JPS619507A - Method for measuring position of charging of starting material into bell-less blast furnace - Google Patents

Method for measuring position of charging of starting material into bell-less blast furnace

Info

Publication number
JPS619507A
JPS619507A JP13016484A JP13016484A JPS619507A JP S619507 A JPS619507 A JP S619507A JP 13016484 A JP13016484 A JP 13016484A JP 13016484 A JP13016484 A JP 13016484A JP S619507 A JPS619507 A JP S619507A
Authority
JP
Japan
Prior art keywords
charging
blast furnace
furnace
raw material
vibrations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13016484A
Other languages
Japanese (ja)
Other versions
JPH0623407B2 (en
Inventor
Mamoru Inaba
稲葉 護
Takashi Kobayashi
隆 小林
Yoshihisa Nagashima
長島 義久
Reizo Uchi
内 麗造
Akira Maki
牧 章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP13016484A priority Critical patent/JPH0623407B2/en
Publication of JPS619507A publication Critical patent/JPS619507A/en
Publication of JPH0623407B2 publication Critical patent/JPH0623407B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/008Composition or distribution of the charge

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To attain uniform charge and to stabilize the conditions of a blast furnace by measuring the vibrations of plural probes placed at the throat of the furnace so as to detect the positions at which the charging of starting materials is started and finished and to measure the charging time. CONSTITUTION:Plural probes 12, 13 are placed at the throat of a bell-less blast furnace 6, and vibrations generated by the collision of starting materials charged into the furnace 6 through a chute 7 with the probes 12, 13 are measured by means of vibration pickups 10 and a vibrometer 11. By the vibrations, the positions at which the charging of the starting materials is started and finished are accurately detected, and the charging time is accurately measured. By the data, uniform charge is attained, and the conditions of the furnace are stabilized.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、高炉特にベルレス高炉の原料投入・完了位置
ならびに投入時間を計測する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for measuring the material charging/completion position and charging time of a blast furnace, particularly a bellless blast furnace.

〔従来技術〕[Prior art]

一般に高炉々頂装入装置としては、2ベルのマツキー(
Makes)式が生に用いられていたが、高炉頂圧化に
ともない、5またけ4ペル、あるいは2ベル1バルブシ
ールの2均圧型が一般化しつ\あシ、また最近において
は、炉内装入物分布制御性の向上と設備費の削減を狙っ
たベルレス式が出現し採用されはじめている。
Generally speaking, a 2-bell Matsuki (
Makes) formula was used for raw materials, but as the pressure at the top of the blast furnace increased, the 2-equalization type with 5 spans and 4 pels or 2 bells and 1 valve seal became popular. Bell-less systems have appeared and are beginning to be adopted, with the aim of improving content distribution control and reducing equipment costs.

ペルレス式高炉々頂装入設備は、2段に設けられたシー
ル弁でガスシールし、炉内に設けられた旋回シュートを
連続旋回して分配装入するもので、旋回シュートの傾斜
角度を変えることによシ炉の半径方向の分布を制御しう
る特徴をもち、全体的にコンパクトであシ、高さを相対
的に低くしうるので2ベル1バルブシ一ル式などに比較
して設備費の面からも有利といわれている。
Pelless blast furnace top charging equipment seals the gas with two-stage seal valves and distributes charging by continuously rotating a rotating chute installed in the furnace, changing the angle of inclination of the rotating chute. In particular, it has the characteristic of being able to control the distribution in the radial direction of the furnace, is compact overall, and has a relatively low height, resulting in lower equipment costs compared to a 2-bell, 1-valve seal type. It is said to be advantageous in terms of

上述のペルレス式高炉々頂装入装置の装入部を一例とし
て第5図に示す。
An example of the charging section of the above-mentioned pelletless blast furnace top charging device is shown in FIG.

第5図において、鉱石用ホッパー1、コークス用ホッパ
ー2には、各々鉱石3、コークス4が入っておル、流量
調節ゲート5が開くと、高炉6内にジューターフを介し
て原料が装入される。シュ−ターフは、らせん状に回転
し、装入物表面8を所定の分布状態に形成させる。
In FIG. 5, the ore hopper 1 and the coke hopper 2 contain ore 3 and coke 4, respectively. When the flow rate adjustment gate 5 opens, the raw materials are charged into the blast furnace 6 via the ju-turf. Ru. The shoe turf rotates in a helical manner and forms the charge surface 8 in a predetermined distribution.

この時シュータ−旋回中に鉱石又はコーク−不が無くな
ると、それよル先では、原料が無くなるため、装入物分
布は円周方向で不均一となシ炉況不調の原因となる。こ
のため装入物の装入開始完了位置を検出して、次回の装
入物を前回の゛嫁入完了位置よシ開始するとともに、流
量調節ゲート5を制御し、完了位置を一定化させる必要
がある。
At this time, if the ore or coke waste runs out while the shooter is rotating, there will be no raw material beyond that point, which will cause the charge distribution to be uneven in the circumferential direction, causing poor furnace conditions. Therefore, it is necessary to detect the charging start completion position of the charge, start the next charge from the previous charge completion position, and control the flow rate adjustment gate 5 to keep the completion position constant. There is.

従来、これを計測するために、第6図に示す如く、荷重
計9を設置し、荷重の減シ方から、装入完了を検出する
方法が考えられている。然し表から、この荷重減量検出
方法においては、秤量機の精度に問題がある。
Conventionally, in order to measure this, a method has been considered in which a load meter 9 is installed as shown in FIG. 6, and the completion of charging is detected from the way the load is reduced. However, from the table, this method of detecting load loss has a problem with the accuracy of the weighing machine.

即ち装入完了の時点では、ホッパー1t・2け空になっ
ており、微少な荷重の測定は精度的に保証されず、装入
完了の検出が困難である。
That is, at the time of completion of charging, the hopper is 1 ton.2 empty, and measurement of minute loads cannot be accurately guaranteed, making it difficult to detect completion of charging.

また、ホッパー1,2の下部に、振動ピックアップ10
ν振動計11を設け、原料投入時に生ずる振動から、原
料投入開始(完了)時刻を測定し、その時刻のシュート
位置から原料投入開始(完了)位置を計測する方法も考
えられている。従しこの方法では、投入開始(完了)時
刻は測定できるものの、その位置は正確に測定できない
という欠点を有する。
In addition, a vibration pickup 10 is installed at the bottom of the hoppers 1 and 2.
A method has also been considered in which a ν vibration meter 11 is provided to measure the starting (completion) time of feeding the raw material from the vibrations generated when feeding the raw material, and the starting (completion) position of feeding the raw material is measured from the chute position at that time. However, this method has the disadvantage that although it is possible to measure the starting (completion) time of feeding, the position cannot be accurately measured.

第7図に示すように、原料がホツノく一下部を通過して
から、炉内装入物表面8に達するまでの時間Tは次の(
1)式で与えられる。
As shown in Fig. 7, the time T from when the raw material passes through the lower part until it reaches the surface 8 of the contents in the furnace is as follows (
1) Given by Eq.

LI   IJ T  =  Tt  +  Tt  = −十−・・・
・・・・・・・・・ (1)11    レス 但し T1:  シュート円移動時間 T鵞:空間での移動時間 vl:  シュート内落下速度 V宜: 空間での落下速度 Ll:  シュート内移動距離 Ll: 空間での移動距離 従って第8図に示すように、炉内装入物表面8までの落
下位置θSは、原料がホラl<−下部を通過した時の位
置を00.シュートの回転方向速度をθ、原料がシュー
タ7よシ放出した後の慣性による回転方向速度をθeと
すれば θ8;θ・Tl+θe−T雪十θO =θ・沙十〇、Lン+00  ・・・・・・・・・・・
・(2)11       v雪 上記(2)式において、111@tJ2.θeは原料の
粒度、かさ密度などに依存する。これらの原料の性状は
短期に変動するため、この方法では、投入開始(完了)
位置θΔは測定できても、原料の′装入物表面上での投
入開始(完了)位置は求めることができない。
LI IJ T = Tt + Tt = -10-...
・・・・・・・・・ (1) 11 Answer T1: Time of chute circle movement T: Time of movement in space vl: Falling speed in the chute Vy: Falling speed in space Ll: Moving distance in the chute Ll : Distance of movement in space Therefore, as shown in FIG. 8, the falling position θS to the surface 8 of the contents in the furnace is the position when the raw material passes through the bottom of the hole l<-00. If the speed in the rotational direction of the chute is θ, and the speed in the rotational direction due to inertia after the raw material is discharged from the chute 7 is θe, then θ8; θ・Tl+θe−T Snow 1 θO = θ・Sa 10, Ln+00 ・・・・・・・・・・・
・(2) 11 v snow In the above equation (2), 111@tJ2. θe depends on the particle size, bulk density, etc. of the raw material. Since the properties of these raw materials change over a short period of time, this method requires
Even if the position θΔ can be measured, the position at which charging of the raw material starts (completes) on the surface of the charge cannot be determined.

以上の如く、従来のペルレス高炉々頂装入方法は、鉱石
・コークスの投入完了位置即ち荷切れ位置が、原料の粒
度変動によりばらつき、装入物分布の円周バランスが崩
れることが主原因となシ、炉況不調を起す等種々問題が
あシ、この改善が要望されていた。
As mentioned above, in the conventional pelletless blast furnace top charging method, the main cause is that the position at which ore/coke completes charging, that is, the unloading position, varies due to fluctuations in the particle size of the raw materials, which disrupts the circumferential balance of the burden distribution. However, there were various problems such as furnace malfunction, and improvements were desired.

〔発明の概要〕[Summary of the invention]

本発明は、前述の従来技術における問題点解決のために
なされたものであシ、ベルレス高炉における原料の投入
開始・完了位置及び投入時間を精度良く測定し、装入の
均一化を図シ、もって炉況の安定に資することを目的と
する。
The present invention has been made in order to solve the problems in the prior art described above, and it is possible to accurately measure the starting/completion position and charging time of raw materials in a bellless blast furnace, and to improve the uniformity of charging. The purpose is to contribute to stabilizing the furnace condition.

本発明は、上述の目的を達成するために、ベルレス高炉
において、該高炉の炉口部に複数のゾンデ(探触子)を
設け、原料投入時にゾンデが受ける振動を測定すること
により、原料の投入開始及び完了位置を検知し、更にゾ
ンデの振動時刻を計測することにより、原料投入時間を
測定することを要旨とするベルレス高炉原料投入位置計
測方法である。
In order to achieve the above-mentioned object, the present invention provides a bellless blast furnace with a plurality of probes at the mouth of the blast furnace, and measures the vibrations that the sondes receive when the raw material is introduced. This is a bellless blast furnace raw material charging position measuring method that measures the raw material charging time by detecting the charging start and completion positions and further measuring the vibration time of the sonde.

〔発明の実施例〕[Embodiments of the invention]

次に本発明方法を実施態様例にある図に基づいて説明す
る。
Next, the method of the present invention will be explained based on the drawings of embodiment examples.

第1図は、本発明におけるペルレス高炉々頂装入装置の
装入部の断面模式図、第2図は同じく平面模式図である
FIG. 1 is a schematic cross-sectional view of a charging section of a pellet-less blast furnace top charging apparatus according to the present invention, and FIG. 2 is a schematic plan view thereof.

第1図及び第2図において、12は炉口部の炉壁よル突
きだしたゾンデ(探触子)であシ、図示する如く円周方
向に12a+ 12bt 12c+ 12cL 12e
In Figures 1 and 2, 12 is a probe protruding from the furnace wall at the furnace mouth, and as shown in the figure, 12a + 12bt 12c + 12cL 12e
.

12fの複数ゾンデを設ける。16け炉口部にさし渡し
たゾンデであシ、14は測定データ処理装置である。
A plurality of 12f sondes will be installed. 16 is a sonde extending through the furnace mouth, and 14 is a measurement data processing device.

次に本発明方法について述べる。Next, the method of the present invention will be described.

ホッパー1及び2の鉱石6、コークス4等の原料は、ジ
ューターフを介して高炉6内に装入されるが、その際、
原料がゾンデ12及び13に衝突して、振動が発生する
。そこでゾンデ1′、2及び13に接続され、炉壁に設
けられた振動ピックアップ10、振動計11によシ、そ
の振動を計測すれば、その位置に原料が投入されたかど
うかが判定できる。
Raw materials such as ore 6 and coke 4 in hoppers 1 and 2 are charged into the blast furnace 6 via a juturf, but at that time,
The raw material collides with the sondes 12 and 13, causing vibrations. If the vibrations are measured by a vibration pickup 10 and a vibration meter 11 connected to the sondes 1', 2, and 13 and provided on the furnace wall, it can be determined whether or not the raw material has been introduced at that position.

ジューターフを回転し、流量調節ゲート5を開いた後の
最初に振動を受けたゾンデ1?の場所が、装入開始位置
であシ、最後に振動を受けたゾンデ12の場所が装入完
了位置である。
Sonde 1 that first received vibration after rotating the Jew Turf and opening the flow control gate 5? The location is the charging start position, and the location where the sonde 12 last received vibration is the charging completion position.

次にゾンデ12は、炉口部の炉壁よシ中心に突き出し型
、もしくはさし渡し型ゾンデ16の型状を取る。またゾ
ンデ12の円周方向での設置点数が、位置測定の分解能
を決めるが、一般に円周方向6〜8点の設置で十分であ
る。
Next, the sonde 12 takes the shape of a sonde 16 that protrudes from the center of the furnace wall at the furnace mouth or extends across the furnace wall. Further, the number of points installed in the circumferential direction of the sonde 12 determines the resolution of position measurement, and generally, installation of 6 to 8 points in the circumferential direction is sufficient.

また振動ピックアップ10け各ゾンデ12a−f毎に設
置し、各点の振動を振動計11にて測定し、その測定結
果は、測定データ処理装置14に入力され、最初と最後
に振動を受けたゾンデ12を判定し、各々装入開始・完
了位置とする。またその間の原料装入時間をも併せ計測
する。
In addition, 10 vibration pickups were installed for each sonde 12a-f, and vibrations at each point were measured using a vibration meter 11.The measurement results were input to the measurement data processing device 14, and the vibrations were measured at the beginning and end. The sondes 12 are determined and placed at charging start and completion positions, respectively. In addition, the raw material charging time during that time is also measured.

第5図に、原料衝突時のゾンデに加わる振動し)2の測
定結果を示す。図に示される如くゾンデに加わる振動は
原料衝突時とその他で百倍以上の差が確保され、検出は
十分可能である。
FIG. 5 shows the measurement results of vibration applied to the sonde during material collision (2). As shown in the figure, there is a difference of more than 100 times in the vibrations applied to the sonde between material collisions and other times, making detection possible.

また第4図忙、第2図において、ゾンデ12d。Also, in Figure 4 and Figure 2, sonde 12d.

12cν12a、12fの4点を設けた場合における振
動を計測した時系列の結果を示す。
The time series results of measuring vibrations when four points 12cν12a and 12f are provided are shown.

装入開始位置がゾンデ12dと12fの間、完了位置は
ゾンデ12aと12fの間にあり、投入時間がtである
ことが示されている。本例では位置分解能は円周の猛で
あるが、設置点数を増せば、位置分解能は更に向上する
It is shown that the charging start position is between the sondes 12d and 12f, the charging completion position is between the sondes 12a and 12f, and the charging time is t. In this example, the positional resolution is very high around the circumference, but if the number of installed points is increased, the positional resolution will be further improved.

本発明を利用して装入開始位置を前回の完了位置から開
始し、また流量調節ゲート5を制御して完了位置を一定
化することによう、装入物8の円周分布の均一化が図ら
れ、炉況安定に著しく寄与することが可能となった。
By using the present invention, the charging start position is started from the previous completed position, and the flow rate adjustment gate 5 is controlled to make the completed position constant, thereby making the circumferential distribution of the charged material 8 uniform. As a result, it has become possible to make a significant contribution to stabilizing reactor conditions.

〔発明の効果〕〔Effect of the invention〕

本発明のベルレス高炉原料投入位置計測方法は、従来の
原料の粒度変動によるばらつき、装入物分布の円周方向
の不均一化を解決し、ベルレス高炉の炉況安定に資する
ものである。
The method for measuring the raw material input position in a bellless blast furnace of the present invention solves the conventional problems caused by fluctuations in the particle size of raw materials and non-uniformity of charge distribution in the circumferential direction, and contributes to stabilizing the furnace condition of a bellless blast furnace.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明におけるペルレス高炉々頂装入装置の
装入部の断面模式図、第2図は同じく平面模式図、第3
図は実施例の振動測定図、第4図は、同じく複数ゾンデ
の振動測定図、第5図は従来のベルレス高炉製入部模式
図、第6図は、従来における装入完了を検出する荷重減
量検出方法の説明図、第7図及び第8図は、装入完了時
間を求めるための説明図である。 なお各図中同一符号は、同一または相当部分を示すもの
とする。 1・・・鉱石用ホッパー 、2−・・コークス用ホッパ
ー、5・・・流量調節ゲート、6・・・高炉、7・・・
シュータ−18・・・装入物表面、10・・・振動ピッ
クアップ、11・・・振動計、12・・・突き出し型ゾ
ンデ、13・・・さし渡し型ゾンデ、14・・・データ
処理装置。 代理人 弁理士 木 村 三 朗 第1図 第2図 第3図 涼!4制党哨 第4図 顎 第5図 第6図      □73 第8図 毛
FIG. 1 is a schematic cross-sectional view of the charging section of the pelletless blast furnace top charging device according to the present invention, FIG. 2 is a schematic plan view, and FIG.
Figure 4 is a vibration measurement diagram of the example, Figure 4 is a vibration measurement diagram of multiple sondes, Figure 5 is a schematic diagram of the conventional bellless blast furnace charging section, and Figure 6 is the conventional load reduction to detect charging completion. The explanatory diagrams of the detection method, FIGS. 7 and 8, are explanatory diagrams for determining the charging completion time. Note that the same reference numerals in each figure indicate the same or corresponding parts. 1... Ore hopper, 2-... Coke hopper, 5... Flow rate adjustment gate, 6... Blast furnace, 7...
Shooter 18... Charge surface, 10... Vibration pickup, 11... Vibration meter, 12... Protruding type sonde, 13... Across type sonde, 14... Data processing device . Agent Patent Attorney Sanro Kimura Figure 1 Figure 2 Figure 3 Ryo! 4 System Party Post Figure 4 Chin Figure 5 Figure 6 □73 Figure 8 Mao

Claims (2)

【特許請求の範囲】[Claims] (1)ベルレス高炉において、該高炉の炉口部に複数の
ゾンデを設け、該ゾンデの振動を測定することにより、
原料の投入開始及び完了位置を検知することを特徴とす
る、ベルレス高炉原料投入位置計測方法。
(1) In a bellless blast furnace, by installing a plurality of sondes at the mouth of the blast furnace and measuring the vibrations of the sondes,
A bellless blast furnace raw material input position measuring method characterized by detecting the raw material input start and completion positions.
(2)前記ゾンデの振動時刻を計測することにより、原
料投入時間を測定することを特徴とする特許請求の範囲
第1項記載のベルレス高炉原料投入位置計測方法。
(2) The bellless blast furnace raw material charging position measuring method according to claim 1, characterized in that the raw material charging time is measured by measuring the vibration time of the sonde.
JP13016484A 1984-06-26 1984-06-26 Bellless Blast Furnace Raw Material Input Position Measurement Method Expired - Lifetime JPH0623407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13016484A JPH0623407B2 (en) 1984-06-26 1984-06-26 Bellless Blast Furnace Raw Material Input Position Measurement Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13016484A JPH0623407B2 (en) 1984-06-26 1984-06-26 Bellless Blast Furnace Raw Material Input Position Measurement Method

Publications (2)

Publication Number Publication Date
JPS619507A true JPS619507A (en) 1986-01-17
JPH0623407B2 JPH0623407B2 (en) 1994-03-30

Family

ID=15027537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13016484A Expired - Lifetime JPH0623407B2 (en) 1984-06-26 1984-06-26 Bellless Blast Furnace Raw Material Input Position Measurement Method

Country Status (1)

Country Link
JP (1) JPH0623407B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001021841A1 (en) * 1999-09-17 2001-03-29 Centre De Recherches Metallurgiques Method for determining the trajectory of materials when charging a shaft kiln

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001021841A1 (en) * 1999-09-17 2001-03-29 Centre De Recherches Metallurgiques Method for determining the trajectory of materials when charging a shaft kiln
BE1012905A3 (en) * 1999-09-17 2001-05-08 Centre Rech Metallurgique Method for determining the path of materials when loading a shaft furnace.

Also Published As

Publication number Publication date
JPH0623407B2 (en) 1994-03-30

Similar Documents

Publication Publication Date Title
JPS619507A (en) Method for measuring position of charging of starting material into bell-less blast furnace
JPS59145715A (en) Controlling method of raw material control gate
US5971286A (en) Method for the determination of the gas flux distribution in a blast furnace
JPH0913110A (en) Method for evaluating ventilation of charged material layer in vertical type furnace
JP3739018B2 (en) Raw material charging control method for blast furnace
JPS63753Y2 (en)
JPH079006B2 (en) Blast furnace bellless charging equipment control method
JP2971183B2 (en) Estimation method of charge accumulation shape in vertical furnace
JPH05195028A (en) Device for controlling charging material distribution
TWI820841B (en) Inspection method of material in top bin of blast furnace
JPS58123808A (en) Charging method of raw material into blast furnace
JPH0377843B2 (en)
CA2383538A1 (en) Method for determining the trajectory of materials when charging a shaft kiln
JP2725318B2 (en) Blast furnace raw material charging method
RU2022025C1 (en) Method of charging blast furnace
JPH0873908A (en) Apparatus for controlling grain size of charging material in bell-less blast furnace
JPH01208692A (en) Material grain size detecting device for vertical furnace
RU2015169C1 (en) Method of controlling distribution of stocks along mouth periphery in blast furnace
JPS6028669Y2 (en) Blast furnace raw material supply control device
CN118207367A (en) Blast furnace top material distribution method
SU1423595A1 (en) Method of charging blast furnace
JPH0978111A (en) Operation of blast furnace
JPH0598324A (en) Method for counting charging time of raw material in bell-less blast furnace charging device
JPS5938424Y2 (en) Material charging equipment for bellless blast furnace
JPS5832207B2 (en) Charge deposition layer thickness detection sonde