JPH09229290A - Composite material for vacuum thermal insulator and manufacture for vacuum thermal insulator - Google Patents

Composite material for vacuum thermal insulator and manufacture for vacuum thermal insulator

Info

Publication number
JPH09229290A
JPH09229290A JP8065211A JP6521196A JPH09229290A JP H09229290 A JPH09229290 A JP H09229290A JP 8065211 A JP8065211 A JP 8065211A JP 6521196 A JP6521196 A JP 6521196A JP H09229290 A JPH09229290 A JP H09229290A
Authority
JP
Japan
Prior art keywords
vacuum
heat insulating
density
composite material
vacuum heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8065211A
Other languages
Japanese (ja)
Inventor
Hiromichi Hotta
浩通 堀田
Koji Koura
孝次 小浦
Kensuke Oono
賢祐 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP8065211A priority Critical patent/JPH09229290A/en
Publication of JPH09229290A publication Critical patent/JPH09229290A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/04Arrangements using dry fillers, e.g. using slag wool which is added to the object to be insulated by pouring, spreading, spraying or the like

Abstract

PROBLEM TO BE SOLVED: To shorten a time required for producing a vacuum by using a composite material for vacuum thermal insulator made by combining inorganic fiber dispersed at random with thermoplastic resin into a compressed formed body having a specified density and sealing it in a gas-proof container. SOLUTION: Nonwoven material having a density of 130kg/m<3> which consists of 40% glass fiber and 60% polypropylene resin by weight is manufactured, wherein they are dispersed at random. The nonwoven material is preheated to 200 deg.C by a heating press to melt polypropylene resin and then a pressure of 3kgf/cm<2> is applied on the material and cooled by a cooling press to produce a compressed formed body having a thickness of 1.5mm and a density of 2000kg/m<3> . The compressed formed body is cut into a block of 20cm square and is put in a container made of laminated film, just as it is, and is sealed at 0.05Torr of vacuum, whereby a composite material for vacuum thermal insulator. Moreover, it is heated at 180 deg.C for one hour in a vacuum heater to expand it by a spring back, which produces a vacuum thermal insulator housing a porous formed material having a density of 360kg/m<3> .

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は、冷蔵庫、炊飯器等
の家電製品、建築物の外壁、内壁等の建材に使用される
真空断熱材に関するものである。特に、本発明は、真空
断熱材の製造に有用な真空断熱材用複合材の改良に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum heat insulating material used for building materials such as refrigerators, rice cookers and other home electric appliances, and outer and inner walls of buildings. In particular, the present invention relates to improvements in vacuum insulation composites useful in the manufacture of vacuum insulation.

【0002】[0002]

【従来の技術】従来、冷蔵庫の真空断熱材としては、シ
リカ等の無機系微粉末、ガラス繊維等の無機系繊維、ウ
レタンフォーム等の有機系多孔質成形体を、ガスバリア
ー性容器に収容し内部を減圧にしてシールしたものが使
用され、実際には該断熱材が冷蔵庫の内箱と外箱の間に
収容される。
2. Description of the Related Art Conventionally, as a vacuum heat insulating material for a refrigerator, an inorganic fine powder such as silica, an inorganic fiber such as glass fiber, and an organic porous molded article such as urethane foam are contained in a gas barrier container. The inside of which is depressurized and sealed is used, and the heat insulating material is actually housed between the inner box and the outer box of the refrigerator.

【0003】[0003]

【発明が解決しようとする課題】真空断熱材はその製造
上真空化が必要であるが、従来の多孔質成形体は多数の
微小孔を有し、成形体全体が工業的に経済的に得られる
0.05トール程度の真空度に到達するのには、これら
微小孔の排気抵抗が大きく長時間を必要としていた。
The vacuum heat insulating material needs to be evacuated in order to manufacture it, but the conventional porous molded body has a large number of micropores, and the entire molded body is industrially and economically obtained. In order to reach a vacuum degree of about 0.05 Torr, the exhaust resistance of these micropores was large and it took a long time.

【0004】[0004]

【課題を解決するための手段】本発明は、上記問題点を
解決すべく鋭意検討した結果、真空排気工程は微小孔を
持たない成形体を使用することによって、所要時間を短
縮し、また、多孔質化工程は成形体を構成する無機系繊
維のスプリングバック膨張能を利用することによって、
加熱するだけで所望の断熱性を達成できることを、さら
に、加熱時の膨張量に比例して真空度も上がり容易に高
真空化できることを見出したことにより、達成された。
As a result of intensive studies to solve the above problems, the present invention shortens the time required for the vacuum exhaust step by using a molded body having no fine holes, and The porosification step utilizes the springback expansion ability of the inorganic fibers that form the molded body,
This has been achieved by discovering that the desired heat insulating property can be achieved only by heating, and that the degree of vacuum can be increased in proportion to the expansion amount at the time of heating to easily achieve a high vacuum.

【0005】すなわち、本発明の要旨は、(1) ラン
ダムに分散された無機系繊維が熱可塑性樹脂で接合され
た、密度1600〜2500kg/m3 の圧縮成形体お
よびこれを真空封入したガスバリアー性容器からなる真
空断熱材用複合材および(2) かかる真空断熱材用複
合材を、熱可塑性樹脂の軟化点以上の温度に加熱して、
ガスバリアー性容器内に真空封入されている成形体を膨
張させ、密度100〜700kg/m3 の多孔質成形体
とすること特徴とする真空断熱材の製造方法に存する。
That is, the gist of the present invention is as follows: (1) A compression molded product having a density of 1600 to 2500 kg / m 3 in which randomly dispersed inorganic fibers are joined with a thermoplastic resin, and a gas barrier in which this is vacuum-sealed. And (2) a composite material for vacuum heat insulating material, which comprises a flexible container, is heated to a temperature not lower than the softening point of the thermoplastic resin,
A method for producing a vacuum heat insulating material is characterized in that a molded body vacuum-sealed in a gas barrier container is expanded to obtain a porous molded body having a density of 100 to 700 kg / m 3 .

【0006】[0006]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。本発明の真空断熱材用複合材は、第1の素
材である圧縮成形体と、第2の素材であるガスバリアー
性容器とを複合したものであり、さらに、該成形体はラ
ンダムに分散された無機系繊維とこれらを接合するため
の熱可塑性樹脂を含む。しかも、この複合材を取扱性お
よび断熱性の優れた断熱材とするのに重要な要件は、該
成形体が、上記接合状態で密度1600〜2500kg
/m3 まで圧縮されていること、および、ガスバリアー
性容器に真空封入されていることである。すなわち、こ
れらの要件が、所望のスプリングバック能または断熱性
の賦与を可能にする。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. The composite material for a vacuum heat insulating material of the present invention is a composite of a compression molded body which is a first material and a gas barrier container which is a second material, and the molded body is randomly dispersed. Inorganic fibers and a thermoplastic resin for joining them are included. Moreover, an important requirement for making this composite material a heat insulating material having excellent handleability and heat insulating properties is that the molded body has a density of 1600 to 2500 kg in the above-mentioned joined state.
/ M 3 and compressed in a gas barrier container. That is, these requirements allow for the desired springback capability or insulation.

【0007】しかして、本発明における圧縮成形体の製
造方法は、上述したようなスプリングバック能を有する
ランダム分散体が得られるものであれば、特に制限はな
い。理解を容易にするために、具体例を挙げて説明すれ
ば、まず、無機系繊維および熱可塑性樹脂のランダム分
散体または不織材料を得るには、通常、特公昭52−1
2283号公報、特公昭55−9119号公報、特開平
5−16277号公報、特開平6−134876号公報
等に記載の、いわゆる抄造技術を応用するのがよい。す
なわち、無機系繊維と熱可塑樹脂粉末を、必要に応じて
気泡や表面活性剤の助けをかりて、水中に均等に分散し
たものを、ワイヤの上に展開して水を分離し、乾燥して
不織材料とする。次に、この不織材料を加熱加圧して熱
可塑性樹脂を溶融させ、ランダムに分散した無機系繊維
を接合可能な状態にしたのち、冷却固定して圧縮成形体
とする。
However, the method for producing the compression molded article in the present invention is not particularly limited as long as the random dispersion having the springback ability as described above can be obtained. In order to facilitate understanding, a specific example will be described. First, in order to obtain a random dispersion or a non-woven material of inorganic fibers and a thermoplastic resin, it is usually required to use Japanese Patent Publication No. 52-1.
It is preferable to apply the so-called paper-making technology described in JP-A No. 2283, JP-B-55-9119, JP-A-5-16277, JP-A-6-134876 and the like. That is, inorganic fibers and thermoplastic resin powder, if necessary with the aid of air bubbles or a surface active agent, evenly dispersed in water, spread on the wire to separate the water and dry. And make it a non-woven material. Next, this non-woven material is heated and pressed to melt the thermoplastic resin, and the randomly dispersed inorganic fibers are brought into a bondable state, and then cooled and fixed to obtain a compression molded body.

【0008】加熱加圧工程は、不織材料を、必要に応じ
てその両面に板状体、例えばステンレス製鏡板を重ね合
わせた上で、加熱プレス盤内に挿入することにより、ま
た加圧は繊維破損が生じない程度の圧力で行われる。冷
却固定工程は、加熱プレス盤から取り出された不織材料
を冷却プレス盤内に挿入し、目的とする密度1600〜
2500kg/m3 の圧縮成形体を製造しうる条件で加
圧冷却し、必要に応じて板状体を取り外すことによって
行われる。なお、所望とあれば、加熱プレス盤から取り
出された不織材料は、冷却プレス盤に挿入する前に、熱
可塑性樹脂が溶融した状態のままで加圧を除去し、両面
の板状体を重ね合わせたままで、不織材料を一旦スプリ
ングバックにより膨張させる、解圧工程を実施してもよ
い。さらには、加熱加圧、解圧、冷却固定の各工程を連
続的に実施する、ダブルベルトコンベア式連続プレスの
採用も、生産性の観点からは非常に有効である。
In the heating and pressurizing step, the non-woven material is inserted into the heating press platen after the plate-like member, for example, a stainless steel end plate is superposed on both sides of the non-woven material, if necessary. The pressure is set so as not to cause fiber breakage. In the cooling / fixing step, the nonwoven material taken out from the heating press board is inserted into the cooling press board, and the desired density 1600 is reached.
It is carried out by pressure cooling under conditions capable of producing a 2500 kg / m 3 compression molded product, and removing the plate-shaped product if necessary. If desired, the non-woven material taken out from the heating press machine should be subjected to pressure removal with the thermoplastic resin in a molten state before being inserted into the cooling press machine to remove the plate-shaped bodies on both sides. A decompression step may be performed in which the non-woven materials are once expanded by spring back while being overlapped. Further, it is also very effective from the viewpoint of productivity to employ a double-belt conveyor type continuous press which continuously carries out each step of heating / pressurizing, depressurizing and cooling / fixing.

【0009】無機系繊維としては、ガラス繊維、セラミ
ック繊維、スラグウール繊維、ロックウール等が使用で
きる。無機系繊維の形状は、直径が、取扱いの容易さと
経済的観点から3μm以上で、十分な強度を発現させる
ため30μm以下にすることが好ましく、さらには6〜
20μmが好ましい。繊維長は、強度発現の観点から3
mm以上で、均一な分散が可能な50mm以下にするこ
とが好ましく、さらには6〜25mmが好ましい。ま
た、この無機系繊維は、水中での良好な分散または親水
性の向上を目的として、水溶性高分子で表面処理するこ
と、熱可塑性樹脂との接着性を向上させ強度発現を目的
として、シランカップリング剤等で表面処理することが
好ましい。
As the inorganic fiber, glass fiber, ceramic fiber, slag wool fiber, rock wool and the like can be used. The shape of the inorganic fiber is preferably 3 μm or more in diameter from the viewpoint of easy handling and economically, and is preferably 30 μm or less in order to develop sufficient strength, and further 6 to
20 μm is preferred. The fiber length is 3 from the viewpoint of strength development.
The thickness is preferably 50 mm or less, and more preferably 6 to 25 mm, which enables uniform dispersion. Further, this inorganic fiber is surface-treated with a water-soluble polymer for the purpose of good dispersion in water or improvement of hydrophilicity, and silane for the purpose of enhancing strength by improving adhesiveness with a thermoplastic resin. It is preferable to perform surface treatment with a coupling agent or the like.

【0010】熱可塑性樹脂は、ポリプロピレン、ポリエ
チレン、ポリスチレン、スチレンーブタジエンーアクリ
ロニトリル共重合体、スチレンーアクリロニトリル共重
合体、ポリアミド、ポリカーボネート、ポリアセター
ル、ポリエチレンテレフタレート、ポリフェニレンオキ
シド、ポリスルフォン、ポリフェニレンスルフィド等の
樹脂であり、またこれら2種類またはそれ以上の混合物
および変性物も含み、これらに一般的に用いられる可塑
剤、熱安定剤、光安定剤、充填材、染顔料、耐衝撃材、
増量材、核材、加工助剤等を添加することもできる。熱
可塑性樹脂としては、無機系繊維と共に水中に分散させ
ることを考慮し、適当な大きさと形状のものが選択され
る。
The thermoplastic resin is a resin such as polypropylene, polyethylene, polystyrene, styrene-butadiene-acrylonitrile copolymer, styrene-acrylonitrile copolymer, polyamide, polycarbonate, polyacetal, polyethylene terephthalate, polyphenylene oxide, polysulfone, polyphenylene sulfide. And also includes mixtures and modifications of these two or more kinds, which are commonly used in these plasticizers, heat stabilizers, light stabilizers, fillers, dyes and pigments, impact-resistant materials,
A filler, a core material, a processing aid and the like can be added. As the thermoplastic resin, one having an appropriate size and shape is selected in consideration of being dispersed in water together with the inorganic fiber.

【0011】圧縮成形体を構成する主要な成分である上
記の無機系繊維と熱可塑性樹脂の量は、成形体が、無機
系繊維および熱可塑性樹脂を、それぞれ、30〜90重
量%および10〜70重量%含有するように選択するこ
とが好ましい。すなわち、無機系繊維が多いと成形体は
強度不足となり、少ないとスプリングバック後の密度が
高くなりすぎ十分な熱伝導率が得られなくなり、いずれ
も好ましくない。
The amounts of the above-mentioned inorganic fiber and thermoplastic resin which are the main components constituting the compression molded product are 30 to 90% by weight and 10 to 10% of the inorganic fiber and the thermoplastic resin, respectively, in the molded product. It is preferable to select 70% by weight. That is, if the amount of inorganic fibers is large, the strength of the molded body becomes insufficient, and if the amount is small, the density after springback becomes too high and sufficient thermal conductivity cannot be obtained.

【0012】圧縮成形体は、上記無機系繊維および熱可
塑性樹脂のほか、輻射遮蔽材を含有することができる。
すなわち、断熱効果を向上させるために、固体伝熱、気
体伝熱を小さくすると、輻射伝熱の割合があがる。この
ような場合に、輻射伝熱を遮蔽するために使用されるの
が輻射遮蔽材であり、通常、金属酸化物、金属水酸化
物、炭化物等が有効である。特に、Si、Ti,Al等
の酸化物、水酸化物、炭化物やグラファイト等が有効で
あり、炭化珪素、酸化チタン等の使用が好ましい。使用
量としては、成形体が、熱可塑性樹脂および無機系繊維
の合計量100重量部に対して、輻射熱遮蔽材を1〜2
0重量部、好ましくは5〜15重量部含有することが好
ましい。また、輻射遮蔽材は、通常0.5〜30μmの
微粒子として使用され、圧縮成形体の製造工程の任意の
段階において、例えば無機系繊維、熱可塑性樹脂ととも
に水中に分散される。
The compression molded product may contain a radiation shielding material in addition to the above-mentioned inorganic fiber and thermoplastic resin.
That is, if solid heat transfer and gas heat transfer are reduced in order to improve the heat insulating effect, the ratio of radiant heat transfer increases. In such a case, the radiation shielding material is used to shield the radiant heat transfer, and metal oxides, metal hydroxides, and carbides are usually effective. In particular, oxides, hydroxides, carbides, graphite and the like of Si, Ti, Al and the like are effective, and use of silicon carbide, titanium oxide and the like is preferable. The amount of the radiant heat shielding material used in the molded product is 1 to 2 with respect to 100 parts by weight of the total amount of the thermoplastic resin and the inorganic fiber.
It is preferable to contain 0 part by weight, preferably 5 to 15 parts by weight. The radiation shielding material is usually used as fine particles having a particle size of 0.5 to 30 μm, and is dispersed in water together with, for example, an inorganic fiber and a thermoplastic resin at any stage of the production process of the compression molded body.

【0013】本発明において、圧縮成形体の密度は、前
記の不織材料の加圧冷却時の条件によって左右される
が、中でも重要な条件は、圧縮成形体を構成する諸材料
の密度および配合組成であり、また、空間部分の割合で
ある。従って、構成材料が同一であり、空間部分の割合
が一定の場合には、材料の配合組成によって圧縮成形体
の密度を制御することができる。また、圧縮成形体の形
状は、後記のガスバリアー性容器の形状、言い換えれば
真空断熱材が適用される具体的な用途によって相違する
が、一般的には、平板状あるいは該平板を裁断、ブロー
成形、スタンプ成形等によって賦形した3次元形状のも
のが挙げられる。さらに、該圧縮成形体を加熱膨張させ
たときの形状が、ガスバリアー性容器内に十分収容でき
るものであるよう、膨張前の成形体の形状を選定しなけ
ればならない。
In the present invention, the density of the compression-molded article depends on the conditions of the above-mentioned non-woven material during pressure cooling, but the most important condition is the density and blending ratio of the materials constituting the compression-molded article. It is the composition and is also the proportion of the spatial part. Therefore, when the constituent materials are the same and the ratio of the space portion is constant, the density of the compression molded body can be controlled by the composition of the materials. Further, the shape of the compression-molded article differs depending on the shape of the gas barrier container described later, in other words, the specific application to which the vacuum heat insulating material is applied, but in general, it is flat or cut or blown. Examples thereof include those having a three-dimensional shape formed by molding, stamp molding or the like. Furthermore, the shape of the molded product before expansion must be selected so that the compressed molded product can be sufficiently expanded by heating so that it can be sufficiently accommodated in the gas barrier container.

【0014】本発明において、上記圧縮成形体を真空封
入すべき、ガスバリアー性容器としては、公知のガスバ
リアー性材料、例えばプラスチックや金属のフイルムや
シートを、真空断熱材の用途に適した所要の形状に成形
したもの使用することができる。プラスチックフイルム
としては、金属箔を積層または金属を蒸着した複合フイ
ルム、塩化ビニリデン系樹脂フイルム、塩化ビニリデン
樹脂コートフイルム、ポリビニルアルコール系フイルム
等が挙げられる。金属シートとしては、アルミニュウ
ム、銅、鉄等のシートが好ましい。ガスバリアー性材料
は、ガスバリアー層のほかに、必要に応じ、表面層およ
び溶着層を有する多層構造をとることもできる。表面層
は、ポリエステル樹脂からなり、通常、ポリエチレンテ
レフタレート、ポリブチレンテレフタレート等が挙げら
れる。また、溶着層は溶着可能な樹脂からなり、通常、
ポリエチレン、ポリプロピレン等のポリオレフィン樹
脂、ナイロン6、ナイロン66等のポリアミド樹脂、ア
クリロニトリル・ブタジエン・スチレン共重合体、アク
リロニトリル・スチレン共重合体等のアクリロニトリル
共重合体、ポリメチルメタクリレート等のポリアクリレ
ート、好ましくはポリオレフィン樹脂が挙げられる。こ
れらの樹脂は、単独で用いても、共重合させても、ま
た、混合して使用しても良い。
In the present invention, as the gas barrier container in which the compression molded body is to be vacuum-sealed, a known gas barrier material such as a film or sheet of plastic or metal, which is suitable for use as a vacuum heat insulating material, is required. It can be used after being molded into the shape of. Examples of the plastic film include a composite film in which metal foils are laminated or a metal is vapor-deposited, a vinylidene chloride-based resin film, a vinylidene chloride resin-coated film, a polyvinyl alcohol-based film, and the like. The metal sheet is preferably a sheet of aluminum, copper, iron or the like. The gas barrier material may have a multi-layer structure having a surface layer and a welding layer, if necessary, in addition to the gas barrier layer. The surface layer is made of polyester resin, and typically includes polyethylene terephthalate and polybutylene terephthalate. Further, the welding layer is made of a weldable resin,
Polyolefin resins such as polyethylene and polypropylene, polyamide resins such as nylon 6 and nylon 66, acrylonitrile-butadiene-styrene copolymers, acrylonitrile copolymers such as acrylonitrile-styrene copolymers, polyacrylates such as polymethylmethacrylate, preferably Examples include polyolefin resins. These resins may be used alone, copolymerized, or mixed and used.

【0015】本発明の真空断熱材用複合材において、上
記圧縮成形体を収納したガスバリアー性容器の内部は、
通常1Torr以下に真空排気される。真空度が1To
rrより大きいと、容器内部に存在する空気による伝熱
が増加し、断熱性能が低下するので好ましくない。真空
化に要する時間は、通常10〜20分程度であり、従来
の多孔質成形体の真空化に比べ、短時間で十分ある。真
空排気した後は、適当な手段でシールし、真空封入を完
了する。
In the composite material for vacuum heat insulating material of the present invention, the inside of the gas barrier container containing the above-mentioned compression molded article is
It is usually evacuated to less than 1 Torr. Vacuum degree is 1To
If it is larger than rr, heat transfer due to the air present inside the container increases, and the heat insulating performance deteriorates, which is not preferable. The time required for vacuuming is usually about 10 to 20 minutes, and a shorter time is sufficient as compared with the conventional vacuuming of a porous molded body. After vacuum evacuation, sealing is performed by an appropriate means to complete vacuum sealing.

【0016】本発明の真空断熱材の製造方法は、上記真
空断熱材用複合材を加熱し、容器内に収容された成形体
を膨張させ、所定密度の多孔質成形体とすることによっ
て行われる。しかして、熱膨張の際の加熱条件は、熱可
塑性樹脂の軟化点以上の温度であることが必要であり、
容器がプラスチックフィルムまたは合成樹脂層を含む場
合は、これらプラスチックまたは合成樹脂が溶融しない
温度であることも必要である。実際の加熱温度は、熱可
塑性樹脂の種類によっても相違するが、通常100〜2
50℃、好ましくは150〜200℃が選ばれる。ま
た、加熱時間は通常15分〜2時間程度である。
The method for producing a vacuum heat insulating material of the present invention is carried out by heating the above-mentioned composite material for vacuum heat insulating material and expanding the molded body contained in the container to obtain a porous molded body having a predetermined density. . Then, the heating condition at the time of thermal expansion needs to be a temperature equal to or higher than the softening point of the thermoplastic resin,
If the container contains a plastic film or synthetic resin layer, it is also necessary that the temperature is such that the plastic or synthetic resin does not melt. The actual heating temperature varies depending on the type of thermoplastic resin, but is usually 100 to 2
50 ° C, preferably 150 to 200 ° C is selected. The heating time is usually about 15 minutes to 2 hours.

【0017】つぎに熱膨張後の多孔質成形体の密度は、
700kg/m3 を越えると空間部分の割合(空隙率)
が小さく真空度を上げても真空断熱板の熱伝導率は固体
伝熱に支配されるため低下しない。また、100kg/
3 以下では、空隙率が大きくなり、繊維間隔が拡大す
るので、反対に熱伝導率が上昇する。従って、多孔質成
形体の密度は100〜700kg/m3 、好ましくは1
00〜600kg/m3 、更に好ましくは100〜50
0kg/m3 と低いことが好ましい。
Next, the density of the porous molded body after thermal expansion is
If it exceeds 700 kg / m 3 , the ratio of voids (porosity)
Is small, the thermal conductivity of the vacuum heat insulating plate does not decrease even if the degree of vacuum is raised because it is governed by solid heat transfer. In addition, 100kg /
At m 3 or less, the porosity increases and the fiber spacing increases, so that the thermal conductivity increases on the contrary. Therefore, the density of the porous molded body is 100 to 700 kg / m 3 , preferably 1
00-600 kg / m 3 , more preferably 100-50
It is preferably as low as 0 kg / m 3 .

【0018】[0018]

【発明の効果】本発明の真空断熱材用複合材において
は、ガスバリアー性容器に密度の大きい圧縮成形体を真
空封入するので、容易に真空化可能で、従来例の欠点を
除去するものである。ちなみに、真空化に要する時間
は、密度の小さい多孔質成形体を真空封入する従来例に
比べ、約1/3程度と短時間である。本発明の真空断熱
材の製造方法においては、断熱材用複合材として既に真
空封入されている成形体を後膨張させるので、取扱いに
優れ、かつ優れた断熱性を有する。例えば、冷蔵庫など
に組み込む場合、移送、保管の面で場所を取らない。ま
た、後膨張により、更に高真空化が達成でき、低熱伝導
率かつ熱伝導の長期安定性のよい、真空断熱材を得るこ
とができる。
In the composite material for a vacuum heat insulating material of the present invention, since the compression molded body having a high density is vacuum-sealed in the gas barrier container, it can be easily evacuated and the drawbacks of the conventional example are eliminated. is there. Incidentally, the time required for vacuuming is about 1/3 that of the conventional example in which a porous compact having a low density is vacuum-sealed, which is a short time. In the method for manufacturing a vacuum heat insulating material of the present invention, a molded body that has been vacuum-sealed as a heat insulating material composite material is post-expanded, so that it is easy to handle and has excellent heat insulating properties. For example, when it is installed in a refrigerator, it does not take up space in terms of transportation and storage. Further, by the post-expansion, a higher vacuum can be achieved, and a vacuum heat insulating material having a low thermal conductivity and good long-term stability of thermal conductivity can be obtained.

【0019】[0019]

【実施例】以下、本発明の実施形態を実施例により更に
詳細に説明するが、本発明はその要旨を越えない限り、
これら実施例に示された形態のみに限定されるものでは
ない。
EXAMPLES Hereinafter, the embodiments of the present invention will be described in more detail with reference to Examples, but the present invention is not limited as long as the gist thereof is not exceeded.
It is not limited to the forms shown in these examples.

【0020】実施例1 [真空断熱材用複合材]無機系繊維として直径10μ
m、長さ13mmのガラス繊維を用い、熱可塑性樹脂と
して直径3mmの球状ペレットを機械粉砕しその粉砕品
の篩い分けにより70メッシュから10メッシュまでに
分級したポリプロピレン粉末を用いて、いわゆる抄造法
に従い、水中に調製された均一分散体から水を分離し乾
燥することにより、密度130kg/m3 で、ランダム
に分散されたガラス繊維60重量%およびポリプロピレ
ン樹脂40重量%の組成の不織材料を製造した。
Example 1 [Composite material for vacuum heat insulating material] 10 μm in diameter as an inorganic fiber
m, glass fiber having a length of 13 mm, spherical pellets having a diameter of 3 mm were mechanically crushed as a thermoplastic resin, and polypropylene powder classified by sieving the crushed product from 70 mesh to 10 mesh was used according to a so-called papermaking method. , By separating water from a uniform dispersion prepared in water and drying it, a nonwoven material having a density of 130 kg / m 3 and randomly dispersed glass fibers of 60% by weight and polypropylene resin of 40% by weight is produced. did.

【0021】この不織材料を、加熱プレスで200℃に
予熱してポリプロピレンを溶融させ、ポリプロピレンと
ガラス繊維を良くなじませた後、冷却プレスで3kgf
/cm2 の圧力を加えて冷却することによって、板厚
1.5mm、密度2000kg/m3 の圧縮成形体を得
た。
This non-woven material is preheated to 200 ° C. by a heating press to melt polypropylene, and the polypropylene and glass fiber are well blended together, and then 3 kgf is cooled by a cooling press.
A compression molded product having a plate thickness of 1.5 mm and a density of 2000 kg / m 3 was obtained by applying a pressure of / cm 2 and cooling.

【0022】得られた成形体を20cm角に切り、その
ままラミネートフィルム製容器(構成:表面層15μm
PET、ガスバリアー層9μmAl箔、融着層12μm
ナイロン)に入れ、排気量1500l/minの真空ポ
ンプを有する真空包装機内で真空度0.05Torrで
封入し、真空断熱材用複合材を得た。真空化に要した時
間は15分で、これは密度340kg/m3 の多孔質成
形体をガスバリアー性容器に入れ0.05Torrにし
た場合と比べて約1/3で済んだ。
The obtained molded body was cut into 20 cm square pieces and the laminated film container (structure: surface layer 15 μm)
PET, gas barrier layer 9 μm Al foil, fusion layer 12 μm
Nylon) and sealed at a vacuum degree of 0.05 Torr in a vacuum packaging machine having a vacuum pump with an exhaust rate of 1500 l / min to obtain a composite material for vacuum heat insulating material. The time required for vacuuming was 15 minutes, which was about 1/3 of the case where a porous molded body having a density of 340 kg / m 3 was put in a gas barrier container and the pressure was set to 0.05 Torr.

【0023】[真空断熱材]得られた真空断熱材用複合
材を、さらに180℃で1時間、真空加熱機中で加熱す
ると、成形体はスプリングバックにより後膨張し、密度
360kg/m3 の多孔質成形体を収容する真空断熱材
が得られた。得られた真空断熱材の断熱性を評価するた
めに、英弘精機社熱伝導率計で測定された熱伝導率は、
0.0060Kcal/m・hr・℃であった。なお、
参考まで、加熱膨張前の真空断熱材用複合材の熱伝導率
は、0.460Kcal/m・hr・℃であった。
[Vacuum heat insulating material] When the obtained vacuum heat insulating material composite material is further heated at 180 ° C. for 1 hour in a vacuum heater, the molded body is post-expanded by spring back and has a density of 360 kg / m 3 . A vacuum heat insulating material containing the porous molded body was obtained. In order to evaluate the heat insulating property of the obtained vacuum heat insulating material, the thermal conductivity measured by a thermal conductivity meter of Eiko Instruments Co., Ltd.
It was 0.0060 Kcal / m · hr · ° C. In addition,
For reference, the thermal conductivity of the vacuum heat insulating composite before heat expansion was 0.460 Kcal / m · hr · ° C.

【0024】実施例2 実施例1において、組成をガラス繊維85重量%および
ポリプロピレン樹脂15重量%に変更したほかは、実施
例1と全く同様にして、真空断熱材用複合材および真空
断熱材を得た。
Example 2 A composite material for vacuum heat insulating material and a vacuum heat insulating material were prepared in the same manner as in Example 1 except that the composition was changed to 85% by weight of glass fiber and 15% by weight of polypropylene resin. Obtained.

【0025】[真空断熱材用複合材]無機系繊維として
直径10μm、長さ13mmのガラス繊維を用い、熱可
塑性樹脂として直径3mmの球状ペレットを機械粉砕し
その粉砕品の篩い分けにより70メッシュから10メッ
シュまでに分級したポリプロピレン粉末を用いて、いわ
ゆる抄造法に従い、水中に調製された均一分散体から水
を分離し乾燥することにより、密度170kg/m
3 で、ランダムに分散されたガラス繊維85重量%およ
びポリプロピレン樹脂15重量%の組成の不織材料を製
造した。
[Composite Material for Vacuum Insulation Material] Glass fiber having a diameter of 10 μm and length of 13 mm is used as the inorganic fiber, and spherical pellet having a diameter of 3 mm is mechanically crushed as the thermoplastic resin, and the crushed product is sieved to obtain 70 mesh. Using polypropylene powder classified to 10 mesh, water was separated from a uniform dispersion prepared in water and dried according to a so-called papermaking method to obtain a density of 170 kg / m.
At 3 , a nonwoven material having a composition of 85% by weight of randomly dispersed glass fibers and 15% by weight of polypropylene resin was produced.

【0026】この不織材料を、加熱プレスで200℃に
予熱してポリプロピレンを溶融させ、ポリプロピレンと
ガラス繊維を良くなじませた後、冷却プレスで3kgf
/cm2 の圧力を加えて冷却することによって、板厚
1.5mm、密度2500kg/m3 の圧縮成形体を得
た。
This non-woven material is preheated to 200 ° C. by a heating press to melt polypropylene, and the polypropylene and glass fiber are well blended together, and then 3 kgf is cooled by a cooling press.
A compression molded product having a plate thickness of 1.5 mm and a density of 2500 kg / m 3 was obtained by applying a pressure of / cm 2 and cooling.

【0027】得られた成形体を20cm角に切り、その
ままラミネートフィルム製容器(構成:表面層15μm
PET、ガスバリアー層9μmAl箔、融着層12μm
ナイロン)に入れ、排気量1500l/minの真空ポ
ンプを有する真空包装機内で真空度0.05Torrで
封入し、真空断熱材用複合材を得た。真空化に要した時
間は15分で、これは密度600kg/m3 の多孔質成
形体をガスバリアー性容器に入れ0.05Torrにし
た場合と比べて約1/3で済んだ。
The obtained molded body was cut into 20 cm square pieces and the laminated film container (structure: surface layer 15 μm)
PET, gas barrier layer 9 μm Al foil, fusion layer 12 μm
Nylon) and sealed at a vacuum degree of 0.05 Torr in a vacuum packaging machine having a vacuum pump with an exhaust rate of 1500 l / min to obtain a composite material for vacuum heat insulating material. The time required for vacuuming was 15 minutes, which was about 1/3 of the case where the porous molded body having a density of 600 kg / m 3 was put in a gas barrier container and the pressure was set to 0.05 Torr.

【0028】[真空断熱材]得られた真空断熱材用複合
材を、さらに180℃で1時間、真空加熱機中で加熱す
ると、成形体はスプリングバックにより後膨張し、密度
600kg/m3 の多孔質成形体を収容する真空断熱材
が得られた。得られた真空断熱材の断熱性を評価するた
めに、英弘精機社熱伝導率計で測定された熱伝導率は、
0.0060Kcal/m・hr・℃であった。
[Vacuum heat insulating material] When the obtained composite material for vacuum heat insulating material is further heated at 180 ° C. for 1 hour in a vacuum heating machine, the molded body is post-expanded by spring back and has a density of 600 kg / m 3 . A vacuum heat insulating material containing the porous molded body was obtained. In order to evaluate the heat insulating property of the obtained vacuum heat insulating material, the thermal conductivity measured by a thermal conductivity meter of Eiko Instruments Co., Ltd.
It was 0.0060 Kcal / m · hr · ° C.

【0029】実施例3 実施例1において、ガラス繊維およびポリプロピレン粉
末の合計量100重量部に対して、輻射熱遮蔽材SiC
を10重量部の割合で追加したほかは、実施例1と全く
同様にして、真空断熱材用複合材および真空断熱材を得
た。その際、得られた圧縮成形体は、板厚1.5mm、
密度2100kg/m3 で真空化に要した時間は15
分。また、得られた真空断熱材は、密度400kg/m
3 の多孔質成形体を収容し、熱伝導率は0.0050K
cal/m・hr・℃であった。
Example 3 In Example 1, radiant heat shielding material SiC was added to 100 parts by weight of the total amount of glass fiber and polypropylene powder.
Was added in the same manner as in Example 1 except that 10 parts by weight was added to obtain a composite material for a vacuum heat insulating material and a vacuum heat insulating material. At that time, the obtained compression molded body had a plate thickness of 1.5 mm,
The time required for vacuuming at a density of 2100 kg / m 3 is 15
Minutes. The obtained vacuum heat insulating material has a density of 400 kg / m.
Accommodating 3 porous molded bodies, the thermal conductivity is 0.0050K
It was cal / m · hr · ° C.

【0030】比較例 実施例1において、組成をガラス繊維25重量%および
ポリプロピレン樹脂75重量%に変更したほかは、実施
例1と全く同様にして、真空断熱材用複合材および真空
断熱材を得た。その際、得られた圧縮成形体は、板厚
1.5mm、密度1400kg/m3 であった。また、
得られた真空断熱材は、密度600kg/m3 の多孔質
成形体を収容し、熱伝導率は0.110Kcal/m・
hr・℃であった。
Comparative Example A composite for vacuum heat insulating material and a vacuum heat insulating material were obtained in the same manner as in Example 1 except that the composition was changed to 25% by weight of glass fiber and 75% by weight of polypropylene resin. It was At that time, the obtained compression molded article had a plate thickness of 1.5 mm and a density of 1400 kg / m 3 . Also,
The obtained vacuum heat insulating material accommodates a porous molded body having a density of 600 kg / m 3 and has a thermal conductivity of 0.110 Kcal / m ·
hr · ° C.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F25D 23/06 F25D 23/06 V ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location F25D 23/06 F25D 23/06 V

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】ランダムに分散された無機系繊維が熱可塑
性樹脂で接合された、密度1600〜2500kg/m
3 の圧縮成形体およびこれを真空封入したガスバリアー
性容器からなる真空断熱材用複合材。
1. A randomly dispersed inorganic fiber is joined by a thermoplastic resin and has a density of 1600 to 2500 kg / m.
A composite material for a vacuum heat insulating material, which comprises the compression molded body of 3 and a gas barrier container in which this is vacuum sealed.
【請求項2】成形体が、無機系繊維および熱可塑性樹脂
を、それぞれ、30〜90重量%および10〜70重量
%含有することを特徴とする請求項1記載の真空断熱材
用複合材。
2. The composite material for a vacuum heat insulating material according to claim 1, wherein the molded body contains an inorganic fiber and a thermoplastic resin in an amount of 30 to 90% by weight and 10 to 70% by weight, respectively.
【請求項3】成形体が、熱可塑性樹脂および無機系繊維
の合計量100重量部に対して、輻射熱遮蔽材を1〜2
0重量部含有することを特徴とする請求項1または2に
記載の真空断熱材用複合材。
3. A radiant heat shielding material in an amount of 1 to 2 with respect to a total amount of 100 parts by weight of a thermoplastic resin and an inorganic fiber in a molded article.
The composite material for vacuum heat insulating material according to claim 1, wherein the composite material contains 0 part by weight.
【請求項4】無機系繊維が、繊維径3〜30μm、繊維
長3〜50mmであることを特徴とする請求項1ないし
3のいずれか1項に記載の真空断熱材用複合材。
4. The composite material for a vacuum heat insulating material according to any one of claims 1 to 3, wherein the inorganic fiber has a fiber diameter of 3 to 30 μm and a fiber length of 3 to 50 mm.
【請求項5】請求項1〜4に記載の真空断熱材用複合材
を、熱可塑性樹脂の軟化点以上の温度に加熱して、ガス
バリアー性容器内に真空封入されている成形体を膨張さ
せ、密度100〜700kg/m3 の多孔質成形体とす
ることを特徴とする真空断熱材の製造方法。
5. The vacuum heat insulating composite material according to any one of claims 1 to 4 is heated to a temperature equal to or higher than a softening point of a thermoplastic resin to expand a molded body vacuum-sealed in a gas barrier container. And a porous molded body having a density of 100 to 700 kg / m 3, a method for producing a vacuum heat insulating material.
JP8065211A 1996-02-28 1996-02-28 Composite material for vacuum thermal insulator and manufacture for vacuum thermal insulator Pending JPH09229290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8065211A JPH09229290A (en) 1996-02-28 1996-02-28 Composite material for vacuum thermal insulator and manufacture for vacuum thermal insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8065211A JPH09229290A (en) 1996-02-28 1996-02-28 Composite material for vacuum thermal insulator and manufacture for vacuum thermal insulator

Publications (1)

Publication Number Publication Date
JPH09229290A true JPH09229290A (en) 1997-09-05

Family

ID=13280363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8065211A Pending JPH09229290A (en) 1996-02-28 1996-02-28 Composite material for vacuum thermal insulator and manufacture for vacuum thermal insulator

Country Status (1)

Country Link
JP (1) JPH09229290A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0940239A1 (en) * 1998-03-06 1999-09-08 Matsushita Electric Industrial Co., Ltd. Recycling of cured phenolic resin and a product such as a vacuum thermal insulator obtained thereby
JP2002310385A (en) * 2001-04-17 2002-10-23 Kuraray Co Ltd Vacuum heat insulation structure
JP2007078176A (en) * 2005-08-18 2007-03-29 Nippon Synthetic Chem Ind Co Ltd:The Vacuum heat insulation structure
WO2008078838A1 (en) * 2006-12-26 2008-07-03 Sumitomo Chemical Company, Limited Propylene resin composition and molded body made from the same
WO2008078839A1 (en) * 2006-12-26 2008-07-03 Sumitomo Chemical Company, Limited Propylene resin composition and molded body made from the same
WO2013121992A1 (en) * 2012-02-14 2013-08-22 井前工業株式会社 Vacuum insulation material and method for manufacturing same
JP2017043078A (en) * 2015-08-24 2017-03-02 株式会社巴川製紙所 Composite sheet for heat shielding and electromagnetic wave shielding and utilization thereof
JPWO2019021359A1 (en) * 2017-07-25 2020-02-06 三菱電機株式会社 Vacuum insulation material, insulation box, and method of manufacturing vacuum insulation material

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0940239A1 (en) * 1998-03-06 1999-09-08 Matsushita Electric Industrial Co., Ltd. Recycling of cured phenolic resin and a product such as a vacuum thermal insulator obtained thereby
JP2002310385A (en) * 2001-04-17 2002-10-23 Kuraray Co Ltd Vacuum heat insulation structure
JP4642265B2 (en) * 2001-04-17 2011-03-02 株式会社クラレ Vacuum insulation structure
JP2007078176A (en) * 2005-08-18 2007-03-29 Nippon Synthetic Chem Ind Co Ltd:The Vacuum heat insulation structure
JP2008179785A (en) * 2006-12-26 2008-08-07 Sumitomo Chemical Co Ltd Propylene resin composition and pellet thereof and molded body made from the same
JP2008179784A (en) * 2006-12-26 2008-08-07 Sumitomo Chemical Co Ltd Propylene resin composition and pellet thereof and molded body made from the same
WO2008078839A1 (en) * 2006-12-26 2008-07-03 Sumitomo Chemical Company, Limited Propylene resin composition and molded body made from the same
WO2008078838A1 (en) * 2006-12-26 2008-07-03 Sumitomo Chemical Company, Limited Propylene resin composition and molded body made from the same
WO2013121992A1 (en) * 2012-02-14 2013-08-22 井前工業株式会社 Vacuum insulation material and method for manufacturing same
CN104105917A (en) * 2012-02-14 2014-10-15 井前工业株式会社 Vacuum insulation material and method for manufacturing same
JPWO2013121992A1 (en) * 2012-02-14 2015-05-11 井前工業株式会社 Vacuum heat insulating material and manufacturing method thereof
CN104105917B (en) * 2012-02-14 2016-08-24 井前工业株式会社 Vacuum heat insulation materials and manufacture method thereof
JP2017043078A (en) * 2015-08-24 2017-03-02 株式会社巴川製紙所 Composite sheet for heat shielding and electromagnetic wave shielding and utilization thereof
JPWO2019021359A1 (en) * 2017-07-25 2020-02-06 三菱電機株式会社 Vacuum insulation material, insulation box, and method of manufacturing vacuum insulation material

Similar Documents

Publication Publication Date Title
CA2554044C (en) Expanded polystyrene bead having functional skin layer, manufacturing process thereof, and functional eps product and manufacturing process thereof using the same
EP0483716B1 (en) Method of producing fiber-reinforced thermoplastic resin molding material
TWI403490B (en) Thermal insulating material and method for manufacturing the same
CA2269849C (en) Compressed polymer foams and panels containing them
KR101028523B1 (en) High insulation foamable polystyrene particles and method for producing same
CN101428792A (en) Expanded graphite and process for producing the expanded graphite
JPH0313057B2 (en)
JP2011037072A (en) Method of manufacturing thermally expandable base material for interior of vehicle and method of manufacturing base material for interior of vehicle using the same
EP1818595B1 (en) Method for the manufacture of vacuum insulation products
JPH09229290A (en) Composite material for vacuum thermal insulator and manufacture for vacuum thermal insulator
JPH09145241A (en) Vacuum heat-insulating material
JP2009041649A (en) Vacuum heat insulating material and its manufacturing method
EP0928806B1 (en) Expanded resin beads
JPH0466178B2 (en)
WO1995014881A1 (en) Vacuum heat insulating material
JP2000291881A (en) Decompressed heat insulating body and manufacture thereof
US3445406A (en) Process for elasticizing foamed polystyrenes and resultant product
JPS6023132B2 (en) Method for manufacturing open-cell polyolefin foam
JP2743227B2 (en) Heat-resistant and non-flammable radio wave absorber
US5844014A (en) Compressed, extruded, evacuated open-cell polymer foams and evacuated insulation panels containing them
JPH11105196A (en) Sheet-formed stampable sheet, its manufacture, and stampable sheet molding
JP2000158547A (en) Lightweight molded body
KR101662546B1 (en) manufacturing method of expandable polystyrene having improved insulation property
JPH04232047A (en) Method of improving appearance of fiber reinforced thermoplastic resin
KR20130052484A (en) Expandable polystyrene having good thermal insulation and workability, method for preparing the same and foam thereof