果
から次の様に一次近似した(図3、図4)。 コークスについて、θ m=−1.5θ R+50 鉱石について、θ m=−1.5θ R+40
Θ R , θ M U , and C are constants which are substantially determined when the charging device and the charging object are determined, and can be regarded as constant values. On the other hand, θ
m is a function of θ R and the tilt angle of the turning chute, and was linearly approximated from the measurement results as follows (FIGS. 3 and 4). For coke, θ m = −1.5θ R +50 For ore, θ m = −1.5θ R +40

【0015】また、B、Eは各々堆積位置に関する係
数、堆積深さに関する係数であり、装入条件から決まる
係数である。本法では高炉の場合事前に縮小模型実験、
あるいは火入れ充填時、休風時等に基礎的なデータを測
定することにより、あらゆる装入条件での炉壁部の堆積
形状を高い精度で推定をすることが可能である。
B and E are coefficients relating to a deposition position and a coefficient relating to a deposition depth, respectively, and are coefficients determined by charging conditions. In this method, in the case of a blast furnace, a reduced model experiment was performed beforehand,
Alternatively, it is possible to estimate the deposition shape of the furnace wall portion under all charging conditions with high accuracy by measuring basic data at the time of burning and filling, at the time of a calm, and the like.

【0016】[0016]

【実施例】以下に本発明の実施例を示す。A高炉は従来
オールコークス操業であったが、微粉炭(以下PCと表
記)吹込み操業を行なう事となった。このため、装入時
の鉱石/コークス(以下O/Cと表記)が3.5から
4.2と大きく変化する。このため事前にPCの吹込み
量を増加していく過程での適正な装入物分布を本方法を
用いて推定し、特に炉壁近傍のO/Cに着目して装入物
分布を制御した。
Examples of the present invention will be described below. The blast furnace A was previously operated as an all-coke, but will be operated as a pulverized coal (hereinafter referred to as PC). For this reason, the ore / coke (hereinafter referred to as O / C) at the time of charging greatly changes from 3.5 to 4.2. For this reason, the appropriate charge distribution in the process of increasing the amount of PC blow-in is estimated in advance by using this method, and the charge distribution is controlled by paying particular attention to O / C near the furnace wall. did.

【0017】図5にプロフィルメーターによる実測結果
と、従来法、本発明方法による堆積形状推定結果を示
す。従来法であるA法では過去に実施済みの装入方法に
ついては推定精度は良いが、新たな装入方法に対しては
推定精度はかなり落ちる。特に炉壁のO/Cの微妙な変
化が必ずしも精度良く推定できなかった。また従来法の
B法はいかなる装入方法でも同程度の精度で推定可能で
はあるが推定精度自体があまり良くない。
FIG. 5 shows the result of actual measurement by a profile meter and the result of estimation of the deposited shape by the conventional method and the method of the present invention. In the conventional method A, the estimation accuracy is good for a charging method that has been performed in the past, but the estimation accuracy is considerably reduced for a new charging method. In particular, a subtle change in O / C of the furnace wall could not always be accurately estimated. Further, the conventional method B can estimate with almost the same accuracy by any charging method, but the estimation accuracy itself is not very good.

【0018】一方、本方法ではいかなる装入方法につい
てもかなり精度良く推定可能である。従って本方法によ
り堆積形状を推定しその結果に基づいて装入物分布制御
を行い、順調なPC吹込み操業が可能となった。
On the other hand, according to the present method, any charging method can be estimated with considerably high accuracy. Therefore, the shape of the pile was estimated by this method, the charge distribution was controlled based on the result, and the smooth PC injection operation became possible.

【0019】[0019]

【発明の効果】本発明は竪型炉の装入物堆積形状の推定
に当って、ガウス分布関数と1次関数との和の関数を用
いることによって、従来の実測値からの回帰式による方
法、直線近似による方法等に比して精度良く行うことが
できる。特に炉壁近傍での堆積形状推定の精度を要する
場合に有効であって、高炉等竪型炉の制御データとして
十分な信頼性を有する。
According to the present invention, a method based on a conventional regression equation from actually measured values is used in estimating the charge accumulation shape of a vertical furnace by using a function of the sum of a Gaussian distribution function and a linear function. It can be performed with higher precision than a method based on linear approximation. It is particularly effective when the accuracy of estimating the deposition shape near the furnace wall is required, and has sufficient reliability as control data of a vertical furnace such as a blast furnace.

【図面の簡単な説明】[Brief description of the drawings]

【図1】装入物の堆積過程の模式図FIG. 1 is a schematic view of a deposition process of a charge.

【図2】竪型炉内における装入物の堆積形状と傾斜角を
示すグラフ
FIG. 2 is a graph showing the deposition shape and inclination angle of a charge in a vertical furnace.

【図3】コークスでのθ mとθ Rの関係を示すグラフFIG. 3 is a graph showing the relationship between θ m and θ R in coke.

【図4】鉱石でのθ mとθ Rの関係を示すグラフFIG. 4 is a graph showing the relationship between θ m and θ R in ore.

【図5】プロフィールメーターの測定結果と従来の推定
法及び本発明による推定法とを比較した図
FIG. 5 is a diagram comparing a measurement result of a profile meter with a conventional estimation method and an estimation method according to the present invention.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 炉頂部ホッパーからの落下点より炉壁寄
りの部分の装入物堆積形状を推定するさい、堆積形状と
して下記(1)式のガウス分布関数と1次関数との和の
関数を仮定し、装入装置、装入物によってあらかじめ実
測したデータにもとづき、前記ガウス分布関数と1次関
数との和の関数の各係数を定めることにより、堆積形状
を求めることを特徴とする竪型炉における装入物堆積形
状の推定方法。 PF(X)=A・exp [−{(X−B)/C} 2 ]+D・X+E ・・・・・(1) ここで、 A;堆積高さに関する係数 B;堆積位置に関する係数 C;堆積幅に関する係数 D;ベースの堆積形状の影響を補正する係数 E;堆積深さに関する係数 X;計算位置(原点は炉中心、炉壁方向を正)
When estimating a charge accumulation shape near a furnace wall from a falling point from a furnace top hopper, a function of a sum of a Gaussian distribution function and a linear function of the following equation (1) is used as the accumulation shape. And determining the deposition shape by determining each coefficient of a function of the sum of the Gaussian distribution function and the linear function based on data measured in advance by the charging apparatus and the charged object. For estimating the shape of the charge accumulation in a mold furnace. PF (X) = A · exp [− {(X−B) / C} 2 ] + D · X + E (1) where: A; coefficient B relating to the deposition height ; coefficient C relating to the deposition position ; Coefficient D relating to the deposition width ; Coefficient E for correcting the influence of the base deposition shape ; Coefficient X relating to the deposition depth ; Calculation position (origin is the furnace center, furnace wall direction is positive)
JP15087891A 1991-05-28 1991-05-28 Estimation method of charge accumulation shape in vertical furnace Expired - Lifetime JP2971183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15087891A JP2971183B2 (en) 1991-05-28 1991-05-28 Estimation method of charge accumulation shape in vertical furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15087891A JP2971183B2 (en) 1991-05-28 1991-05-28 Estimation method of charge accumulation shape in vertical furnace

Publications (2)

Publication Number Publication Date
JPH0694367A JPH0694367A (en) 1994-04-05
JP2971183B2 true JP2971183B2 (en) 1999-11-02

Family

ID=15506358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15087891A Expired - Lifetime JP2971183B2 (en) 1991-05-28 1991-05-28 Estimation method of charge accumulation shape in vertical furnace

Country Status (1)

Country Link
JP (1) JP2971183B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3524790B2 (en) 1998-09-30 2004-05-10 株式会社神戸製鋼所 Coating steel excellent in coating film durability and method for producing the same
JP4675523B2 (en) * 2001-09-05 2011-04-27 日新製鋼株式会社 Method for calculating the terrace length of the raw material deposition layer at the top of the blast furnace furnace
JP7077842B2 (en) * 2018-07-24 2022-05-31 日本製鉄株式会社 Blast furnace charge distribution prediction method, program and computer storage medium

Also Published As

Publication number Publication date
JPH0694367A (en) 1994-04-05

Similar Documents

Publication Publication Date Title
JP2971183B2 (en) Estimation method of charge accumulation shape in vertical furnace
JP2720653B2 (en) Sinter production method
JPH0424404B2 (en)
JP3514120B2 (en) Distribution control method of blast furnace top charge
JPH09287008A (en) Method for estimating distribution of layer thickness of charged material, in blast furnace
WO2024043062A1 (en) Material discharge control device and material charging device
JP4675523B2 (en) Method for calculating the terrace length of the raw material deposition layer at the top of the blast furnace furnace
JP6897751B2 (en) Blast furnace operation method
KR102305734B1 (en) Apparatus and method for controlling charging amount of sintering material
JPH079006B2 (en) Blast furnace bellless charging equipment control method
JPH0587464A (en) Controlling method for sintering completion point in sintering machine
JPH05186811A (en) Method for operating blast furnace
KR960000056B1 (en) Making method of sintering ore
KR100376524B1 (en) Method for predicting shape of dead man in shaft type reduction furnace
JPH0913108A (en) Operation of blast furnace
JPS5862570A (en) Detection of falling speed distribution for charge in blast furnace
JP2703682B2 (en) Calculation method of raw material behavior torque on distribution chute in bellless blast furnace
JPS6038446B2 (en) Method for detecting burden deposition distribution in blast furnace
KR19980049288A (en) Estimation method of blast furnace loading drop
JPS619507A (en) Method for measuring position of charging of starting material into bell-less blast furnace
JP2023057594A (en) Blast furnace operation method, charging method control device, and charging method control program
SU1659102A1 (en) Method for rapid determination of throughput capacity of spiral classifier on sands
JPS63753Y2 (en)
JPS63186813A (en) Method for operating blast furnace
JPS6230805A (en) Instrument for measuring layer thickness of charge in shaft furnace

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990817