JPH02255537A - Production of fine powder of molybdenum disulfide - Google Patents

Production of fine powder of molybdenum disulfide

Info

Publication number
JPH02255537A
JPH02255537A JP7751889A JP7751889A JPH02255537A JP H02255537 A JPH02255537 A JP H02255537A JP 7751889 A JP7751889 A JP 7751889A JP 7751889 A JP7751889 A JP 7751889A JP H02255537 A JPH02255537 A JP H02255537A
Authority
JP
Japan
Prior art keywords
laser
fine particles
laser light
gaseous mixture
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7751889A
Other languages
Japanese (ja)
Other versions
JPH0637304B2 (en
Inventor
Toshiyuki Oyama
大山 俊之
Kazuo Takeuchi
武内 一夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP7751889A priority Critical patent/JPH0637304B2/en
Publication of JPH02255537A publication Critical patent/JPH02255537A/en
Publication of JPH0637304B2 publication Critical patent/JPH0637304B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/06Sulfides

Abstract

PURPOSE:To obtain MoS2 which is extremely small and uniform in grain size and can be utilized as a solid lubricant by irradiating a gaseous mixture contg. Mo(CO)6 and CS2 or H2S with laser light. CONSTITUTION:The pulsant laser light 12 of an adequate wave number generated from a CO2 laser 11 is passed through a stop 16 and is then condensed by a BaF2 lens 13. The condensed laser light is passed through a KBr window 17 and is projected to a gaseous sample 15 which is the gaseous mixture composed of the Mo(CO)6 and the CS2 or H2S in a irradiation reaction vessel 14. The residual and formed gases are evacuated and removed after the irradiation of the laser light and after the inside of the vessel 14 is filled with an inert gas, the fine particles deposited by the photoreaction are taken out of the vessel 18. The gaseous mixture composed of the Mo(CO)6 of 12Torr and the CS2 of 200 Torr is irradiated with the pulse light of P(24) of 9.6mum band, i.e., 1043cm<-1> of the CO2 laser in this case. The pulse energy at this time is about 1J/pulse and the focal length of the lens used is 7.5cm.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、レーザーによる二硫化モリブデン(MO92
)微粒子の製造に関し、詳しくは、ガスブレークダウン
を利用したレーザーによる二硫化モリブデン微粒子の製
造法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention is directed to the production of molybdenum disulfide (MO92) by laser.
) Regarding the production of fine particles, in particular, it relates to a method for producing fine particles of molybdenum disulfide using a laser using gas breakdown.

(従来の技術) 一般に種々の材料となる物質は、原子の数が無限側の集
合体であり、その物質の大きさが極端に小さくなると、
特異な性質を示すようになる。物質の粒径が1μm(原
子数にして10I0個)以下のものは微粒子と呼ばれ、
焼結原料、触媒、生物工学等の種々の用途に用いられる
新素材として関心が持たれている。この場合、用いられ
る微粒子に望ましい条件は、化学的純度が高いこと、球
状でありその粒径が小さいこと、粒径が均一であること
等である。このような微粒子の製造法としては、固相反
応法、液相反応法、気相反応法等があるが、上記の条件
に適合した微粒子の製造法としては気相反応法が最適で
ある。
(Prior art) Substances that are used as various materials are generally aggregates with an infinite number of atoms, and when the size of the substance becomes extremely small,
It begins to exhibit unique properties. Substances with a particle size of 1 μm or less (10I0 atoms) are called fine particles.
There is interest as a new material for various uses such as sintering raw materials, catalysts, and biotechnology. In this case, desirable conditions for the fine particles used include high chemical purity, spherical shape and small particle size, and uniform particle size. Methods for producing such fine particles include a solid phase reaction method, a liquid phase reaction method, a gas phase reaction method, etc., but the gas phase reaction method is most suitable as a method for producing fine particles that meet the above conditions.

他方、レーザー技術に関する進歩は目覚ましく、広い波
長領域で強力な光を発振するレーザーが開発されている
。とりわけ、典型的な赤外レーザーである炭酸ガスレー
ザーは、その高効率、高出力のため、種々の用途が考え
られている。例えば、パルス発振TEA−Co□レーザ
ーの赤外多光子解離による同位体分離や連続発振CD□
レーザーの熱反応による微粒子製造等が研究されており
、すでに、第4図に示すような気相反応法とレーザー誘
起反応とを組合わせた微粒子生成法(セラミックス:1
9 (1984)、Nα6、p482)が報告されてい
る。これは、反応ガスをCO2レーザーで加熱して、以
下に示す反応によって、5i1SiC13iaN*の超
微粒子を生成するものである。
On the other hand, progress in laser technology is remarkable, and lasers that emit powerful light in a wide wavelength range have been developed. In particular, carbon dioxide lasers, which are typical infrared lasers, are considered for various uses due to their high efficiency and high output. For example, isotope separation by infrared multiphoton dissociation of pulsed TEA-Co□ laser and continuous wave CD□
The production of fine particles through laser thermal reactions is being researched, and a fine particle production method (ceramics: 1
9 (1984), Nα6, p482) has been reported. This involves heating a reaction gas with a CO2 laser and producing ultrafine particles of 5i1SiC13iaN* through the reaction shown below.

SiH4(g) −5i(s)+2Hz(g)2SiH
4(g) + C2H4(g)→2SiC(s) + 
6Ha(g)3Si)I4(g) + 4N)Is (
g)→SiJ4(g) + 1282 (g)(発明が
解決しようとする課題) 本発明者等は、レーザ一応用技術を研究した過程で、前
述のC02レーザーの熱反応法に代わって、気体の誘電
破壊(ガスブレークダウン)、すなわち、パルス発振レ
ーザーを気体に照射するとレーザー光の時間的、空間的
な高輝度のために生じる現象を利用して、微粒子を生成
することができることを見い出した。このブレークダウ
ンを利用すると、原料気体にレーザーを照射して種々の
反応を誘起させ粒径の非常に小さい固体生成物を製造す
ることができる。この方法の特長は次のようなものであ
る。(1)照射光の波長領域に吸収帯を有しない物質も
原料として用いることができる。(2)光の吸収効率が
よい。(3)操作圧が高く、反応は連鎖的なので収量が
多い。(4)器壁からの不純物の混入がない。(5)常
温の反応容器で高融点物質が得られる。(6)粒径分布
が狭い微粒子が得られる。(7)反応装置が単純で容易
に行うことができる。本発明は、上記のような特長を有
するレーザーによるブレークダウンを利用したMoS2
の微粒子を製造する方法を提供することを目的とする。
SiH4(g) -5i(s)+2Hz(g)2SiH
4(g) + C2H4(g) → 2SiC(s) +
6Ha(g)3Si)I4(g) + 4N)Is (
g) → SiJ4(g) + 1282 (g) (Problem to be Solved by the Invention) In the process of researching laser application technology, the present inventors developed a gas-based method instead of the thermal reaction method of the C02 laser described above. We have discovered that it is possible to generate microparticles by utilizing dielectric breakdown (gas breakdown), a phenomenon that occurs when a gas is irradiated with a pulsed laser due to the temporal and spatial high brightness of the laser light. . Utilizing this breakdown, it is possible to produce solid products with extremely small particle sizes by irradiating the raw material gas with a laser to induce various reactions. The features of this method are as follows. (1) Substances that do not have an absorption band in the wavelength region of the irradiated light can also be used as raw materials. (2) Good light absorption efficiency. (3) The operating pressure is high and the reaction is chain-like, so the yield is high. (4) There is no contamination of impurities from the vessel wall. (5) A high melting point substance can be obtained in a reaction vessel at room temperature. (6) Fine particles with a narrow particle size distribution can be obtained. (7) The reaction apparatus is simple and the reaction can be carried out easily. The present invention provides MoS2 using laser breakdown having the above-mentioned features.
An object of the present invention is to provide a method for manufacturing fine particles of.

(課題を解決するための手段) モリブデンカルボニル[Mo(CO)s ]二硫化炭素
(CS2)又は硫化水素(H2S)を含む混合ガスにレ
ーザー光を照射して、ガスブレークダウン現象により二
硫化モリブデン(MoS2)の微粒子を生成することを
特徴とする。
(Means for solving the problem) Molybdenum carbonyl [Mo(CO)s] By irradiating laser light on a mixed gas containing carbon disulfide (CS2) or hydrogen sulfide (H2S), molybdenum disulfide is produced by a gas breakdown phenomenon. It is characterized by producing fine particles of (MoS2).

照射すべきレーザー光としてはパルス発振C02レーザ
ー光を使用することができる。
A pulsed C02 laser beam can be used as the laser beam to be irradiated.

(作 用) 以下本発明の詳細な説明する。(for production) The present invention will be explained in detail below.

粒径の揃った特性の良い微粒子の製法としては、気体原
料を用いる気相法が適しているが、Mo5tの気体の原
料として、モリブデンカルボニルCMo (CD) s
 )と二硫化炭素(CS2)又は硫化水素(H,S)の
混合ガスを用いる。この原料にC02レーザー光を照射
すると、レーザー光の単位断面接当たりのエネルギー(
フルエンス)が小さい場合には、レーザー光のエネルギ
ーはガスにほとんど吸収されないが、ある程度以上の強
さのレーザー光の場合、原料ガス内でブレークダウンが
起こって、照射されたレーザーエネルギーのほとんどが
吸収される。これは原料ガス分子の光エネルギーによる
イオン化およびそれによって生じた電子の光エネルギー
吸収に続くイオン化の操り返しによって次ぎの反応が引
き起こされる。
As a method for producing fine particles with uniform particle size and good characteristics, a gas phase method using a gaseous raw material is suitable, but as a gaseous raw material for Mo5t, molybdenum carbonyl CMo (CD)
) and carbon disulfide (CS2) or hydrogen sulfide (H,S). When this raw material is irradiated with C02 laser light, the energy per unit cross section of the laser light (
When the fluence (fluence) is small, the energy of the laser beam is hardly absorbed by the gas, but when the intensity of the laser beam exceeds a certain level, breakdown occurs within the source gas and most of the irradiated laser energy is absorbed. be done. The next reaction is caused by the ionization of source gas molecules by light energy and the subsequent manipulation of the ionization following absorption of light energy by the electrons produced thereby.

Mo(COs)+C3i = Mo5a + 6CD+
CMo(COs)+ 2)+2S=  MO52+  
6Cロ+2H。
Mo(COs)+C3i = Mo5a + 6CD+
CMo(COs)+ 2)+2S= MO52+
6Cro+2H.

この場合、照射に使用するレーザーの波長は、原料ガス
の吸収波長に関係なく、できるだけパルスエネルギーの
強い発振波長が良い。上記の反応によって得られるMo
5sは気相で均一核生成と成長によって生成した粒子状
のもので、原理的に球状で粒径分布が狭く、粒径が0.
1μm以下の微粒子であり、生成条件の制御により得ら
れる微粒子の特性を変えることが可能である。
In this case, the wavelength of the laser used for irradiation is preferably an oscillation wavelength with as strong a pulse energy as possible, regardless of the absorption wavelength of the source gas. Mo obtained by the above reaction
5s is a particulate material produced by uniform nucleation and growth in the gas phase, and is theoretically spherical with a narrow particle size distribution and a particle size of 0.5s.
They are fine particles with a size of 1 μm or less, and the characteristics of the fine particles obtained can be changed by controlling the production conditions.

実際の微粒子の製造には、回分式又は連続流通式の照射
セルを使用し、生成した微粒子はフィルターやその他の
補集装置で補集することができる。
In actual production of fine particles, a batch type or continuous flow type irradiation cell is used, and the generated fine particles can be collected with a filter or other collection device.

(発明の効果) このように、本発明によって得られたMoS2微粒子は
、粒径が非常に小さくしかも均一であり、また、固体潤
滑剤として利用できる。現在、MO32微粒子は粉砕法
によって製造されているが粒径が小さく均一な微粒子が
得られにくい。また、粉砕機からの不純物の混入も避け
られない。本性では前述のように、生成原理も簡単なも
のであり、現行法よりも著しく有利である。
(Effects of the Invention) As described above, the MoS2 fine particles obtained by the present invention have a very small and uniform particle size, and can be used as a solid lubricant. Currently, MO32 fine particles are produced by a pulverization method, but the particle size is small and it is difficult to obtain uniform fine particles. In addition, contamination with impurities from the crusher is also unavoidable. In essence, as mentioned above, the generation principle is simple, and it is significantly more advantageous than the current method.

(実施例) 本発明に使用した装置の概略を第1図に示す。(Example) An outline of the apparatus used in the present invention is shown in FIG.

CO。レーザー11から発生された適切な波数のパルス
状レーザー光12が絞り16を通過した後、BaF2レ
ンズ13で集光される。この集光されたレーザー光はK
Br窓17を通して、照射反応容器14内のMo (C
D) aとC82又はLSの混合気体である試料気体1
5を照射される。照射後、残留および生成ガスを排気除
去し、不活性ガスで容器内を充たした後、補集容器18
に光反応により堆積した微粒子がこの容器から取り出さ
れる。
C.O. A pulsed laser beam 12 of an appropriate wave number generated by a laser 11 passes through an aperture 16 and is then focused by a BaF2 lens 13. This focused laser light is K
Mo (C
D) Sample gas 1 which is a mixed gas of a and C82 or LS
5 is irradiated. After irradiation, residual and generated gases are exhausted and removed, and after filling the container with inert gas, the collection container 18 is
The fine particles deposited by the photoreaction are removed from this container.

12TorrのMo (CO) sと200 Torr
のC32の混合ガスにCO2レーザーの9.6.um帯
のP(24)、すなわち10430111−’のパルス
光を照射した、この時のパルスエネルギーは約I J 
/ pulse 、使用したレンズの焦点距離は7.5
 cmである。
Mo(CO)s at 12 Torr and 200 Torr
9.6. of CO2 laser on C32 mixed gas. P(24) in the um band, that is, 10430111-' pulsed light was irradiated, and the pulse energy at this time was approximately I J
/ pulse, the focal length of the lens used is 7.5
cm.

第2図は生成した微粒子の粒径の分布を走査型電子顕微
鏡写真を用いて測定した結果のグラフである。本性によ
って得られた平均粒径が0.07μmの比較的均一な分
布を示すMO52微粒子であることが確言忍できた。
FIG. 2 is a graph showing the results of measuring the particle size distribution of the produced fine particles using a scanning electron microscope photograph. It was confirmed that the obtained MO52 fine particles had a relatively uniform distribution with an average particle diameter of 0.07 μm.

また、生成した微粒子のX線回折の解析から得られた固
定数と元素分析の結果から、生成微粒子は非晶質のMo
S2であることを確認した。
In addition, from the fixed number obtained from X-ray diffraction analysis of the generated fine particles and the results of elemental analysis, it was found that the generated fine particles were amorphous Mo.
I confirmed that it was S2.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例に用いた装置の概略図、 第2図は、本発明の実施例で得られたMo微粒子の粒径
分布を示すグラフ、 第3図は、従来の連続発振C02レーザーを用いた気相
法による微粒子生成法の反応容器の概略図。 (符号の説明) 11・・・・・・0口、レーザー 12・・・・・・レーザー光、 13・・・・・・BaFzレンズ、 ・・・・・・照射反応容器、 ・・・・・・試料気体、 ・・・・・・絞り、 ・・・・・・にBr窓板、 ・・・・・・補集容器。 第1図 第2図 粒径 (pm) 第3図 フィルターへ ↑ 反応ガス導入口
Fig. 1 is a schematic diagram of the apparatus used in the example of the present invention, Fig. 2 is a graph showing the particle size distribution of Mo fine particles obtained in the example of the present invention, and Fig. 3 is a graph showing the particle size distribution of Mo fine particles obtained in the example of the present invention. FIG. 2 is a schematic diagram of a reaction vessel for a gas-phase microparticle generation method using an oscillating C02 laser. (Explanation of symbols) 11...0 mouth, laser 12...laser light, 13...BaFz lens, ...irradiation reaction vessel, ... ...sample gas, ...diaphragm, ...Br window plate, ...collection container. Figure 1 Figure 2 Particle size (pm) Figure 3 To the filter ↑ Reaction gas inlet

Claims (1)

【特許請求の範囲】 モリブデンカルボニル〔Mo(CO)_6〕と二硫化炭
素(CS_2)又は硫化水素(H_2S)とを含む混合
ガスにレーザー光を照射して二硫化モリブデン(MoS
_2)の微粒子を製造する方法。
[Claims] A mixed gas containing molybdenum carbonyl [Mo(CO)_6] and carbon disulfide (CS_2) or hydrogen sulfide (H_2S) is irradiated with laser light to produce molybdenum disulfide (MoS).
_2) A method for producing fine particles.
JP7751889A 1989-03-29 1989-03-29 Method for producing molybdenum disulfide fine particles Expired - Lifetime JPH0637304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7751889A JPH0637304B2 (en) 1989-03-29 1989-03-29 Method for producing molybdenum disulfide fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7751889A JPH0637304B2 (en) 1989-03-29 1989-03-29 Method for producing molybdenum disulfide fine particles

Publications (2)

Publication Number Publication Date
JPH02255537A true JPH02255537A (en) 1990-10-16
JPH0637304B2 JPH0637304B2 (en) 1994-05-18

Family

ID=13636188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7751889A Expired - Lifetime JPH0637304B2 (en) 1989-03-29 1989-03-29 Method for producing molybdenum disulfide fine particles

Country Status (1)

Country Link
JP (1) JPH0637304B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001038940A3 (en) * 1999-11-24 2002-01-10 Yeda Res & Dev Method for surface patterning using a focused laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001038940A3 (en) * 1999-11-24 2002-01-10 Yeda Res & Dev Method for surface patterning using a focused laser

Also Published As

Publication number Publication date
JPH0637304B2 (en) 1994-05-18

Similar Documents

Publication Publication Date Title
US5770126A (en) High producing rate of nano particles by laser liquid interaction
US6680041B1 (en) Reaction methods for producing metal oxide particles
US20090258244A1 (en) Method for producing nanoparticles and nanostructured films
US6068800A (en) Production of nano particles and tubes by laser liquid interaction
WO1997009454A9 (en) High production rate of nano particles by laser liquid interaction
US10125418B2 (en) Method for the preparation of Ag/C nanocomposite films by laser-induced carbonization of alkane
JP2005177983A (en) Manufacturing method of nano particles
JP2009518174A (en) System and method for continuous flow generation of nano or submicron powders by the action of laser pyrolysis
Bulychev Obtaining nanosized materials in plasma discharge and ultrasonic cavitation
RU2305065C2 (en) Method of preparing carbon, metallic, and metallocarbon nanoparticles
Ivashchenko et al. Laser-Induced-Electro-Explosion Synthesis of Powder Materials (LIEES)
Subramanian et al. A novel technique for synthesis of silver nanoparticles by laser-liquid interaction
JPH02255537A (en) Production of fine powder of molybdenum disulfide
Wang et al. Sonochemical synthesis of size-controlled mercury selenide nanoparticles
JPH03164417A (en) Production of artificial diamond material
JPH03215309A (en) Production of fine particle of boron carbide
JP3099539B2 (en) Manufacturing method of artificial diamond powder
JPH02194110A (en) Manufacture of molybdenum fine particles
JPH0621023B2 (en) Method for producing fine particles of silicon carbide
JPH0639325B2 (en) Method for producing fine particles of boron
JPS61200851A (en) Method and apparatus for preparing fine particle
JPH0639327B2 (en) Method for producing fine particles of boron titanate
JP2933798B2 (en) Method for producing ultrafine carbon particles by decomposition of hydrocarbon using photosensitization reaction
JPS6397226A (en) Producing apparatus for hyperfine particle
RU2055698C1 (en) Method of obtaining ultrafinely divided powders