JP2933798B2 - Method for producing ultrafine carbon particles by decomposition of hydrocarbon using photosensitization reaction - Google Patents

Method for producing ultrafine carbon particles by decomposition of hydrocarbon using photosensitization reaction

Info

Publication number
JP2933798B2
JP2933798B2 JP5087385A JP8738593A JP2933798B2 JP 2933798 B2 JP2933798 B2 JP 2933798B2 JP 5087385 A JP5087385 A JP 5087385A JP 8738593 A JP8738593 A JP 8738593A JP 2933798 B2 JP2933798 B2 JP 2933798B2
Authority
JP
Japan
Prior art keywords
decomposition
photosensitizer
gas
carbon particles
hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5087385A
Other languages
Japanese (ja)
Other versions
JPH06298509A (en
Inventor
島崎善広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAKUNENRYO SAIKURU KAIHATSU KIKO
Original Assignee
KAKUNENRYO SAIKURU KAIHATSU KIKO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAKUNENRYO SAIKURU KAIHATSU KIKO filed Critical KAKUNENRYO SAIKURU KAIHATSU KIKO
Priority to JP5087385A priority Critical patent/JP2933798B2/en
Publication of JPH06298509A publication Critical patent/JPH06298509A/en
Application granted granted Critical
Publication of JP2933798B2 publication Critical patent/JP2933798B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は超微粒子製造、超伝導材
製造、ウラン濃縮、セラミックス製造、難分解物質の処
理等の分野に利用することができる光増感反応を利用し
た炭化水素の分解による炭素超微粒子製造方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the decomposition of hydrocarbons using a photosensitization reaction which can be used in fields such as ultrafine particle production, superconducting material production, uranium enrichment, ceramics production and treatment of hardly decomposable substances. And a method for producing ultrafine carbon particles using the method described above.

【0002】[0002]

【従来の技術】従来、複数個の原子、分子が凝集した炭
素超微粒子の製造方法としては、 気密性反応容器内に原料物質を封じ、容器を加熱して
一定時間反応させ、製造する方法(特開平4ー3424
06号公報)。
2. Description of the Related Art Conventionally, as a method for producing ultra-fine carbon particles in which a plurality of atoms and molecules are aggregated, a method of sealing a raw material in an airtight reaction vessel, heating the vessel, and reacting for a predetermined time ( JP-A-4-3424
06 publication).

【0003】容器内で黒鉛等の炭素棒を電極とし、ア
ーク放電させて製造する方法(日本質量分析学会出版
「質量分析」Vol40,No4,pp203〜21
5、1992)。
A method in which a carbon rod such as graphite is used as an electrode in a container and arc discharge is carried out (“Mass Spectroscopy”, Vol. 40, No. 4, pp. 203-21, published by the Japan Society for Mass Spectrometry).
5, 1992).

【0004】炭素棒等にレーザ光を照射し、蒸発によ
り製造する方法(特開平5ー25614号公報)。
A method of irradiating a carbon rod or the like with a laser beam and evaporating the carbon rod (Japanese Patent Laid-Open No. 5-25614).

【0005】が、主として行われていた。However, it has been mainly performed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記
の製造方法においては、反応の開始および停止に時間を
要し、人間の手で操作可能な温度に下がるまで待たなけ
ればならないなど時間がかかってしまう。また、、
の製造方法においては、火花、あるいはレーザ光により
炭素棒表面が削られるため、製造条件が不均一となり、
また、炭素棒毎のバッチ処理であるため量産に向かず、
経済性が低い等の問題があった。
However, in the above-described production method, it takes time to start and stop the reaction, and it takes a long time to wait for the temperature to be lowered to a level that can be operated by a human hand. . Also,,
In the method of manufacturing, since the carbon rod surface is shaved by sparks or laser light, the manufacturing conditions become non-uniform,
Also, because it is a batch process for each carbon rod, it is not suitable for mass production,
There were problems such as low economic efficiency.

【0007】本発明は上記課題を解決するためのもの
で、均一かつ安定した条件で製造でき、さらに高純度で
粉体物性を容易に制御することができ、連続的に量産
し、製造コストを下げることができる光増感反応を利用
した炭化水素の分解による炭素超微粒子製造方法を提供
することを目的とする。
The present invention has been made to solve the above-mentioned problems, and can be manufactured under uniform and stable conditions. Further, the physical properties of the powder can be easily controlled with high purity. It is an object of the present invention to provide a method for producing ultrafine carbon particles by decomposing a hydrocarbon using a photosensitization reaction that can be reduced.

【0008】本発明の光増感反応を利用した炭化水素の
分解による炭素超微粒子の製造方法は、原料ガス、特定
の波長のレーザ光を選択的に吸収する光増感物質、及び
キャリアガスを連続的に混合する段階、混合したガスを
照射容器に導入し、前記特定の波長のレーザ光を照射し
て光増感物質を励起し、励起した光増感物質と原料物質
との衝突によるエネルギー移動を利用して原料物質を分
解する段階、分解により生成した炭素超微粒子を回収す
る段階からなることを特徴とする。
According to the method of the present invention for producing ultrafine carbon particles by decomposing a hydrocarbon utilizing a photosensitization reaction, a method for producing a raw material gas, a photosensitizer capable of selectively absorbing laser light having a specific wavelength, and a carrier gas are provided. Continuously mixing, introducing the mixed gas into the irradiation vessel, irradiating the laser light of the specific wavelength to excite the photosensitizer, and energy due to collision between the excited photosensitizer and the raw material. The method is characterized in that it comprises a step of decomposing a raw material using transfer, and a step of collecting ultrafine carbon particles generated by the decomposition.

【0009】[0009]

【作用】本発明は、特定の波長を吸収する媒質にレーザ
光を吸収させ、その光増感作用を利用して炭化水素の原
料物質を分解することにより、制御性良く高純度の炭素
超微粒子を連続的に製造し、量産化、製造コストの逓減
化を計ることを可能としたものである。図1は本発明の
製造方法を実施するための構成を示すブロック図であ
る。図中、1は原料ガス、2は光増感物質、3はキャリ
アガス、4はガス混合器、5は照射容器、6はレーザー
装置、7は製品捕集器、8は製品回収器、9は真空ポン
プである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention provides a highly controllable high-purity ultrafine carbon particle by absorbing a laser beam into a medium absorbing a specific wavelength and decomposing a hydrocarbon material using the photosensitizing effect. Are manufactured continuously, and mass production and a reduction in manufacturing cost can be achieved. FIG. 1 is a block diagram showing a configuration for implementing the manufacturing method of the present invention. In the figure, 1 is a source gas, 2 is a photosensitizer, 3 is a carrier gas, 4 is a gas mixer, 5 is an irradiation container, 6 is a laser device, 7 is a product collector, 8 is a product collector, 9 Is a vacuum pump.

【0010】原料ガス1は気体状炭化水素、メタン、エ
タン、アセチレン、プロピレン等からなり、これと六フ
ッ化イオウ(SF6 )等からなる光増感物質2、アルゴ
ン、窒素等のキャリアガス3をそれぞれ所定の圧力、流
量に調整した後、金属製またはガラス製真空容器からな
るガス混合器4に配管を通して送られる。ガス混合器4
は、例えば、商品名「スケアミキサー」(株式会社櫻製
作所)として市販されているものでよく、図2に示すよ
うに、パイプ状ハウジング10内に分割板11と変位板
12を組み合わせたものを1つのエレメントとし、各エ
レメントを直角に交叉させて長手方向に配列し、図の矢
印で示すように、ハウジング内に入った流体は分割板1
1で分割されるとともに、変位板12で置換され、次の
エレメントで再分割、置換が繰り返し行われ、原料ガス
1、光増感物質2、キャリアガス3は連続的に混合され
る。ガス混合器4で混合された混合ガスはキャピラリー
を通して照射容器5に導入され、例えば、炭酸ガスレー
ザーからなるレーザー装置6から発振された光増感物質
に同調する波長のレーザービームで照射される。
The raw material gas 1 is composed of gaseous hydrocarbons, methane, ethane, acetylene, propylene and the like, and a photosensitizer 2 composed of sulfur hexafluoride (SF 6 ) and the like, and a carrier gas 3 such as argon and nitrogen. Are adjusted to predetermined pressures and flow rates, respectively, and then sent through a pipe to a gas mixer 4 formed of a metal or glass vacuum vessel. Gas mixer 4
May be commercially available, for example, under the trade name “Scare Mixer” (Sakura Seisakusho Co., Ltd.). As shown in FIG. 2, a combination of a split plate 11 and a displacement plate 12 in a pipe-shaped housing 10 As one element, the elements are arranged at right angles to each other and arranged in the longitudinal direction.
1 and replaced by the displacement plate 12, and re-division and replacement are repeatedly performed by the next element, and the raw material gas 1, the photosensitizer 2 and the carrier gas 3 are continuously mixed. The mixed gas mixed in the gas mixer 4 is introduced into the irradiation container 5 through a capillary, and irradiated with a laser beam having a wavelength tuned to the photosensitizer oscillated from the laser device 6 composed of, for example, a carbon dioxide laser.

【0011】照射容器5は、例えば、図3に示すよう
に、キャピラリー21から導入された混合ガスに対して
KClまたはZnSe窓20を通して直交方向からレー
ザービーム22を照射するようにしたものである。な
お、レーザービームのフルエンスは光増感物質が分解に
至らない程度に調整して照射する必要がある。このレー
ザービーム照射により反応は瞬時に生じて炭素超微粒子
が連続的に生成する。すなわち、照射を受けた混合ガス
中の光増感物質はレーザービームを吸収し、瞬時に振動
励起状態に到るが、続いて原料物質である炭化水素と分
子衝突を起こし、その振動エネルギーを炭化水素に移動
する。衝突によりエネルギーの移動を受けた炭化水素
は、自己分解または相互の衝突による分解反応を起こ
し、より低次の炭化水素に分解し、連続的に炭素超微粒
子を生成する。
The irradiation container 5 irradiates a mixed gas introduced from a capillary 21 with a laser beam 22 from a perpendicular direction through a KCl or ZnSe window 20, as shown in FIG. The fluence of the laser beam needs to be adjusted so that the photosensitizer does not decompose before irradiation. By this laser beam irradiation, a reaction occurs instantaneously and carbon ultrafine particles are continuously generated. In other words, the photosensitizer in the irradiated gas mixture absorbs the laser beam and instantaneously enters a vibrationally excited state, but subsequently undergoes molecular collisions with the hydrocarbon, which is the raw material, and carbonizes the vibrational energy. Transfer to hydrogen. Hydrocarbons that have undergone energy transfer due to collisions undergo a decomposition reaction due to self-decomposition or mutual collision, decompose to lower-order hydrocarbons, and continuously produce ultrafine carbon particles.

【0012】生成された炭素超微粒子は、キャリアガス
の流れに乗って取り出し口23より製品捕集器7に至
り、フィルタで濾過され、キャリアガスと未反応ガス
は、ターボ分子ポンプ、ロータリポンプ等からなる真空
ポンプ9で排気される。製品である炭素超微粒子は時間
とともに製品捕集器7内に蓄積していくが、一定時間後
に下部に設けた製品回収器8に落下させて回収する。製
品捕集器7は二系統あり、相互の切替え運転によって捕
集を連続化する。
The generated ultrafine carbon particles ride on the flow of the carrier gas, reach the product collector 7 from the outlet 23, and are filtered by a filter. The carrier gas and the unreacted gas are separated by a turbo molecular pump, a rotary pump, or the like. It is evacuated by a vacuum pump 9 consisting of The carbon ultrafine particles, which are products, accumulate in the product collector 7 with time, and after a certain period of time, are dropped into the product collector 8 provided below and collected. The product collector 7 has two systems, and the collection is continuous by mutual switching operation.

【0013】例えば、図4に示すように、交互に切替え
運転される2つの製品捕集器7a、7bに配管30、導
入弁31、32を通してキャリアガスで炭素超微粒子を
導入し、フィルタ35で濾過して炭素超微粒子を回収し
てキャリアガスと未反応ガスは排気弁32、34を通し
て排気する。製品捕集器7aから製品を回収する場合に
は、弁31、33を閉じるとともに、弁32、34を開
いて製品捕集器7bを運転させ、製品捕集器7aの下部
から製品回収器8に落下させて回収する。交互に製品捕
集器7a、7bを動作させることにより、製品捕集を連
続化することができる。
For example, as shown in FIG. 4, ultrafine carbon particles are introduced into the two product collectors 7a and 7b, which are operated alternately, by a carrier gas through a pipe 30 and introduction valves 31 and 32. After filtering, the carbon ultrafine particles are recovered, and the carrier gas and the unreacted gas are exhausted through exhaust valves 32 and 34. When collecting the product from the product collector 7a, the valves 31 and 33 are closed, and the valves 32 and 34 are opened to operate the product collector 7b. Drop and collect. By operating the product collectors 7a and 7b alternately, product collection can be continuous.

【0014】このようにレーザー光を利用することによ
り非接触的に原料物質から高純度の炭素超微粒子を製造
するため、混合ガスの混合比、流量、レーザー光のエネ
ルギー等の条件を任意に変化させることができ、得られ
る製品の粒径、密度等を容易に制御することが可能であ
ると共に、原料に室温で気体状の物質を使用できるため
連続的プロセスが可能であり、量産性が向上し、経済性
を上げることが可能となる。
As described above, in order to non-contactly produce high-purity carbon ultrafine particles from a raw material by utilizing laser light, conditions such as a mixing ratio of a mixed gas, a flow rate, and energy of laser light are arbitrarily changed. It is possible to easily control the particle size, density, etc. of the obtained product, and since a gaseous substance can be used as a raw material at room temperature, a continuous process is possible, and mass productivity is improved. It is possible to raise economic efficiency.

【0015】[0015]

【実施例】原料にアセチレン、光増感物質にSF6 、レ
ーザー装置に炭酸ガスレーザーを用いた場合、次の反応
により炭素超微粒子が製造できる。
EXAMPLES When acetylene is used as a raw material, SF 6 is used as a photosensitizer, and a carbon dioxide laser is used as a laser device, ultrafine carbon particles can be produced by the following reaction.

【0016】 SF6 + hν→SF6 * ………(1) SF6 * +C2 2 →SF6 +C2 2 * ………(2) C2 2 * →2C+H2 ………(3) C2 2 * +C2 2 * →4C+2H2 ………(4) なお、hνはレーザ光の光子エネルギーを示し、* 印は
励起状態の分子を示している。すなわち、SF6 にレー
ザー光を照射すると、励起状態(SF6 * )となり、S
6 * とC2 2 との衝突によりエネルギーがC2 2
に移動して励起状態(C2 2 * )となり、分解して炭
素超微粒子が生成される。
SF 6 + hν → SF 6 * (1) SF 6 * + C 2 H 2 → SF 6 + C 2 H 2 * (2) C 2 H 2 * → 2C + H 2 (2) 3) C 2 H 2 * + C 2 H 2 * → 4C + 2H 2 (4) Here, hν indicates the photon energy of the laser light, and * indicates a molecule in an excited state. That is, when a laser beam is irradiated on SF 6 , the SF 6 is excited (SF 6 * ) and S 6
Due to the collision between F 6 * and C 2 H 2 , the energy is C 2 H 2
To an excited state (C 2 H 2 * ) and decompose to produce ultrafine carbon particles.

【0017】[0017]

【発明の効果】以上のように本発明によれば、非接触プ
ロセスであるため、高純度の製品を得ることができ、ま
た、混合比、流量、レーザー光のエネルギーを任意に調
整できるため、炭素微粒子の粒子径、嵩密度等の粉体物
性を容易に制御することができる。また、連続プロセス
であるため、量産により製造コストの低減化を図ること
が可能となる。
As described above, according to the present invention, since it is a non-contact process, a high-purity product can be obtained, and the mixing ratio, the flow rate, and the energy of the laser beam can be arbitrarily adjusted. Powder physical properties such as the particle diameter and bulk density of the carbon fine particles can be easily controlled. Further, since the process is a continuous process, it is possible to reduce the manufacturing cost by mass production.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の製造方法を実施する構成を示すブロ
ック図である。
FIG. 1 is a block diagram showing a configuration for implementing a manufacturing method of the present invention.

【図2】 混合器の例を示す図である。FIG. 2 is a diagram illustrating an example of a mixer.

【図3】 照射容器を説明する図である。FIG. 3 is a diagram illustrating an irradiation container.

【図4】 製品捕集器を説明する図である。FIG. 4 is a diagram illustrating a product collector.

【符号の説明】[Explanation of symbols]

1…原料ガス、2…光増感物質、3…キャリアガス4…
ガス混合槽、5…照射容器、6…レーザー装置、7…製
品捕集器、8…製品回収器、9…真空ポンプ。
1 ... source gas, 2 ... photosensitizer, 3 ... carrier gas 4 ...
Gas mixing tank, 5 irradiation container, 6 laser device, 7 product collector, 8 product collector, 9 vacuum pump.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C01B 31/02 101 B01J 19/12 B01J 35/02 CA(STN) WPI/L(QUESTEL)──────────────────────────────────────────────────の Continued on the front page (58) Fields surveyed (Int. Cl. 6 , DB name) C01B 31/02 101 B01J 19/12 B01J 35/02 CA (STN) WPI / L (QUESTEL)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 原料ガス、特定の波長のレーザ光を選択
的に吸収する光増感物質、及びキャリアガスを連続的に
混合する段階、 混合したガスを照射容器に導入し、前記特定の波長のレ
ーザ光を照射して光増感物質を励起し、励起した光増感
物質と原料物質との衝突によるエネルギー移動を利用し
て原料物質を分解する段階、 分解により生成した炭素超微粒子を回収する段階、 からなる ことを特徴とする光増感反応を利用した炭化水
素の分解による炭素超微粒子の製造方法。
1. A material gas and a laser beam having a specific wavelength are selected.
Continuously absorb photosensitizer and carrier gas
Mixing , introducing the mixed gas into the irradiation vessel, and
Irradiates laser light to excite the photosensitizer,
Utilizing energy transfer by collision between substance and raw material
Decomposing the raw material Te step method of producing a carbon ultrafine particles by decomposition of hydrocarbons using a photosensitizer response characterized by comprising steps of, recovering the resulting carbon ultrafine particles by decomposition.
JP5087385A 1993-04-14 1993-04-14 Method for producing ultrafine carbon particles by decomposition of hydrocarbon using photosensitization reaction Expired - Fee Related JP2933798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5087385A JP2933798B2 (en) 1993-04-14 1993-04-14 Method for producing ultrafine carbon particles by decomposition of hydrocarbon using photosensitization reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5087385A JP2933798B2 (en) 1993-04-14 1993-04-14 Method for producing ultrafine carbon particles by decomposition of hydrocarbon using photosensitization reaction

Publications (2)

Publication Number Publication Date
JPH06298509A JPH06298509A (en) 1994-10-25
JP2933798B2 true JP2933798B2 (en) 1999-08-16

Family

ID=13913433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5087385A Expired - Fee Related JP2933798B2 (en) 1993-04-14 1993-04-14 Method for producing ultrafine carbon particles by decomposition of hydrocarbon using photosensitization reaction

Country Status (1)

Country Link
JP (1) JP2933798B2 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Chem.Phys.Lett.214(1)p34−38

Also Published As

Publication number Publication date
JPH06298509A (en) 1994-10-25

Similar Documents

Publication Publication Date Title
Yang et al. Oxygen vacancies induced special CO2 adsorption modes on Bi2MoO6 for highly selective conversion to CH4
Smith et al. Products of the Vacuum‐Ultraviolet Photolysis of Germane Isolated in an Argon Matrix
EP0579105B1 (en) Apparatus and method for removing carbon dioxide contained in exhaust gas
US4000051A (en) Laser isotope separation process
RU2305065C2 (en) Method of preparing carbon, metallic, and metallocarbon nanoparticles
JP2933798B2 (en) Method for producing ultrafine carbon particles by decomposition of hydrocarbon using photosensitization reaction
CN111195482B (en) Method for separating O-17 isotope from water and method for concentrating O-17 isotope
JP2544280B2 (en) Method for producing crystalline silicon ultrafine particles
JPH02255537A (en) Production of fine powder of molybdenum disulfide
JP2561866B2 (en) Method for producing fine particles of boron carbide
Betteridge et al. Production of ethylene episulfide from laser irradiation of sulfur surfaces in the presence of ethylene
Ehbrecht et al. Laser-driven synthesis of carbon and silicon clusters from gas-phase reactants
US20050155910A1 (en) Method for separating particles different in size, structure, or function and apparatus therefor
RU2042748C1 (en) Diamond synthesis method
JPH0662357B2 (en) Diamond powder manufacturing method
JPH0639327B2 (en) Method for producing fine particles of boron titanate
JPH0639325B2 (en) Method for producing fine particles of boron
JPH0621023B2 (en) Method for producing fine particles of silicon carbide
JP2000063295A (en) Hydrogenation of multiple bond compound, production of methane and hydrogenation catalyst
JPH03262504A (en) Preparation of separated liquid and fine metal particle from superfine metal particle dispersion
WO2005033007A1 (en) Method and apparatus for producing carbon nanotube
JP3360165B2 (en) An efficient laser isotope separation and enrichment method for multiple isotopes using the same working substance
JPS6365077A (en) Laser cvd device
Thompson Reactions of laser-ablated beryllium, tellurium, and magnesium atoms with small molecules: A matrix isolation infrared study
JPS63297299A (en) Method for vapor synthesis of diamond

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees