JP2962081B2 - Method for producing reinforcing fiber for resin-based composite material - Google Patents

Method for producing reinforcing fiber for resin-based composite material

Info

Publication number
JP2962081B2
JP2962081B2 JP334393A JP334393A JP2962081B2 JP 2962081 B2 JP2962081 B2 JP 2962081B2 JP 334393 A JP334393 A JP 334393A JP 334393 A JP334393 A JP 334393A JP 2962081 B2 JP2962081 B2 JP 2962081B2
Authority
JP
Japan
Prior art keywords
fiber
resin
composite material
based composite
reinforcing fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP334393A
Other languages
Japanese (ja)
Other versions
JPH06207375A (en
Inventor
広幸 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP334393A priority Critical patent/JP2962081B2/en
Publication of JPH06207375A publication Critical patent/JPH06207375A/en
Application granted granted Critical
Publication of JP2962081B2 publication Critical patent/JP2962081B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、繊維強化プラスチック
(FRP,FRTP)などの樹脂基複合材料に用いられ
る強化繊維の製造方法に関する。本発明の製造方法によ
り得られる強化繊維によれば、マトリックス樹脂との結
合力が向上する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a reinforcing fiber used for a resin-based composite material such as fiber reinforced plastic (FRP, FRTP) . According to the production method of the present invention,
According to the obtained reinforcing fibers, bonding with the matrix resin
The resultant force improves.

【0002】[0002]

【従来の技術】樹脂基複合材料には、従来よりガラス繊
維、セラミックス繊維、カーボン繊維、ボロン繊維、芳
香族ポリアミド繊維などの強化繊維が用いられている。
ところが、このうちガラス繊維、セラミックス繊維など
の無機繊維は、有機物であるマトリックス樹脂との接着
力が弱く、得られるFRP成形体の強度が充分でないと
いう問題がある。
2. Description of the Related Art Conventionally, reinforcing fibers such as glass fibers, ceramic fibers, carbon fibers, boron fibers, and aromatic polyamide fibers have been used as resin-based composite materials.
However, among these, inorganic fibers such as glass fibers and ceramic fibers have a problem that adhesion to a matrix resin, which is an organic substance, is weak, and the strength of an obtained FRP molded product is not sufficient.

【0003】そこで従来より、カップリング剤で化学的
に処理された無機繊維を用いることが行われている。周
知のように、カップリング剤は一端に加水分解しやすい
基をもち、他端に樹脂と反応しやすい官能基を有する構
造になっている。そしてカップリング剤が無機繊維とマ
トリックス樹脂の間に介在して、接着性を向上させてい
る。
[0003] Therefore, conventionally, inorganic fibers chemically treated with a coupling agent have been used. As is well known, the coupling agent has a structure that has a group that is easily hydrolyzed at one end and a functional group that easily reacts with the resin at the other end. And the coupling agent is interposed between the inorganic fiber and the matrix resin to improve the adhesiveness.

【0004】ただ、カップリング剤での処理により接着
性が向上する理由は、化学的な反応によるのか物理的な
ものによるのかまだ不明な部分が多く、種々の説がある
のが現状である。
However, there are still many unknown reasons why the treatment with a coupling agent improves the adhesiveness due to a chemical reaction or a physical one, and there are various theories at present.

【0005】[0005]

【発明が解決しようとする課題】ところがカップリング
剤で処理された無機繊維であっても、FRPに用いた場
合に強化繊維の配向方向以外の方向に荷重が作用した場
合には、比較的容易に破壊が生じるという不具合があ
る。これは強化繊維とマトリックス樹脂との結合力が弱
いことに起因すると考えられ、結合強度の一層の向上が
望まれている。
However, even when inorganic fibers are treated with a coupling agent, they are relatively easy to use when a load acts in a direction other than the orientation direction of the reinforcing fibers when used for FRP. There is a defect that destruction occurs. This is considered to be due to the weak bonding force between the reinforcing fiber and the matrix resin, and further improvement in the bonding strength is desired.

【0006】本発明はこのような事情に鑑みてなされた
ものであり、強化繊維自体の改良により、強化繊維とマ
トリックス樹脂の結合強度を一層向上させることを目的
とする。
The present invention has been made in view of such circumstances, and an object of the present invention is to further improve the bonding strength between a reinforcing fiber and a matrix resin by improving the reinforcing fiber itself.

【0007】[0007]

【課題を解決するための手段】上記課題を解決する請求
項1に記載の樹脂基複合材料用強化繊維の製造方法は、
カーボン繊維、カーボン粉末及び金属粉末から選ばれる
少なくとも一種よりなる発熱媒体とガラスビーズを素繊
維に付着させ、次いでマイクロ波を照射して発熱媒体を
発熱させることでガラスビーズを素繊維の表面に溶着す
ことを特徴とする。また請求項2に記載の樹脂基複合
材料用強化繊維の製造方法は、カーボン素繊維にガラス
ビーズを付着させ、次いでマイクロ波を照射してカーボ
ン素繊維を発熱させることでガラスビーズをカーボン素
繊維の表面に溶着することを特徴とする。さらに請求項
3に記載の樹脂基複合材料用強化繊維の製造方法は、カ
ーボン繊維、カーボン粉末及び金属粉末から選ばれる少
なくとも一種よりなる発熱媒体と水ガラスを混合して素
繊維に付着させ、次いでマイクロ波を照射して発熱媒体
を発熱させることで水ガラスを発泡させて素繊維の表面
に凹凸を形成することを特徴とする。
Means for Solving the Problems Claims for solving the above problems
Item 1. The method for producing a reinforcing fiber for a resin-based composite material according to item 1 ,
Selected from carbon fiber, carbon powder and metal powder
At least one type of heating medium and glass beads
Attached to the fiber, and then irradiated with microwaves to remove the heating medium
Weld the glass beads to the surface of the fiber by heating
Characterized in that that. The resin-based composite according to claim 2.
The method for producing reinforcing fibers for materials uses carbon fiber and glass
The beads are attached and then irradiated with microwaves to
The glass beads are converted to carbon
It is characterized by welding to the surface of the fiber. Further claims
The method for producing a reinforcing fiber for a resin-based composite material according to item 3
Carbon fiber and metal powder.
At least one kind of heating medium and water glass are mixed
Attach to the fiber, then irradiate microwaves to generate heat
The water glass is foamed by generating heat and the surface of the fiber
The method is characterized by forming irregularities on the surface.

【0008】[0008]

【作用】本発明の製造方法により得られる樹脂基複合材
料用強化繊維は、素繊維表面にガラス質の凸部をもつ。
したがって樹脂基複合材料に用いた場合には、投錨効果
により素繊維とマトリックス樹脂との接合力が向上し、
複合材料の機械的強度が向上する。
The reinforcing fiber for a resin-based composite material obtained by the production method of the present invention has a vitreous projection on the surface of the elementary fiber.
Therefore, when used in a resin-based composite material, the anchoring effect improves the bonding strength between the elementary fiber and the matrix resin,
The mechanical strength of the composite material is improved.

【0009】[0009]

【実施例】以下、実施例により具体的に説明する。 (実施例1)図1に本発明の一実施例の樹脂基複合材料
用強化繊維を示す。この強化繊維は、ガラス繊維からな
る素繊維1と、素繊維1表面に形成されたガラス質の複
数の凸部2とから構成されている。以下、この強化繊維
を製造した方法を説明し、その構成の詳細な説明に代え
る。
The present invention will be specifically described below with reference to examples. (Example 1) FIG. 1 shows a reinforcing fiber for a resin-based composite material according to one example of the present invention. The reinforcing fiber is composed of a fiber 1 made of glass fiber and a plurality of vitreous convex portions 2 formed on the surface of the fiber 1. Hereinafter, a method for producing the reinforcing fiber will be described, and the detailed description of the configuration will be replaced.

【0010】ガラス素繊維1にカップリング剤及びバイ
ンダーを塗布する工程において、カップリング剤とバイ
ンダーの混練物中に平均粒径10μmのガラスビーズを
体積%で30〜50%混合し、それを素繊維1に塗布し
た。次いで1400〜1500℃に加熱することによ
り、ガラスビーズを素繊維1表面に溶着させて凸部2を
形成した。 (実施例2)図2に第2の実施例の樹脂基複合材料用強
化繊維を示す。この強化繊維は、ガラス繊維からなる素
繊維1と、素繊維1表面に形成されたガラス質の複数の
凸部2と、凸部2とともに素繊維1表面に接合されたカ
ーボン短繊維3と、から構成されている。以下、この強
化繊維を製造した方法を説明し、その構成の詳細な説明
に代える。
In the step of applying a coupling agent and a binder to the glass fiber 1, glass beads having an average particle diameter of 10 μm are mixed in a kneaded mixture of the coupling agent and the binder in an amount of 30 to 50% by volume to obtain a raw material. Coated on fiber 1. Next, by heating to 1400 to 1500 ° C., the glass beads were welded to the surface of the elementary fiber 1 to form the convex portion 2. Embodiment 2 FIG. 2 shows a reinforcing fiber for a resin-based composite material according to a second embodiment. The reinforcing fibers include a fiber 1 made of glass fiber, a plurality of vitreous protrusions 2 formed on the surface of the fiber 1, short carbon fibers 3 bonded to the surface of the fiber 1 together with the protrusions 2, It is composed of Hereinafter, a method for producing the reinforcing fiber will be described, and the detailed description of the configuration will be replaced.

【0011】実施例1と同様にガラス素繊維1にカップ
リング剤及びバインダーを塗布する工程において、カッ
プリング剤とバインダーの混練物中に平均粒径10μm
のガラスビーズと、カーボン短繊維3とを体積比で1対
1、全体量で30〜50体積%混合し、それを素繊維1
に塗布した。そしてマイクロ波を5〜10分間照射する
と、カーボン短繊維3の発熱によりガラスビーズ及び素
繊維1が局部的に溶融して溶着され、凸部2が形成され
た。
In the step of applying the coupling agent and the binder to the glass fiber 1 in the same manner as in Example 1, the kneaded mixture of the coupling agent and the binder contains an average particle size of 10 μm.
Glass beads and short carbon fibers 3 are mixed in a volume ratio of 1: 1 and a total amount of 30 to 50% by volume,
Was applied. Then, when the microwaves were irradiated for 5 to 10 minutes, the heat generation of the short carbon fibers 3 locally melted and fused the glass beads and the elementary fibers 1 to form the convex portions 2.

【0012】なお本実施例ではカーボン短繊維を発熱媒
体として用いたが、カーボン粉末や金属粉末を用いても
同様に発熱媒体として利用することができる。また、素
繊維1自体をカーボン繊維から構成すれば、発熱媒体は
不要である。
In this embodiment, short carbon fibers are used as the heat generating medium. However, carbon powder or metal powder can also be used as the heat generating medium. Further, if the elementary fibers 1 themselves are made of carbon fibers, a heating medium is unnecessary.

【0013】ケイ酸アルカリ塩水溶液(水ガラス)を素
繊維1に付着させる。この付着方法には、例えばディッ
ピング、噴霧などの方法がある。そして室温にて5〜1
0時間風乾後、100℃で1〜2時間加熱する。すると
水ガラス被膜が発泡し、凸部が形成される。その後、8
00〜1000℃で4時間程度加熱することにより、強
固な凸部2を形成する。
An aqueous solution of an alkali silicate (water glass) is adhered to the raw fibers 1. Examples of the adhesion method include methods such as dipping and spraying. And 5-1 at room temperature
After air drying for 0 hour, heat at 100 ° C. for 1 to 2 hours. Then, the water glass coating foams, and a projection is formed. Then 8
By heating at 00 to 1000 ° C. for about 4 hours, a strong convex portion 2 is formed.

【0014】なお、水ガラス中にカーボンブラック(平
均粒径400Å程度)を混合しておけば、マイクロ波照
射による加熱が可能となる。 (実施例4)また、水ガラスの塗布時に素繊維1の繊維
束を用いると、各素繊維1間に含浸された水ガラスも発
泡し、図4に示すように凸部2とともに各素繊維1を架
橋する橋部4も形成される。このように橋部4をもつこ
とで、素繊維1どうしの結合力が一層向上し、複合材料
の強度が一層向上する。
If carbon black (average particle size of about 400 °) is mixed in water glass, heating by microwave irradiation becomes possible. (Example 4) Further, when the fiber bundle of the elementary fibers 1 is used at the time of applying the waterglass, the waterglass impregnated between the elementary fibers 1 also foams, and as shown in FIG. A bridge 4 bridging 1 is also formed. By having the bridge portion 4 in this manner, the bonding force between the elementary fibers 1 is further improved, and the strength of the composite material is further improved.

【0015】因みに、Tガラス繊維(2200tex)
を素繊維1として用い、図4に示すように凸部2と橋部
4を形成した強化繊維にエポキシ樹脂を含浸させ、12
0℃で2時間加熱して得られたFRPビーム(繊維量5
5体積%)では、引張強度が4.1GPaであった。こ
れは、無処方のTガラス繊維を同量用いた従来のFRP
ビームの引張強度である3.3GPaに比べて約2割以
上向上していた。
By the way, T glass fiber (2200 tex)
Is used as elementary fiber 1, and as shown in FIG. 4, the reinforcing fiber in which convex portions 2 and bridge portions 4 are formed is impregnated with epoxy resin, and
FRP beam obtained by heating at 0 ° C. for 2 hours (fiber amount 5
5% by volume), the tensile strength was 4.1 GPa. This is a conventional FRP using the same amount of unprescribed T glass fiber.
It was improved by about 20% or more compared to 3.3 GPa which is the tensile strength of the beam.

【0016】上記実施例では、ガラス素繊維1を用いた
が、他にセラミックス繊維、カーボン繊維なども用いる
ことができる。
In the above embodiment, the glass fiber 1 is used, but ceramic fiber, carbon fiber or the like may be used.

【0017】[0017]

【発明の効果】すなわち本発明の樹脂基複合材料用強化
繊維の製造方法によれば、マイクロ波を利用して間接的
に加熱することで凸部を形成しているため、発熱媒体の
分布に応じた凸部を形成することができ、凸部の分布密
度を容易に制御することができる。したがって素繊維表
面に凸部をもつ強化繊維を容易に製造することができ
る。またガラスビーズの溶着あるいは水ガラスの発泡に
より凸部を形成するため、素繊維表面と凸部表面とは滑
らかに連続する。したがって得られた強化繊維では、断
面変化が極端に大きくなるような不具合が回避され、応
力集中部の生成が回避される。そして凸部により複合材
料中でのマトリックス繊維との接合強度が向上し、強化
繊維の配向方向以外の方向に荷重が作用した場合におけ
る複合材料の強度も向上する。
According to the method for producing a reinforcing fiber for a resin-based composite material of the present invention, indirect use of microwaves is achieved.
To form a projection by heating the heating medium.
Convex portions corresponding to the distribution can be formed,
The degree can be easily controlled. Therefore the elementary fiber table
Can easily produce reinforcing fibers with convex parts on the surface
You. Also for welding glass beads or foaming water glass
In order to form more convex parts, the surface of the fiber and the convex part
Clearly continuous. Therefore, in the obtained reinforcing fiber,
The problem that the surface change becomes extremely large is avoided,
Generation of a force concentrator is avoided. The protrusions improve the bonding strength between the matrix material and the matrix fiber in the composite material, and also improve the strength of the composite material when a load acts in a direction other than the orientation direction of the reinforcing fiber.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の強化繊維の模式的斜視図で
ある。
FIG. 1 is a schematic perspective view of a reinforcing fiber according to one embodiment of the present invention.

【図2】本発明の第2の実施例の強化繊維の模式的斜視
図である。
FIG. 2 is a schematic perspective view of a reinforcing fiber according to a second embodiment of the present invention.

【図3】本発明の第3の実施例の強化繊維の模式的斜視
図である。
FIG. 3 is a schematic perspective view of a reinforcing fiber according to a third embodiment of the present invention.

【図4】本発明の第4の実施例の強化繊維の模式的斜視
図である。
FIG. 4 is a schematic perspective view of a reinforcing fiber according to a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1:素繊維 2:凸部 3:カーボン短繊維
4:橋部
1: elementary fiber 2: convex part 3: short carbon fiber
4: Hashibe

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 カーボン繊維、カーボン粉末及び金属粉
末から選ばれる少なくとも一種よりなる発熱媒体とガラ
スビーズを素繊維に付着させ、次いでマイクロ波を照射
して該発熱媒体を発熱させることで該ガラスビーズを該
素繊維の表面に溶着することを特徴とする樹脂基複合材
料用強化繊維の製造方法。
1. Carbon fiber, carbon powder and metal powder
Heating medium and glass consisting of at least one selected from powder
Attach beads to fiber, then irradiate with microwave
The glass beads are heated by the heat generating medium to generate heat.
Resin-based composite material that is welded to the surface of elementary fibers
Production method of reinforcing fiber for feed.
【請求項2】 カーボン素繊維にガラスビーズを付着さ2. A method in which glass beads are attached to carbon fiber.
せ、次いでマイクロ波を照射して該カーボン素繊維を発And then irradiate microwaves to emit the carbon fiber.
熱させることで該ガラスビーズを該カーボン素繊維の表By heating the glass beads, the surface of the carbon fiber
面に溶着することを特徴とする樹脂基複合材料用強化繊Reinforcing fiber for resin-based composite material, which is welded to the surface
維の製造方法。Manufacturing method of fiber.
【請求項3】 カーボン繊維、カーボン粉末及び金属粉3. Carbon fiber, carbon powder and metal powder
末から選ばれる少なくとも一種よりなる発熱媒体と水ガHeating medium and water
ラスを混合して素繊維に付着させ、次いでマイクロ波をThe lath is mixed and adhered to the fiber, then microwave
照射して該発熱媒体を発熱させることで該水ガラスを発The water glass is emitted by irradiating the heating medium to generate heat.
泡させて該素繊維の表面に凹凸を形成することを特徴とFoaming and forming irregularities on the surface of the elementary fiber,
する樹脂基複合材料用強化繊維の製造方法。Of producing a reinforcing fiber for a resin-based composite material.
JP334393A 1993-01-12 1993-01-12 Method for producing reinforcing fiber for resin-based composite material Expired - Fee Related JP2962081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP334393A JP2962081B2 (en) 1993-01-12 1993-01-12 Method for producing reinforcing fiber for resin-based composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP334393A JP2962081B2 (en) 1993-01-12 1993-01-12 Method for producing reinforcing fiber for resin-based composite material

Publications (2)

Publication Number Publication Date
JPH06207375A JPH06207375A (en) 1994-07-26
JP2962081B2 true JP2962081B2 (en) 1999-10-12

Family

ID=11554717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP334393A Expired - Fee Related JP2962081B2 (en) 1993-01-12 1993-01-12 Method for producing reinforcing fiber for resin-based composite material

Country Status (1)

Country Link
JP (1) JP2962081B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6250664B2 (en) * 2012-07-23 2017-12-20 カダント インコーポレイテッド Doctor blade with combined carbon / glass yarn

Also Published As

Publication number Publication date
JPH06207375A (en) 1994-07-26

Similar Documents

Publication Publication Date Title
US4626642A (en) Microwave method of curing a thermoset polymer
US5317045A (en) System and method for remotely heating a polymeric material to a selected temperature
AU575466B2 (en) Metal-coated hollow microspheres
EP1430093B1 (en) Homopolymerized epoxy-based foam-in-place material
US2742390A (en) Method for bonding plastic materials
US6511563B2 (en) Device for ultrasonically consolidating fiber reinforced composite structures
JPH08224782A (en) Method for thermally bonding substrate made of polymer
JP2962081B2 (en) Method for producing reinforcing fiber for resin-based composite material
EP0303468A3 (en) Epoxy resin systems and methods
EP0510097A1 (en) Process of forming fiber reinforced molded plastic articles and preforms therefor using a photosetting binder
GB2030891A (en) Embedding particles in thermoplastic materials
EP0567615B1 (en) Method for making preforms
JP2717618B2 (en) Method for producing fiber-reinforced composite material
JPH11263943A (en) Hot welding material and adhesive member and jointing of resin product and jointed structure
JP2020006587A (en) Joined body and production method of the same
US20090014119A1 (en) Process for the Manufacture of Bonded Laid Structures
JPS58110443A (en) Composite board containing natural vitreous expanded body and its manufacture
JPH05309750A (en) Method for reinforcing fiber-reinforced thermoplastic resin bar body
JP3036614B2 (en) High-strength resin-based composite material and method for producing the same
JPH09229290A (en) Composite material for vacuum thermal insulator and manufacture for vacuum thermal insulator
JP3056610B2 (en) Laminated molded article and molding method
JPH04336241A (en) Rigid structure for vehicle
Boursereau et al. Advanced electron beam composites and modeling approach for spacecraft and transportation applications
JP2000211037A (en) Energy ray irradiating-type continuous molding device and fiber reinforced plastic tubular molded body
JPS58138642A (en) Manufacture of laminate of polyolefin and metal

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees