JP2924009B2 - 燃料電池の発電停止方法 - Google Patents

燃料電池の発電停止方法

Info

Publication number
JP2924009B2
JP2924009B2 JP1282448A JP28244889A JP2924009B2 JP 2924009 B2 JP2924009 B2 JP 2924009B2 JP 1282448 A JP1282448 A JP 1282448A JP 28244889 A JP28244889 A JP 28244889A JP 2924009 B2 JP2924009 B2 JP 2924009B2
Authority
JP
Japan
Prior art keywords
compartment
fuel gas
gas
fuel
oxidant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1282448A
Other languages
English (en)
Other versions
JPH0381970A (ja
Inventor
彰利 瀬谷
孝 氏家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Publication of JPH0381970A publication Critical patent/JPH0381970A/ja
Application granted granted Critical
Publication of JP2924009B2 publication Critical patent/JP2924009B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、マトリックス形燃料電池の緊急停止や長
時間休止を含む発電運転の停止方法、ことに反応ガスを
不活性ガスに置換する方法に関する。
〔従来の技術〕
周知のように、燃料電池は電解液を保持したマトリッ
クスを一対の燃料電極と酸化剤電極で挟んだ単電池複数
個を積層面にガス不透過板を介装して積層したセルスタ
ックとし、燃料電極とガス不透過板との間に画成された
燃料ガス通路に水素リッチな燃料ガスを供給し、酸化剤
電極とガス不透過板との間に画成された酸化剤としての
空気または酸素を供給することによって発電を行うもの
である。また、燃料電池は発電反応によって酸化剤電極
側に生成水を生ずるので、電解液として吸湿性の高いり
ん酸を用いる電池ではその運転温度を130℃から190℃,
一般には190℃程度の高温に保って生成水の排出を容易
化するとともに、電極触媒の活性を保持して発電運転が
行われる。このようにして運転される燃料電池の運転を
停止または休止するために外部負荷回路に流れる電流を
遮断すると、各単電池には高い値の高温開回路電圧が発
生し、電極触媒粒子が粗大化して電極表面積が低下する
劣化現象(シンタリングと呼ぶ)が発生し、発電性能の
低下や寿命低下をまねくこと。また、電池温度の低下と
ともに反応ガス中の水分を吸着してりん酸が希釈され、
体積膨張したりん酸液がマトリックスから電極側に過度
にしみ出して反応ガスの供給障害を起こすこと。さらに
は、りん酸液の漏出したマトリックスのガス区分機能が
低下して反応ガスとしての空気と燃料ガスが混触し、爆
鳴気を発生する危険性が高まることなど種々の障害が発
生する。
そこでこれらの障害を回避して燃料電池の発電を停止
するために、外部負荷回路を遮断するとともに、燃料ガ
スおよび酸化剤ガスの供給を停止し、燃料ガス通路およ
びその給排マニホールドからなる燃料ガス区画室および
酸化剤通路およびその給排マニホールドからなる酸化剤
区画室それぞれに乾燥した窒素などの不活性ガスを供給
して残存反応ガス(燃料ガスまたは酸化剤ガス)をパー
ジしながら燃料電池を降温する方法が知られている。ま
た、燃料電池を短期間休止する場合、外部負荷回路を開
き、燃料ガスおよび空気を自然対流で供給しながら、外
部負荷回路と並列に設けられた放電抵抗を介して電池を
放電させ、酸化剤区画室内の空気中の酸素を消費し、こ
の区画室内に空気中の窒素を充満させて発電を停止する
方法。および酸化剤区画室で生成した窒素を燃料ガス区
画室に供給して水素をパージした後両ガス区画室を封止
し、放電抵抗を開放して発電を長期間休止する方法が知
られている(特開昭55−19713号公報参照)。
〔発明が解決しようとする課題〕
上述の従来方法のうち前者においては、外部から窒素
ガスを供給することによって両区画室内の反応ガスを早
期にパージすることができるので、高温開回路電圧によ
る障害やりん酸の吸湿に起因する障害、ならびに反応ガ
スが混触する危険性を回避することができる。すなわ
ち、高温開回路電圧についてみると、酸化剤電極,燃料
電極ともに窒素でパージするため、両電極の例えば標準
水素電位に対する電位はほぼ等しくなり、その電位差で
決まる単電池の開回路電圧は見かけ上十分低くなり、し
たがって高温開回路電圧によるシンタリング等の悪影響
を回避できるものと考えられてきた。しかしながら、酸
化剤電極側には電極触媒粒子の表面に化学吸着している
残存吸着酸素が存在しており、窒素ガスによるパージだ
けではこの残存吸着酸素を脱着できず、これが原因で酸
化剤電極は高い電位を保持していることが最近の研究で
明らかになり、酸化剤電極が冷えるまでの高温状態で高
い電位にさらされることにより、触媒層に悪影響が現わ
れることを回避できない欠点があることが明らかになっ
た。
一方後者の二つの従来方法においては、窒素等の不活
性ガスの供給を必要としないために装置を簡素化できる
が、反応ガスを自然拡散で供給しつつ小電流の放電で空
気中の酸素および燃料ガス中の水素をゆっくり消費する
ので、前者に比べて電極が高温開回路電圧に近い状態に
さらされる時間が長くなり、この間電極触媒の劣化を回
避できない。また、酸化剤区画室内の酸素濃度が低下す
ると同時に燃料ガス区画室内の水素濃度も低下するの
で、酸化剤電極の残存吸着酸素の消費が十分行われない
か、あるいは消費に時間がかかることになり、この間酸
化剤電極が高電位にさらされるという問題点が残る。
この発明の目的は、不活性ガスによる反応ガスのパー
ジタイミングを両区画室間で所定時間ずらすことによ
り、酸化剤電極の残留吸着酸素をほぼ完全に消費できる
運転停止方法を得ることにある。
〔課題を解決するための手段〕
上記課題を解決するために、この発明によれば、電解
質を保持したマトリックスを挟持する酸化剤電極に酸化
剤区画室から酸化剤としての空気を供給し、燃料電池に
燃料ガス区画室から水素リッチな燃料ガスを供給して発
電を行う燃料電池の発電を停止する際に、 前記燃料電池の外部負荷回路を開き、前記空気を不活
性ガスに切り換えて前記酸化剤区画室内をガス置換し、
前記燃料ガスの供給を停止して前記燃料ガス区画室内へ
燃料ガスを封入し、前記酸化剤電極と燃料電極とを放電
抵抗に接続して起電反応により発生する電流を放電電流
として流し、放電電流が所定値以下となった後に放電抵
抗への接続を切断する、あるいは、 前記燃料電池の外部負荷回路を開き、前記空気を不活
性ガスに切り換えて前記酸化剤区画室内をガス置換し、
前記燃料ガスの供給を停止して前記燃料ガス区画室内へ
燃料ガスを封入し、しかる後前記燃料ガス区画室内に不
活性ガスを供給して前記燃料ガス区画室内に封入された
燃料ガスを前記酸化剤区画室側に導入し、酸化剤電極の
触媒燃焼反応により残留吸着酸素を消費する、又は、 前記燃料電池の外部負荷回路を開き、前記空気を不活
性ガスに切り換えて前記酸化剤区画室内をガス置換し、
前記燃料ガスの供給を停止して前記燃料ガス区画室内へ
燃料ガスを封入し、前記酸化剤電極と燃料電極とを放電
抵抗に接続して起電反応により発生する電流を放電電流
として流し、放電電流が所定値以下となった後に前記燃
料ガス区画室のガス供給側を空気中に開放して燃料ガス
区画室内の残存燃料ガスと空気とを自然対流によって混
合し、前記燃料電極の触媒燃料反応により前記残存燃料
ガス中の水素を燃焼させ、前記燃焼ガス区画室内を不活
性ガスに置換する、 こととする。
〔作用〕
上記手段において、外部負荷回路を遮断した後まず酸
化剤区画室に不活性ガスを供給して酸化剤ガスをパージ
し、燃料ガス区画室内に燃料ガスを封入して外部負荷回
路に並列に配された放電抵抗を投入して小電流の放電回
路を形成するよう構成したことにより、酸化剤電極には
燃料電極の電極反応によって生じた水素イオンおよび電
荷が電解液および短絡回路を介して豊富に供給され、酸
化剤電極に化学吸着した残留吸着酸素との電極反応によ
って残留吸着酸素が消費されるので、酸化剤電極の電位
は大幅に低下する。この電極電位の低下は放電電流の低
下を監視することによって検知できるので、放電電流の
低下を確認した後燃料ガス区間室に不活性ガスを供給し
て燃料ガスをパージし、かつ放電回路を開くことによ
り、残留吸着酸素を含う反応ガスはほぼ完全かつ速かに
パージまたは消費され、電極触媒の劣化やりん酸の吸
湿,あるいは反応ガスの混触をほぼ完全に回避する機能
が得られる。
また、マトリックス中を拡散透過する水素分子を酸化
剤電極表面で残留吸着酸素と接触させ、触媒燃焼させる
よう構成すれば、放電抵抗を用いずに残留吸着酸素を排
除し、酸化剤電極の電位を下げる機能が得られる。
さらに、残留吸着酸素を酸化剤電極の触媒反応によっ
て燃焼させるガス置換方法としては、燃料ガス区画室内
の残存燃料ガスを酸化剤区画室側に導入することによっ
ても可能である。
〔実施例〕
以下この発明を実施例に基づいて説明する。
第1図はこの発明方法を実施するための燃料電池の概
略構成図である。図において、1は簡略化して示す燃料
電池としてのセルスタックであり、複数の単電池はそれ
ぞれ電解液としての例えばりん酸を保持するマトリック
ス2を挟んでマトリックス側に電極触媒層3Aおよび4Aを
それぞれ担持した酸化剤電極3および燃料電極4が設け
られ、反マトリックス側には酸化剤区画室5および燃料
ガス区画室6がそれぞれ画成される。また、酸化剤区画
室5の入口側には三方弁11が酸化剤としての空気10の供
給系,および不活性ガスとしての窒素40の供給系に切換
可能に設けられ、かつその出口側には出口弁12が設けら
れる。一方、燃料ガス区画室6の入口側には三方弁21が
燃料ガス20の供給系,および不活性ガスとしての窒素40
の供給系に切換可能に設けられ、かつその出口側には出
口弁22が設けられる。さらに、燃料電池1の出力側には
遮断器32を介して外部負荷31が接続されるとともに、開
閉器34,放電抵抗33,および電流検出器35が直列接続され
た放電回路が外部負荷回路30に並列接続される。
このように構成された燃料電池の発電運転は、出口弁
12および22を開き、三方弁11および21を酸化剤供給系お
よび燃料ガス供給系側にそれぞれ連通させた状態とし、
酸化剤区画室5に空気10を、燃料ガス区画室6に燃料ガ
ス20を供給するとともに、外部負荷回路30の遮断器32を
閉じて外部負荷31に電力を供給することによって行わ
れ、セルスタック1の各単電池の温度は定格運転温度,
例えば190℃に保持される。
かかる発電運転において、燃料電池4の電極触媒層4A
では水素H2が水素イオンH+に分解され,電子eを放出す
る電極反応(H2→2H++2e)が、酸化剤電極3の電極触
媒層3Aでは電荷eの存在下で酸素と水素イオンが反応し
て水を生成する電極反応{(1/2)O2+2H++2e→H2O}
が起電反応となり、全反応として水素と酸素から水を生
成して発電する起電反応が行われることになる。また、
電極4で生成した水素イオンH+はマトリックス2内の電
解質としてのりん酸中を通って酸化剤電極3に運ばれ,
発生電荷eは外部負荷回路30を通って酸化剤電極3に運
ばれ、電極触媒層3Aで空気10に含まれる酸素と反応して
水を生成する。
このようにして発電中の燃料電池の運転を停止または
休止しようとする場合、実施例方法ではまず遮断器32を
開いて外部負荷31に流れる負荷電流を遮断し、三方弁11
を不活性ガス供給系側に切り換えて酸化剤区画室5に不
活性ガスとしての窒素40を送り込み、区画室5内の酸化
剤10を出口弁12を介してパージする。この操作で酸化剤
区画室5内の酸素分圧は速やかに低下するが、酸化剤電
極3の電極触媒層3Aに化学吸着された酸素まではパージ
できずこれに伴なって酸化剤電極3の電位が上昇する。
そこで、三方弁21及び出口弁22を閉じて燃料ガス区画室
6内に燃料ガス20が封入された状態で開閉器34を閉じ、
放電抵抗33の抵抗値によって決まる小さな放電電流iを
流すよう操作する。この時、燃料電極4の電極触媒層4A
では燃料ガス20中の水素を分解して電荷eを発生する電
極反応(H2→2H2+2e)が持続して行われ、酸化剤電極
3の電極触媒層3Aにはマトリックス2中のりん酸を通し
て水素イオンH+が供給され,かつ放電電流iによって電
子eが運ばれるので、電極触媒層3Aでは残留吸着酸素が
還元されて水を生成する電極反応{(1/2)O2+2H++2e
→H2O}が行われる。この電極反応(起電反応)は酸化
剤区画室5内の空気がパージされ酸素の補給がないため
に、上式中のO2としての残留吸着酸素が消費されるのに
伴なって反応が弱まり、これにより電極3の電位は大幅
に低下する。この電極電位の低下は放電電流iが零に近
づくのを電流検出器35によって監視することによって知
ることができる。そこで放電電流iが零に近づいた時点
で三方弁21を窒素40の供給系側に切り換え、燃料ガス区
画室6内の燃料ガス20をパージするとともに、開閉器34
を開き、放電電流iを遮断する。なお燃料ガス20がパー
ジされ、かつ両区画室内の生成水が排出された時点で出
口弁12および22を閉じれば、両区画室には同じ圧力の窒
素ガス40が充満して外部からの湿気の侵入が阻止される
とともに、窒素ガス40の漏れ両が三方弁11および21を介
して補給されるので、燃料電池1の温度が低下した軸点
でも電解質としてのりん酸が吸湿することなく、かつ反
応ガスの混触が完全に回避された状態で燃料電池の発電
運転を休止または停止させることができる。
また、上述の実施例方法では、燃料電池の出力側に放
電回路を設けた例について説明したが、放電回路を設け
ないでも残留吸着酸素を消費させることが可能である。
すなち、外部負荷31が遮断されて発電反応による生成熱
が減り、かつ酸化剤区画室に供給される窒素ガスの冷却
作用によって各単電池温度が降温しはじめると、降温と
ともに電解液の体積が減少してマトリックス2を酸化剤
電極3に向けて拡散透過する水素H2の量が増加するの
で、電極触媒層3Aの触媒作用によって透過水素と残留吸
着酸素が直接接触して燃焼する触媒燃焼作用が発生し、
これによって残留吸着酸素を消費することができる。た
だし、この触媒燃焼による残留吸着酸素の消費に要する
時間は、前述の起電反応による吸着酸素の消費に要する
時間に比べて遥かに長い時間を要することはいうまでも
ないことである。
第2図はこの発明の他の実施例を説明するための燃料
電池発電装置のガスフロー図であり、出力電力の停止指
令があったとき、外部負荷を遮断し、三方弁11を不活性
ガス40側に切り換えて酸化剤区画室5を不活性ガスに置
換するとともに、三方弁21および出口弁22を閉じて燃料
ガス区画室6に燃料ガス20を封入する。しかる後、三方
弁21を不活性ガス40側に切り換えると同時に、バイパス
弁41を開き、燃料ガス区画室6内の燃料ガス20を含むパ
ージガスを酸化剤区画室の入口側に導入する。このと
き、酸化剤区画室5は不活性ガス40によるガス置換を持
続したまゝでもよく、また三方弁11を閉じて不活性ガス
40の供給を停止した状態としてもよい。酸化剤区画室5
に導入されたパージガスはこれに含まれる水素が酸化剤
電極3上で残留吸着酸素と触媒燃焼し、残留吸着酸素が
消費されることにより、酸化剤電極3の電位は低下す
る。また、酸化剤区画室5のオフガスは不活性ガス40に
よって希釈され、爆鳴気を生ずることなく出口弁12を介
して排出される。そこで出口弁12を閉じれば、両ガス区
画室5および6を不活性ガスで置換した状態で発電運転
を停止することができる。
この実施例によれば、燃料ガス区画室内の燃料ガスを
酸化剤区画室に導入して触媒燃焼させるので、放電抵抗
を必要とせず、運転停止のための付帯装置を簡単化でき
るとともに、触媒燃焼の速度をバイパス弁41の調整の仕
方によって自由に制御でき、したがって燃料電池を過度
の高温にさらすこともないので、発電運転を安全に停止
できる利点が得られる。
第3図はこの発明の異なる他の実施例を示すガスフロ
ー図であり、発電運転を停止しようとする場合、まず外
部負荷を遮断し、三方弁11を不活性ガス40側に切り換え
て酸化剤区画室5内の空気をパージし、同時に弁51およ
び22を閉じて燃料ガス区画室6内に燃料ガスを封入す
る。この状態で放電抵抗スイッチ34を閉じれば一対の電
極の起電反応によって酸化剤電極3の残留吸着酸素は消
費され、電極電位を低下させることができる。電極電位
の低下を電流検出器35で検知し、出口弁12を閉じれば酸
化剤区画室5には不活性ガスが封入される。この実施例
では、燃料ガス区画室6に包蔵された燃料ガスを弁52を
介して導入した空気50と燃料ガス区画室6内で自然対流
によって混合し、燃料電極4上で水素と酸素を触媒燃焼
させ、残った不活性のオフガス(空気中の窒素および燃
料ガス中の炭酸ガス)によって燃料ガス区画室6を置換
するよう構成した点が前述の各実施例と異なっている。
この実施例では燃料ガス区画室6内で消費される水素と
酸素の量に見合う空気50が弁52を介して供給されるの
で、弁を調整することによって触媒燃焼反応の速度を制
御でき、したがって燃料電池を異常な高温にさらすこと
なく発電運転を停止できる利点が得られる。
〔発明の効果〕
この発明は前述のように、外部負荷回路を遮断した後
に行う不活性ガスによる酸化剤区画室の酸化剤パージ
と,燃料ガス区画室の燃料ガスパージとの開始時間に時
間差を設け、この時間差内は酸化剤区画室のみをパージ
し、燃料ガス区画室には燃料ガスを封入した状態で放電
回路に小さな放電電流を流すよう構成した。その結果、
酸化剤区画室のガスパージだけでは取り除けなかった酸
化剤電極側触媒層の残存吸着酸素が、一対の電極間の起
電反応によって消費されて酸化剤電極の電位上昇を防止
できるので、一対のガス区画室を不活性ガスによってほ
ぼ同時にガスパージする従来技術で、残存吸着酸素を除
去できないことによって生ずる酸化剤電極の電位上昇お
よびこれに起因する酸化剤電極の劣化を回避できるとと
もに、反応ガスを拡散供給して不活性 ガスを生成供給する従来方法において問題となったが、
高温開回路電圧および前記電位上昇が長時間化して電極
を劣化させる問題点をも回避することが可能となり、し
たがって燃料電池の発電性能に悪影響を与えることなく
発電運転を速やかに停止または休止できる発電停止方法
を提供することができる。
また、上記起電反応は燃料ガス区画室内に燃料ガスを
封入した状態で行うので、封入された燃料ガス中の水素
が起電反応によって消費されると、燃料ガス区画室には
炭酸ガスを主体とするオフガスが残るので、燃料ガス区
画室のガス置換操作を省略できる利点が得られる。
さらに燃料ガス区画室のガス置換を完全に行いたい場
合には、燃料ガス区画室内に空気を導入して残存燃料ガ
スと自然対流を利用して混合し、燃料電極上で触媒燃焼
させることによって水素を消費することが可能であり、
燃料ガス区画室には燃料ガス中の炭酸ガスおよび空気中
の窒素が残るので、不活性ガスを供給することなく燃料
ガス区画室を不活性ガスにガス置換することができる。
一方、燃焼ガス区画室から単電池の酸化剤電極側に透
過する水素と酸化剤電極の残留吸着酸素とを酸化剤電極
上で触媒燃焼させ、電極電位を低減することも可能であ
り、このように構成した場合には放電抵抗が不要にな
り、装置の構成を簡素化できる利点が得られる。
また、酸化剤区画室を不活性ガスに置換した後燃料ガ
ス区画室に不活性ガスを導入し、燃料ガス区画室内の燃
料ガスを酸化剤区画室に導入して酸化剤電極上で触媒燃
焼させるよう構成しても残留吸着酸素を消費して電極電
位を低下させることが可能であり、この場合、燃料ガス
を酸化剤区画室に導入する速度を制御することにより、
過度の温度上昇による電池の損傷を回避でき、かつ酸化
剤区画室のガス置換を利用して残留吸着酸素の消費と両
ガス区画室のガス置換とを速やかに行える利点が得られ
る。
【図面の簡単な説明】
第1図はこの発明の実施例である燃料電池の発電停止方
法を示すガスフロー図、第2図はこの発明の異なる実施
例を示すガスフロー図、第3図はこの発明の他の実施例
を示すガスフロー図である。 1……燃料電池(セルスタック)、2……マトリック
ス、3……酸化剤電極、4……燃料電極、5……酸化剤
区画室、6……燃料ガス区画室、11,21……三方弁、12,
22……出口弁、30……外部負荷回路、33……放電抵抗、
34……放電抵抗スイッチ、35……電流検出器、41……バ
イパス弁、51,52……弁、10……酸化剤(空気)、20…
…燃料ガス、40……不活性ガス、50……空気、i……放
電電流。
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01M 8/00 - 8/24

Claims (3)

    (57)【特許請求の範囲】
  1. 【請求項1】電解質を保持したマトリックスを挟持する
    酸化剤電極に酸化剤区画室から酸化剤としての空気を供
    給し、燃料電極に燃料ガス区画室から水素リッチな燃料
    ガスを供給して発電を行う燃料電池の発電を停止する際
    に、 前記燃料電池の外部負荷回路を開き、前記空気を不活性
    ガスに切り換えて前記酸化剤区画室内をガス置換し、前
    記燃料ガスの供給を停止して前記燃料ガス区画室内へ燃
    料ガスを封入し、前記酸化剤電極と燃料電極とを放電抵
    抗に接続して起電反応により発生する電流を放電電流と
    して流し、放電電流が所定値以下となった後に放電抵抗
    への接続を切断することを特徴とする燃料電池の発電停
    止方法。
  2. 【請求項2】電解質を保持したマトリックスを挟持する
    酸化剤電極に酸化剤区画室から酸化剤としての空気を供
    給し、燃料電極に燃料ガス区画室から水素リッチな燃料
    ガスを供給して発電を行う燃料電池の発電を停止する際
    に、 前記燃料電池の外部負荷回路を開き、前記空気を不活性
    ガスに切り換えて前記酸化剤区画室内をガス置換し、前
    記燃料ガスの供給を停止して前記燃料ガス区画室内へ燃
    料ガスを封入し、しかる後前記燃料ガス区画室内に不活
    性ガスを供給して前記燃料ガス区画室内に封入された燃
    料ガスを前記酸化剤区画室側に導入し、酸化剤電極の触
    媒燃焼反応により残留吸着酸素を消費することを特徴す
    る燃料電池の発電停止方法。
  3. 【請求項3】電解質を保持したマトリックスを挟持する
    酸化剤電極に酸化剤区画室から酸化剤としての空気を供
    給し、燃料電極に燃料ガス区画室から水素リッチな燃料
    ガスを供給して発電を行う燃料電池の発電を停止する際
    に、 前記燃料電池の外部負荷回路を開き、前記空気を不活性
    ガスに切り換えて前記酸化剤区画室内をガス置換し、前
    記燃料ガスの供給を停止して前記燃料ガス区画室内へ燃
    料ガスを封入し、前記酸化剤電極と燃料電極とを放電抵
    抗に接続して起電反応により発生する電流を放電電流と
    して流し、放電電流が所定値以下となった後に前記燃料
    ガス区画室のガス供給側を空気中に開放して燃料ガス区
    画室内の残存燃料ガスと空気とを自然対流によって混合
    し、前記燃料電極の触媒燃焼反応により前記残存燃料ガ
    ス中の水素を燃焼させ、前記燃料ガス区画室内を不活性
    ガスに置換することを特徴とする燃料電池の発電停止方
    法。
JP1282448A 1989-05-19 1989-10-30 燃料電池の発電停止方法 Expired - Lifetime JP2924009B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP12620289 1989-05-19
JP1-126202 1989-05-19

Publications (2)

Publication Number Publication Date
JPH0381970A JPH0381970A (ja) 1991-04-08
JP2924009B2 true JP2924009B2 (ja) 1999-07-26

Family

ID=14929238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1282448A Expired - Lifetime JP2924009B2 (ja) 1989-05-19 1989-10-30 燃料電池の発電停止方法

Country Status (1)

Country Link
JP (1) JP2924009B2 (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7482085B2 (en) 1996-06-07 2009-01-27 Bdf Ip Holdings Ltd. Apparatus for improving the cold starting capability of an electrochemical fuel cell
WO1997048143A1 (de) * 1996-06-10 1997-12-18 Siemens Aktiengesellschaft Verfahren zum betreiben einer pem-brennstoffzellenanlage
DE19953614A1 (de) * 1999-11-08 2001-05-17 Siemens Ag Brennstoffzellenanlage
EP1283557A1 (de) * 2001-08-01 2003-02-12 Siemens Aktiengesellschaft Verfahren zum Lokalisieren eines Gaslecks innerhalb einer Brennstoffzellenanordnung
KR100471262B1 (ko) * 2002-10-15 2005-03-10 현대자동차주식회사 연료 전지 시스템
JP2004172106A (ja) * 2002-10-31 2004-06-17 Matsushita Electric Ind Co Ltd 燃料電池システムの運転方法および燃料電池システム
US6939633B2 (en) * 2003-09-17 2005-09-06 General Motors Corporation Fuel cell shutdown and startup using a cathode recycle loop
US7479337B2 (en) * 2003-09-17 2009-01-20 General Motors Corporation Fuel cell shutdown and startup using a cathode recycle loop
JP2006024546A (ja) * 2004-06-08 2006-01-26 Mitsubishi Electric Corp 燃料電池の運転方法
JP4687039B2 (ja) * 2004-09-02 2011-05-25 三菱電機株式会社 固体高分子形燃料電池システム
JP4630040B2 (ja) * 2004-11-04 2011-02-09 本田技研工業株式会社 燃料電池システム
JP2006228553A (ja) * 2005-02-17 2006-08-31 Mitsubishi Electric Corp 燃料電池の運転方法
JP5425358B2 (ja) * 2005-10-20 2014-02-26 株式会社日立製作所 固体高分子形燃料電池システムの停止方法及び固体高分子形燃料電池システム
CA2622400C (en) * 2005-10-21 2011-08-02 Toyota Jidosha Kabushiki Kaisha Fuel cell system, estimation device of amount of anode gas to be generated and estimation method of amount of anode gas to be generated
JP2007149574A (ja) * 2005-11-30 2007-06-14 Toyota Motor Corp 燃料電池システム
JP2007273276A (ja) * 2006-03-31 2007-10-18 Mitsubishi Heavy Ind Ltd 燃料電池発電システム及びその運転方法
JP5190749B2 (ja) * 2006-11-22 2013-04-24 トヨタ自動車株式会社 燃料電池システム
JP5471010B2 (ja) * 2008-09-04 2014-04-16 日産自動車株式会社 燃料電池システムおよび燃料電池システムの制御方法
FR2952232B1 (fr) * 2009-10-30 2011-12-16 Michelin Soc Tech Pile a combustible et procedure d'arret d'une pile a combustible.
JP5796227B2 (ja) * 2010-03-18 2015-10-21 パナソニックIpマネジメント株式会社 燃料電池発電システム及び燃料電池発電システムの運転停止方法
JP2011204361A (ja) * 2010-03-24 2011-10-13 Toyota Motor Corp 燃料電池システムの制御方法
CN115000466B (zh) * 2022-06-29 2023-07-14 北京亿华通科技股份有限公司 一种燃料电池的久置存储方法

Also Published As

Publication number Publication date
JPH0381970A (ja) 1991-04-08

Similar Documents

Publication Publication Date Title
JP2924009B2 (ja) 燃料電池の発電停止方法
JP3972675B2 (ja) 燃料電池システム
JP4468994B2 (ja) 燃料電池システム
US8039154B2 (en) Fuel cell system, method of starting fuel cell system
US6939633B2 (en) Fuel cell shutdown and startup using a cathode recycle loop
JP3658866B2 (ja) 燃料電池発電装置
US20080026268A1 (en) Fuel Cell System and Method
JP4873952B2 (ja) 燃料電池システム
JPH10144334A (ja) 燃料電池発電プラント及びその起動・停止方法
JP2501872B2 (ja) 燃料電池の運転停止時における燃料電極の不活性ガス転換方法
US20100035098A1 (en) Using chemical shorting to control electrode corrosion during the startup or shutdown of a fuel cell
JPH1126003A (ja) 燃料電池発電システムの発電停止方法
WO2005036683A1 (en) Fuel cell shutdown and startup using a cathode recycle loop
JPH1167254A (ja) 燃料電池発電プラントおよびその起動・停止操作方法
US8765314B2 (en) Fuel cell system and method for stopping operation of fuel cell system
JPH08195210A (ja) 燃料電池装置
EP1659653B1 (en) Fuel cell system and method for starting operation of fuel cell system
JPH05251102A (ja) リン酸型燃料電池発電プラント
JP2752987B2 (ja) リン酸型燃料電池発電プラント
JP3575650B2 (ja) 溶融炭酸塩型燃料電池
JPH0654674B2 (ja) 燃料電池発電装置
JPH08138697A (ja) 燃料電池
JPH08190929A (ja) 燃料電池発電プラント
JP2011014339A (ja) 燃料電池システムおよび燃料電池システムの制御方法
JPH07249424A (ja) リン酸型燃料電池発電プラント

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090507

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090507

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100507

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100507

Year of fee payment: 11