JP2931735B2 - Silica glass for devitrification resistant discharge lamp - Google Patents

Silica glass for devitrification resistant discharge lamp

Info

Publication number
JP2931735B2
JP2931735B2 JP12034893A JP12034893A JP2931735B2 JP 2931735 B2 JP2931735 B2 JP 2931735B2 JP 12034893 A JP12034893 A JP 12034893A JP 12034893 A JP12034893 A JP 12034893A JP 2931735 B2 JP2931735 B2 JP 2931735B2
Authority
JP
Japan
Prior art keywords
silica glass
devitrification
concentration
ppm
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12034893A
Other languages
Japanese (ja)
Other versions
JPH06305767A (en
Inventor
茂 山形
司 坂口
満葉 栗山
勲 平野
正則 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP12034893A priority Critical patent/JP2931735B2/en
Publication of JPH06305767A publication Critical patent/JPH06305767A/en
Application granted granted Critical
Publication of JP2931735B2 publication Critical patent/JP2931735B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【産業上の利用分野】本発明は、耐失透性に優れた放電
灯用シリカガラス、特にメタルハライドランプの発光管
として有用なシリカガラスに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silica glass for a discharge lamp having excellent devitrification resistance, and more particularly to a silica glass useful as an arc tube of a metal halide lamp.

【0002】[0002]

【従来の技術】近年、各種の高出力光源が開発され、そ
の発光管の素材としてシリカガラスが利用されるように
なってきた。前記光源のうちメタルハライドランプはそ
の高効率、高輝度、演色性の良さから省エネルギー光源
として注目を集め盛んに研究開発されてきた。
2. Description of the Related Art In recent years, various high-output light sources have been developed, and silica glass has been used as a material for the arc tube. Among these light sources, metal halide lamps have been attracting attention as energy-saving light sources due to their high efficiency, high luminance, and good color rendering properties, and have been actively researched and developed.

【0003】メタルハライドランプはその発光管内に希
土類金属元素のハロゲン化物が封入されており、それが
発光し、光を放射するランプであるが、その発光時のバ
ルブ温度は900〜1100℃、内圧は5〜30kgf
/cm2になる。このように高温、高圧で封入ガスを発
光させるランプであることから、その発光管は透明性に
優れているばかりでなく、化学耐久性、耐急熱急冷性、
およびガス不透過性にも優れた素材でなければならな
い。これらの要件を満たす素材としてシリカガラスがあ
り、前記メタルハライドランプの発光管は専らこのシリ
カガラスから作られてきた。ところが、シリカガラス製
の発光管は、点灯を続けるうちにその内表面に徐々に黒
色失透や白色失透が生じ、光の強度低下を招き、また演
色性も悪化する。その上、作動電圧の上昇および再点弧
スパイク電圧の発生も起こりランプの寿命は短いもので
あった。前記黒色失透は、シリカガラス中に存在する水
分子またはOH基の分解により発生する酸素と電極部分
の金属や封入金属ガスとの酸化反応に基くものであり、
また、再点弧スパイク電圧の発生および作動電圧の上昇
はシリカガラス中に溶存する水素分子および前記水分子
またはOH基の加熱分解により発生する水素分子による
ものである。さらに、白色失透は、アルカリ金属元素や
アルカリ土類金属元素による再結晶化の促進および封入
ガスによる化学的エッチングが原因と推定されている
(松野博光、外(1981)メタルハライドランプにお
ける光束維持率低下の機構、照明学会誌、第65巻、第
4号、176〜181頁)。
[0003] A metal halide lamp is a lamp in which a halide of a rare earth metal element is sealed in an arc tube, which emits light and emits light. At the time of light emission, the bulb temperature is 900 to 1100 ° C and the internal pressure is 5-30kgf
/ Cm 2 . Since the lamp emits the sealed gas at high temperature and pressure as described above, the arc tube not only has excellent transparency, but also has chemical durability, rapid heat quenching resistance,
The material must also have excellent gas impermeability. A material satisfying these requirements is silica glass, and the arc tube of the metal halide lamp has been exclusively made of this silica glass. However, as the arc tube made of silica glass continues to be lit, black or white devitrification gradually occurs on the inner surface of the arc tube, resulting in a decrease in light intensity and poor color rendering. In addition, the operating voltage has increased and a re-ignition spike voltage has occurred, so that the lamp life has been short. The black devitrification is based on an oxidation reaction between oxygen generated by the decomposition of water molecules or OH groups present in the silica glass and the metal or the enclosed metal gas of the electrode portion,
The generation of the re-ignition spike voltage and the increase in the operating voltage are due to hydrogen molecules dissolved in the silica glass and hydrogen molecules generated by thermal decomposition of the water molecules or OH groups. Further, white devitrification is presumed to be caused by promotion of recrystallization by an alkali metal element or an alkaline earth metal element and chemical etching by a sealing gas (Hiritsu Matsuno, Gaito (1981) Luminous flux maintenance factor in a metal halide lamp). Mechanism of decline, Journal of the Illuminating Engineering Institute, Vol. 65, No. 4, pp. 176-181).

【0004】そこで、上記OH基の濃度およびアルカリ
金属元素並びにアルカリ土類金属元素濃度を低減したシ
リカガラスがメタルハライドランプ用シリカガラスとし
て開発され市販されている。具体的にはOH基濃度が2
wt.ppm以下の高純度の合成シリカガラスがある。
確かに、前記市販のシリカガラスは、黒色失透や作動電
圧の上昇および再点弧スパイク電圧の発生を抑えたガラ
スではあるが、白色失透の抑制は未だ充分でなく、今日
に至も寿命の長いメタルハライドランプ用シリカガラス
は提案されていない。
Accordingly, silica glass having a reduced concentration of the OH group and a reduced concentration of alkali metal elements and alkaline earth metal elements has been developed and marketed as silica glass for metal halide lamps. Specifically, when the OH group concentration is 2
wt. There is a synthetic silica glass of high purity of less than ppm.
Certainly, the commercially available silica glass suppresses the occurrence of black devitrification, an increase in operating voltage, and the occurrence of a re-ignition spike voltage. No silica glass for metal halide lamps has been proposed.

【0005】[0005]

【発明が解決しようとする課題】こうした現状を踏まえ
て、本発明者等は、メタルハライドランプ用シリカガラ
スの失透について鋭意研究した結果、シリカガラス中の
非移動性のOH基濃度、アルカリ金属元素濃度およびア
ルカリ土類金属元素濃度を低くすると共に、シリカガラ
ス粘度を高くすること、シリカガラス中に酸素欠損型欠
陥を多くすること、さらにシリカガラス中にアルミニウ
ム元素を含有させることが前記失透、特に化学的エッチ
ングや再結晶化による白色失透を抑えることができるこ
とを発見した。こうした知見に基づいて本発明は完成し
たものである。
In view of this situation, the present inventors have conducted intensive studies on the devitrification of silica glass for metal halide lamps. Lowering the concentration and alkaline earth metal element concentration, increasing the viscosity of the silica glass, increasing the number of oxygen-deficient defects in the silica glass, and further including an aluminum element in the silica glass, devitrification, In particular, they have found that white devitrification due to chemical etching and recrystallization can be suppressed. The present invention has been completed based on these findings.

【0006】本発明の目的は、白色失透および黒色失透
の起こり難い放電灯用シリカガラス、特にメタルハライ
ドランプ用シリカガラスを提供することをその目的とす
る。
An object of the present invention is to provide a silica glass for a discharge lamp, particularly a silica glass for a metal halide lamp, in which white and black devitrification hardly occur.

【0007】また、本発明は、高圧水銀ランプ、高出力
紫外線ランプ、メタルハライドランプとして長い寿命を
保持できる放電灯用シリカガラスを提供することをその
目的とする。
Another object of the present invention is to provide a silica glass for a discharge lamp capable of maintaining a long life as a high-pressure mercury lamp, a high-power ultraviolet lamp, or a metal halide lamp.

【0008】[0008]

【課題を解決するための手段】上記目的を達成する本発
明は、非移動性のOH基濃度が50wt.ppm以下、
リチウム、ナトリウムおよびカリウムのアルカリ金属元
素濃度が2wt.ppm以下、カルシウムおよびマグネ
シウムのアルカリ土類金属元素濃度が1wt.ppm以
下、アルミニウム元素の含有量が5wt.ppm〜50
wt.ppm、1100℃における粘度が1014ポアズ
以上、酸素欠損型欠陥量が250nm吸収帯の吸収係数
で5×10-2cm-1以上であることを特徴とする耐失透
性放電灯用シリカガラスに係る。
In order to achieve the above object, the present invention provides a non-mobile OH group having a concentration of 50 wt. ppm or less,
When the alkali metal element concentration of lithium, sodium and potassium is 2 wt. ppm or less, and the concentration of alkaline earth metal element of calcium and magnesium is 1 wt. ppm or less, and the content of the aluminum element is 5 wt. ppm to 50
wt. ppm, a viscosity at 1100 ° C. of 10 14 poise or more, and an oxygen deficiency type defect amount of 5 × 10 −2 cm −1 or more in an absorption coefficient of 250 nm absorption band, characterized by being a silica glass for a devitrification-resistant discharge lamp. According to.

【0009】一般に、シリカガラス中に含まれる水分子
またはOH基には、移動性のOH基と非移動性のOH基
とがあることがわかっている。これらのOH基は発光時
に加熱分解して酸素を放出し、それが電極部分の金属や
封入金属ガスと反応し、黒色失透を起こさせると言われ
ている。したがって、黒色失透を低減させるには前記O
H基の濃度を低減すればよいが、OH基は、高純度化処
理等の高温処理で大部分除去できるものの、その完全な
る除去は困難である。しかしながら、溶融して得たシリ
カガラスをさらに大気圧中または減圧下で900℃以上
の高温で8時間以上の加熱脱ガス処理をすると黒色失透
を最も起こしやすい移動性のOH基を完全に除去するこ
とができ、黒色失透の低減を図ることができる。特に、
加熱脱ガス処理後の非移動性のOH基濃度は50wt.
ppm以下としなければならない。OH基濃度は、D.
M.Dodd,D.B.Fraser(1966)Op
tical Determinations of O
H in Fused Silica J.Appli
ed Physics,Vol.37, p.3911
に記載の方法に従う。
It is generally known that water molecules or OH groups contained in silica glass include mobile OH groups and non-mobile OH groups. It is said that these OH groups are thermally decomposed during light emission to release oxygen, which reacts with the metal in the electrode portion or the enclosed metal gas to cause black devitrification. Therefore, in order to reduce black devitrification, the O
Although the concentration of the H group may be reduced, most of the OH group can be removed by a high-temperature treatment such as a purification treatment, but it is difficult to completely remove the OH group. However, when the silica glass obtained by melting is further heated and degassed at a high temperature of 900 ° C. or more for 8 hours or more at atmospheric pressure or reduced pressure, mobile OH groups which are most likely to cause black devitrification are completely removed. And the devitrification of black can be reduced. Especially,
The non-mobile OH group concentration after the heat degassing treatment is 50 wt.
ppm or less. The OH group concentration is determined by
M. Dodd, D .; B. Fraser (1966) Op
physical Determinations of O
Hin Fused Silica J. et al. Appli
Physics, Vol. 37, p. 3911
Follow the method described in

【0010】上記脱ガス処理は、移動性のOH基の低減
にとどまらず、シリカガラス中の水素分子濃度を作動電
圧の上昇や再点弧スパイク電圧の発生が低減できる1×
1017molecules/cm3以下にすることがで
きる。水素分子濃度は、V.S . Khotimch
enko,et al.(1987)Determin
ing the Content of Hydrog
en Dissolved in Quartz Gl
ass Using the Method of R
aman Scattering and Mass
Spectrometry,J.Appl.Spect
rosc.,Vol.46,No.6,pp632〜6
35に記載の方法に従う。
[0010] The degassing treatment is not limited to the reduction of mobile OH groups. The degassing treatment can reduce the concentration of hydrogen molecules in the silica glass by 1 × which can reduce the increase in operating voltage and the occurrence of re-ignition spike voltage.
It can be 10 17 molecules / cm 3 or less. The hydrogen molecule concentration is V. S. Khotimch
enko, et al. (1987) Determin
ing the Content of Hydrog
en Dissolved in Quartz Gl
as Using the Method of R
aman Scattering and Mass
Spectrometry, J. et al. Appl. Spect
rosc. , Vol. 46, no. 6, pp 632-6
35.

【0011】酸素欠損型欠陥は、シリカガラスの構造欠
陥の一つである酸素原子の欠損に基づくが、この酸素欠
損型欠陥の存在によりクリストバライトの生成、すなわ
ちシリカガラスのクリストバライトへの相転移が起こり
難くなるばかりでなく、シリカガラスから放出される酸
素原子の量も減少でき、白色失透や黒色失透を低減させ
ることができる。酸素欠損型欠陥量は、約250nm
(5.0eV)の吸収帯としてあらわれ(H.Imai
et al.,(1988) Twotypes o
f oxygen−deficient center
s in synthetic silica gla
ss.Physical Review B, Vo
l.38,No.17,pp12772〜1277
5)、250nmの吸収係数を測定することにより求め
られるが、酸素欠損型欠陥量の存在による低減効果は、
吸収係数で5×10-2cm-1以上でなければならない。
The oxygen-deficient defect is based on the deficiency of an oxygen atom, which is one of the structural defects of silica glass, and the presence of the oxygen-deficient defect causes the generation of cristobalite, that is, the phase transition of the silica glass to cristobalite. Not only becomes difficult, but also the amount of oxygen atoms released from the silica glass can be reduced, and white and black devitrification can be reduced. The amount of oxygen-deficient defects is about 250 nm
(5.0 eV) appeared (H. Imai)
et al. , (1988) Twotypes o
foxygen-definent center
s in synthetic silica gla
ss. Physical Review B, Vo
l. 38, no. 17, pp12772 to 1277
5), which can be obtained by measuring the absorption coefficient at 250 nm.
It must have an absorption coefficient of at least 5 × 10 -2 cm -1 .

【0012】上記吸収係数kは次式で求めた値である。 The absorption coefficient k is a value obtained by the following equation.

【0013】上記に加えて、さらに化学的エッチングに
よる白色失透の低減もシリカガラス中に特定量のアルミ
ニウム元素を含有させ、かつシリカガラスの粘度を11
00℃で1014ポアズ以上とすることにより達成でき
る。
In addition to the above, in order to further reduce white devitrification by chemical etching, a specific amount of aluminum element is contained in silica glass and the viscosity of silica glass is reduced to 11%.
00 can be achieved by a 10 14 poise or more at ° C..

【0014】上記アルミニウム元素含有量は5wt.p
pm〜50wt.ppmがよい。前記範囲以下では耐エ
ッチング性の向上がなく、また前記範囲以上ではアルミ
ナ−シリカ系鉱物やシリカ鉱物が生成しやすく、白色失
透を増す。アルミニウム元素の上記範囲内への制御は、
高純度化処理済水晶粉に酸化アルミニウム、硝酸アルミ
ニウム、炭酸アルミニウム、塩化アルミニウム、ヨウ化
アルミニウム等のアルミニウム化合物を均一に混合し、
乾燥した後、加熱溶融しガラス化することにより達成さ
れる。
The content of the aluminum element is 5 wt. p
pm to 50 wt. ppm is good. Below this range, there is no improvement in etching resistance, and above this range, alumina-silica-based minerals and silica minerals are likely to be formed, increasing white devitrification. Control of the aluminum element within the above range is as follows:
Aluminum compounds such as aluminum oxide, aluminum nitrate, aluminum carbonate, aluminum chloride, and aluminum iodide are uniformly mixed with highly purified quartz powder,
It is achieved by heating, melting and vitrifying after drying.

【0015】また、上記粘度は、天然水晶を調整した後
電気溶融法で溶融してガラス化することにより容易に得
られる。粘度が前記範囲であると原子の再配例化が迎え
られ耐エッチング性が一段と向上する。
[0015] The above viscosity can be easily obtained by preparing natural quartz, melting it by an electric melting method and vitrifying it. When the viscosity is in the above-mentioned range, rearrangement of atoms occurs, and the etching resistance is further improved.

【0016】本発明のシリカガラスは、原料として粉砕
した天然の水晶粉を塩素ガスまたは塩化水素ガス含有雰
囲気中で900〜1100℃、10〜50時間の高純度
化処理した後、該水晶粉にアルミニウム化合物を均一に
混合し、乾燥し、電気炉内で加熱溶融して透明ガラス化
し、次いで得られた透明ガラス塊をチュ−ブ形状のガラ
スに形成し、それを大気中または減圧下で、900〜1
100℃、10〜100時間、脱ガス処理することによ
り製造される。
The silica glass of the present invention is obtained by subjecting a crushed natural quartz powder as a raw material to a high purity treatment at 900 to 1100 ° C. for 10 to 50 hours in an atmosphere containing chlorine gas or hydrogen chloride gas. The aluminum compound is homogeneously mixed, dried, heated and melted in an electric furnace to form a transparent glass, and then the obtained transparent glass mass is formed into a tube-shaped glass, which is then dried in the air or under reduced pressure. 900-1
It is manufactured by degassing at 100 ° C. for 10 to 100 hours.

【0017】以下に実施例でさらに具体的に説明する。Hereinafter, the present invention will be described more specifically with reference to Examples.

【実施例】【Example】

(1)シリカガラスの作成 天然水晶粉を塩化水素ガス雰囲気下にて、1000℃で
10時間加熱処理を行い、高純度化した。次に、この天
然水晶粉に硝酸アルミニウム水溶液を混合し、乾燥させ
た。前記調整粉を2種類の方法で透明ガラス化した。即
ち、1つは真空電気溶融法であり、他は酸水素火炎溶融
法(ベルヌイ法)であった。前記シリカガラス中のアル
カリ金属元素濃度およびアルカリ土類金属元素濃度は表
1のとおりである。
(1) Preparation of Silica Glass A natural quartz powder was subjected to a heat treatment at 1000 ° C. for 10 hours in a hydrogen chloride gas atmosphere to be highly purified. Next, an aqueous solution of aluminum nitrate was mixed with the natural quartz powder and dried. The adjusted powder was vitrified by two methods. That is, one was a vacuum electric melting method and the other was an oxyhydrogen flame melting method (Bernui method). Table 1 shows the alkali metal element concentration and alkaline earth metal element concentration in the silica glass.

【0018】[0018]

【表1】 [Table 1]

【0019】上記透明ガラス塊からチュ−ブ状ガラスを
作成し、大気中にて1100℃で100時間加熱し、脱
ガス処理を行った。得られたチュ−ブ状ガラスを下記の
測定法で測定し、その物性値を求め表2に示す。
A tube-like glass was prepared from the transparent glass lump, and heated in the atmosphere at 1100 ° C. for 100 hours to perform a degassing treatment. The obtained tube-shaped glass was measured by the following measuring methods, and the physical properties thereof were determined and are shown in Table 2.

【0020】他方、四塩化ケイ素を原料として、酸水素
火炎加水分解法により作成した高純度合成シリカガラ
ス、および前記四塩化ケイ素に少量の三塩化アルミニウ
ムを混合したものを同じように酸水素火炎加水分解法で
溶融して合成シリカガラスを作った。これらのガラス塊
をチュ−ブ状に成形した後、脱水素ガス処理を行った。
その結果を表2の参考例5、6として示す。
On the other hand, high-purity synthetic silica glass prepared by oxyhydrogen flame hydrolysis using silicon tetrachloride as a raw material, and a mixture of silicon tetrachloride and a small amount of aluminum trichloride are similarly used in oxyhydrogen flame hydrolysis. It was melted by a decomposition method to make a synthetic silica glass. After forming these glass lump into a tube shape, a dehydrogenation gas treatment was performed.
The results are shown as Reference Examples 5 and 6 in Table 2.

【0021】(2)物性値の測定 ・ 水放出量の測定;ガスマス分析法(那須昭一、他
(1990)石英ガラスのガス放出、照明学会誌、第7
4巻、第9号、595〜600頁参照) ・ OH基濃度の測定;赤外線吸収法(D.M.Dod
d,etal.,J.Appl.Phys.Vol.3
7(1966),pp3911参照) ・ アルミニウム,アルカリ金属、およびアルカリ土類
金属元素各含有量の測定;原子吸光光度法。 ・ 粘度テスト;ビームベンヂング法(ASTM,C−
598−72(1983)参照) ・ 吸収係数の測定;紫外線分光光度法。 ・ 水素分子濃度測定;ラマン散乱分光高度法(V.
S.Khotimchenko,et al.(198
7)) ・ 失透テスト;大気中、1280℃、120hr.の
熱処理を行った後、目視にて微結晶生成による白色失透
を観察する。 ・ エッチングテスト;20℃、50wt.%HF水溶
液に10分間サンプルを投入し、表面エッチング深さを
測定する。
(2) Measurement of physical properties-Measurement of water release; gas mass analysis method (Shoichi Nasu, et al. (1990) Gas release from quartz glass, Journal of the Illuminating Engineering Institute, No. 7
Vol. 4, No. 9, pp. 595-600) Measurement of OH group concentration; infrared absorption method (DM Dod)
d, et al. , J. et al. Appl. Phys. Vol. 3
7 (1966), pp 3911)-Measurement of the contents of aluminum, alkali metal, and alkaline earth metal elements; Atomic absorption spectrophotometry.・ Viscosity test; beam bending method (ASTM, C-
598-72 (1983)) Measurement of absorption coefficient; ultraviolet spectrophotometry. -Measurement of hydrogen molecule concentration; Raman scattering spectroscopy (V.
S. Khotimchenko, et al. (198
7))-Devitrification test; in air, 1280 ° C, 120 hr. After performing the heat treatment, white devitrification due to the formation of microcrystals is visually observed. Etching test: 20 ° C., 50 wt. The sample is put in a 10% aqueous HF solution for 10 minutes, and the surface etching depth is measured.

【0022】(3)メタルハライドランプ点灯実験 東忠利(1981)希土類ハロゲン化物入りメタルハラ
イドランプの発光特性、照明学会誌、第65巻、第10
号、487〜492頁の第4節に記載する高輝度光源用
短ア−クランプの作成法を参照にしてランプを作成し
た。初期の光出力を100%として、500時間点灯後
の出力を測定すると共に、目視にて白色化と黒色化の程
度を観察した。なお、ランプバルブの厚さは2mmであ
った。
(3) Metal halide lamp lighting experiment Tadashi Higashi (1981) Emission characteristics of metal halide lamps containing rare earth halides, Journal of the Illuminating Engineering Institute, Vol. 65, No. 10
The lamp was prepared with reference to the method of preparing a short arc lamp for a high-intensity light source described in Section No. 4, pp. 487-492. With the initial light output as 100%, the output after lighting for 500 hours was measured, and the degree of whitening and blackening was visually observed. The thickness of the lamp bulb was 2 mm.

【0023】[0023]

【表2】 [Table 2]

【0024】上記表2にみるように本発明のシリカガラ
スは著しく失透の低減がみられ、出力の低下が起こりに
くいことがわかる。
As shown in Table 2 above, the silica glass of the present invention has a remarkable reduction in devitrification, and it is understood that the output is unlikely to decrease.

【0025】[0025]

【発明の効果】本発明のシリカガラスは、上記に見たと
おり白色失透や黒色失透が低減でき、しかも該シリカガ
ラスで作成したメタルハライドランプは500時間の点
灯テストでも80%以上の出力を有する。このように本
発明のシリカガラスで作成したメタルハライドランプは
長い寿命を有する。
As described above, the silica glass of the present invention can reduce the white devitrification and the black devitrification as described above, and the metal halide lamp made of the silica glass has an output of 80% or more even in a lighting test for 500 hours. Have. Thus, the metal halide lamp made of the silica glass of the present invention has a long life.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平野 勲 東京都新宿区西新宿一丁目22番2号 信 越石英株式会社内 (72)発明者 鈴木 正則 福島県郡山市田村町金屋字川久保88 信 越石英株式会社 郡山工場内 (56)参考文献 特開 平4−46020(JP,A) 特開 平5−24856(JP,A) 特開 平6−199539(JP,A) 特開 平3−83833(JP,A) (58)調査した分野(Int.Cl.6,DB名) C03C 3/06 C03B 20/00 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Isao Hirano Shin-Etsu Quartz Co., Ltd. 1-22-2 Nishi Shinjuku, Shinjuku-ku, Tokyo (72) Inventor Masanori Suzuki 88 Shin Kawakubo, Kanaya, Tamura-cho, Koriyama-shi, Fukushima Prefecture (56) References JP-A-4-46020 (JP, A) JP-A-5-24856 (JP, A) JP-A-6-199539 (JP, A) JP-A-3- 83833 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C03C 3/06 C03B 20/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】非移動性のOH基濃度が50wt.ppm
以下、リチウム、ナトリウムおよびカリウムのアルカリ
金属元素濃度が2wt.ppm以下、カルシウムおよび
マグネシウムのアルカリ土類金属元素濃度が1wt.p
pm以下、アルミニウム元素の含有量が5wt.ppm
〜50wt.ppm、1100℃における粘度が1014
ポアズ以上、酸素欠損型陥量が250nm吸収帯の吸収
係数で5×10-2cm-1以上であることを特徴とする耐
失透性放電灯用シリカガラス。
(1) a non-mobile OH group concentration of 50 wt. ppm
Hereinafter, when the concentration of alkali metal elements of lithium, sodium and potassium is 2 wt. ppm or less, and the concentration of alkaline earth metal element of calcium and magnesium is 1 wt. p
pm or less, and the content of the aluminum element is 5 wt. ppm
5050 wt. ppm, the viscosity at 1100 ° C. is 10 14
A silica glass for a devitrification-resistant discharge lamp, characterized in that the amount of oxygen-deficient depressions is not less than Poise and the absorption coefficient in a 250 nm absorption band is not less than 5 × 10 -2 cm -1 .
【請求項2】水素分子濃度が1×1017molecul
es/cm3以下であることを特徴とする請求項1に記
載の耐失透性放電灯用シリカガラス。 【0001】
2. A hydrogen molecule concentration of 1 × 10 17 molecul
The silica glass for a devitrification-resistant discharge lamp according to claim 1, wherein the silica glass is es / cm 3 or less. [0001]
JP12034893A 1993-04-26 1993-04-26 Silica glass for devitrification resistant discharge lamp Expired - Lifetime JP2931735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12034893A JP2931735B2 (en) 1993-04-26 1993-04-26 Silica glass for devitrification resistant discharge lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12034893A JP2931735B2 (en) 1993-04-26 1993-04-26 Silica glass for devitrification resistant discharge lamp

Publications (2)

Publication Number Publication Date
JPH06305767A JPH06305767A (en) 1994-11-01
JP2931735B2 true JP2931735B2 (en) 1999-08-09

Family

ID=14784013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12034893A Expired - Lifetime JP2931735B2 (en) 1993-04-26 1993-04-26 Silica glass for devitrification resistant discharge lamp

Country Status (1)

Country Link
JP (1) JP2931735B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60042943D1 (en) * 1999-10-18 2009-10-22 Panasonic Corp Mercury high-pressure discharge lamp whose blackening is reduced by low content of lithium, sodium and potassium
JP2002097036A (en) * 2000-09-21 2002-04-02 Photoscience Japan Corp Vitreous silica for short wavelength ultraviolet ray, discharge lamp using it, the container, and ultraviolet ray radiation device
JP3582500B2 (en) * 2001-05-23 2004-10-27 ウシオ電機株式会社 Ultra high pressure mercury lamp
JP3687655B2 (en) 2003-02-13 2005-08-24 ウシオ電機株式会社 Super high pressure discharge lamp
JP2007026675A (en) * 2003-06-24 2007-02-01 Matsushita Electric Ind Co Ltd Light irradiation device, lamp for it, and light irradiation method
JP2006344383A (en) * 2003-06-24 2006-12-21 Matsushita Electric Ind Co Ltd Light irradiation device
JP5171605B2 (en) * 2008-12-26 2013-03-27 信越石英株式会社 Synthetic silica glass for discharge lamp and method for producing the same
JP5293430B2 (en) * 2009-06-11 2013-09-18 ウシオ電機株式会社 Excimer lamp
JP5252730B2 (en) * 2009-06-19 2013-07-31 信越石英株式会社 Synthetic silica glass bulb for discharge lamp and method for producing the same

Also Published As

Publication number Publication date
JPH06305767A (en) 1994-11-01

Similar Documents

Publication Publication Date Title
JP5171605B2 (en) Synthetic silica glass for discharge lamp and method for producing the same
JP5706623B2 (en) Synthetic silica glass and method for producing the same
JP5366303B2 (en) Synthetic silica glass for discharge lamps, discharge lamp lamps produced therewith, discharge lamp apparatus provided with the discharge lamp lamps, and method for producing the synthetic silica glass for discharge lamps
JP2931735B2 (en) Silica glass for devitrification resistant discharge lamp
JP3582500B2 (en) Ultra high pressure mercury lamp
JPS6026055B2 (en) Quartz glass and its manufacturing method
JP2007532459A (en) Quartz glass element for UV radiation source, its manufacturing method and method for determining suitability of quartz glass element
JPH07121814B2 (en) Topped quartz glass
JP2008030988A (en) Silica glass material
EP1137047B1 (en) High-pressure discharge lamp
JP2933298B2 (en) Silica glass for devitrification resistant lamp
JP2991901B2 (en) Ultraviolet absorbing silica glass and method for producing the same
JP3775734B2 (en) GLASS COMPOSITION FOR LIGHTING AND FLUORESCENT LAMP USING THE SAME
JP2955463B2 (en) Silica glass having good ultraviolet absorption and high visible light transmission and method for producing the same
JP4756430B2 (en) Glass for electric lamp and manufacturing method thereof
JP3671732B2 (en) ArF excimer laser, optical member for KrF excimer laser, and method for manufacturing photomask substrate
US20040213724A1 (en) High purity synthetic vitreous silica particles
JP3358883B2 (en) Ultraviolet absorbing visible light transmitting silica glass for high pressure discharge lamp and method for producing the same
JP2005310455A (en) Ultraviolet lamp
JP6908237B2 (en) Quartz glass article with ultraviolet absorption and its manufacturing method
JP5252730B2 (en) Synthetic silica glass bulb for discharge lamp and method for producing the same
JP4392204B2 (en) Quartz glass and method for producing the same
JPH06227827A (en) Transparent silica glass and its production
JP3519426B2 (en) Stabilization method of synthetic quartz glass for optics
JP3875287B2 (en) Synthetic quartz glass for optics and manufacturing method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090521

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090521

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110521

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 14

EXPY Cancellation because of completion of term