JP2892449B2 - Magnesium alloy for galvanic anode - Google Patents

Magnesium alloy for galvanic anode

Info

Publication number
JP2892449B2
JP2892449B2 JP2176287A JP17628790A JP2892449B2 JP 2892449 B2 JP2892449 B2 JP 2892449B2 JP 2176287 A JP2176287 A JP 2176287A JP 17628790 A JP17628790 A JP 17628790A JP 2892449 B2 JP2892449 B2 JP 2892449B2
Authority
JP
Japan
Prior art keywords
alloy
anode
weight
amount
magnesium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2176287A
Other languages
Japanese (ja)
Other versions
JPH0466684A (en
Inventor
竜也 蔵本
邦夫 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2176287A priority Critical patent/JP2892449B2/en
Publication of JPH0466684A publication Critical patent/JPH0466684A/en
Application granted granted Critical
Publication of JP2892449B2 publication Critical patent/JP2892449B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Prevention Of Electric Corrosion (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は鉄鋼構造物の電気的防食に好適の流電陽極用
マグネシウム合金に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a magnesium alloy for a galvanic anode suitable for electrical protection of steel structures.

〔従来の技術〕[Conventional technology]

従来、海水中、海土中あるいは土中で使用される鉄鋼
構造物の防食法として、防食電流により鉄を腐食に対す
る安定領域に保持する電気防食法が広く用いられてい
る。この電気防食法には、例えば高シリコン鋼、白金な
どの陽極電位の貴な不溶性合金を陽極として用い、被防
食体を陰極としてこれを接続し、その中間に直流電源を
配置して強制的に通電させて防食電流を得る外部電源法
と、アルミニウム合金、亜鉛合金、マグネシウム合金な
どの陽極電位の卑な合金を陽極として用い、陽極が腐食
されることにより発生する余剰電子を防食電流として得
る流電陽極法の2種類がある。このうち、外部電源法は
その設備が大規模となりやすく、また防食する期間中連
続して通電を行わなければならず、コストが高くつくた
め通常は流電陽極法が多く用いられている。
2. Description of the Related Art Conventionally, as an anticorrosion method for a steel structure used in seawater, sea soil, or soil, an electrocorrosion protection method in which iron is kept in a stable region against corrosion by an anticorrosion current has been widely used. In this cathodic protection method, for example, a noble insoluble alloy having an anodic potential such as high silicon steel or platinum is used as an anode, the object to be protected is connected as a cathode, and a direct current power supply is arranged in the middle to forcibly forcibly. An external power supply method in which an anti-corrosion current is obtained by applying a current, and a flow in which a surplus electron generated by corrosion of the anode is used as an anti-corrosion current using a base alloy having a low anode potential such as an aluminum alloy, a zinc alloy, or a magnesium alloy There are two types of electroanode methods. Of these, the external power supply method is apt to be large-scale and requires continuous energization during the period of anticorrosion, and the cost is high.

このうちマグネシウム合金流電陽極は、アルミニウム
合金あるいは亜鉛合金と比較して最も卑な電位を示し、
被防食体である鉄鋼構造物との電位差を大きく取れるこ
とから土壌中あるいは土の上に設置される埋設管、橋梁
の基礎など比抵抗の高い環境において多く用いられてい
る。
Among them, magnesium alloy galvanic anode shows the lowest potential compared to aluminum alloy or zinc alloy,
It is widely used in environments with high specific resistance, such as buried pipes and bridge foundations installed in or on the soil, because it has a large potential difference from the steel structure that is the anticorrosion body.

〔発明の解決しようとする課題〕[Problem to be solved by the invention]

このような従来のマグネシウム合金陽極としては、JI
S H6125に規定されている純Mg(JIS1種)およびAZ63合
金(JIS2種、3種)があり、特にAl5.3〜6.7,Zn2.5〜3.
5,Mn0.15〜0.60各重量%を含有し、残部がMgおよび不可
避不純物からなる組成を有するAZ63合金が主流をなして
いる。
As such a conventional magnesium alloy anode, JI
There are pure Mg (JIS Class 1) and AZ63 alloy (JIS Class 2 and Class 3) specified in SH6125, especially Al5.3 ~ 6.7, Zn2.5 ~ 3.
AZ63 alloy containing 0.15 to 0.60% by weight of Mn and the balance of Mg and unavoidable impurities forms the mainstream.

流電陽極の特性値としては発生電気量、効率および陽
極電位が挙げられる。発生電気量とは単位重量あたりの
防食電気量のことであり、この値が大きいほど優れた陽
極であることを表している。また同じ重量であれば値が
大きいほど長期にわたり防食電流を得られる、すなわち
長寿命であるということを表している。効率とはこの発
生電気量と、合金の成分組成によって決定される理論発
生電気量(電気化学当量の逆数であり、アルミニウムは
2980A・hr/kg、亜鉛は820A・hr/kg、またマグネシウム
は2205A・hr/kgである)との比であり、全発生電気量の
何%が防食電流として有効に作用したかを表す数値であ
る。また、陽極電位とは合金の自然電位であり、鉄の自
然電位との差が大きいほど広範囲にわたり防食電流を流
すことが可能であることを示している。
The characteristic values of the galvanic anode include the amount of generated electricity, efficiency, and anode potential. The amount of generated electricity is the amount of anticorrosive electricity per unit weight, and the larger this value is, the better the anode is. In addition, when the weight is the same, the larger the value, the longer the anticorrosion current can be obtained, that is, the longer the life. Efficiency is the amount of electricity generated and the theoretical amount of electricity generated by the composition of the alloy (the reciprocal of the electrochemical equivalent.
2980A · hr / kg, zinc is 820A · hr / kg, and magnesium is 2205A · hr / kg), which is a numerical value that indicates what percentage of the total generated electricity effectively acted as anticorrosion current. It is. The anodic potential is the natural potential of the alloy, and indicates that the larger the difference from the natural potential of iron, the more the corrosion prevention current can flow over a wider range.

上記AZ63合金は効率が約50〜55%(発生電気量として
1100〜1250A・hr/kg)といわれ、最近の鉄鋼構造物の長
寿命化を望む要求に対し十分でないという問題点を有す
るものであった。
The above AZ63 alloy has an efficiency of about 50-55% (
It is said to be 1100 to 1250 A · hr / kg), which has a problem that it is not enough to meet the recent demand for extending the life of steel structures.

本発明の目的は発生電気量が大きく、高効率,長寿命
の流電陽極用マグネシウム合金を提供することにある。
An object of the present invention is to provide a magnesium alloy for a galvanic anode having a large amount of generated electricity, high efficiency and long life.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するために本発明の合金は、Al5〜12,
Zn0.5〜5,Mn0.1〜1各重量%を含み、かつY,La,Ce,Prお
よびNdからなる群から選ばれる少くとも1種の元素を0.
005〜0.5重量%含有し、残部がマグネシウムと不可避不
純物からなる点に特徴がある。
In order to achieve the above object, the alloy of the present invention has Al5 to 12,
At least one element selected from the group consisting of Y, La, Ce, Pr, and Nd containing 0.5 to 5 Zn and 0.1 to 1 Mn each in an amount of 0.
005 to 0.5% by weight, with the balance being magnesium and inevitable impurities.

〔作用〕[Action]

以下に本発明合金の各成分組成範囲を上記の通りに限
定した理由について述べる。
Hereinafter, the reasons for limiting the composition ranges of the respective components of the alloy of the present invention as described above will be described.

Alは溶解表面を平滑にするのに有効な作用をする元素
であるが、5重量%未満ではその効果が十分ではなく、
一方、12重量%を超えると陽極電位の貴化を招くのでそ
の含有量を5〜12重量%とする必要がある。
Al is an element that effectively acts to smooth the melting surface, but less than 5% by weight does not have sufficient effect.
On the other hand, if it exceeds 12% by weight, the anodic potential becomes noble, so its content must be 5 to 12% by weight.

Znは溶解表面を平滑にするのに有効な作用をする元素
であるが、0.5重量%未満ではその作用が十分ではな
く、一方、5重量%を超えると、Znは理論発生電気量が
小さく合金の発生電気量の低下を招くのでその含有量を
0.5〜5重量%とする必要がある。
Zn is an element that has an effective function to smooth the melting surface, but if its content is less than 0.5% by weight, its effect is not sufficient. To reduce the amount of electricity generated
It needs to be 0.5 to 5% by weight.

MnはMg地金中に不可避不純物として含有される鉄の、
発生電気量を低下させるという悪影響を低減するのに有
効な元素であるが、この含有量が0.1重量%未満ではそ
の作用が十分ではなく、一方、1重量%を超えると発生
電気量の低下を招くのでその含有量を0.1〜1重量%と
する必要がある。
Mn is the amount of iron contained as inevitable impurities in Mg ingots,
This element is effective in reducing the adverse effect of reducing the amount of generated electricity. However, if its content is less than 0.1% by weight, its action is not sufficient, while if it exceeds 1% by weight, the amount of generated electricity is reduced. Therefore, its content needs to be 0.1 to 1% by weight.

Y,La,Ce,PrおよびNdはMnとともに添加することによ
り、Mnが持つ鉄の悪影響わ低減するという効果を強化さ
せる作用があり、結果として発生電気量を増加させるの
に有効な元素であるが0.005重量%未満ではその効果が
十分ではなく、一方、0.5重量%を超えると陽極電位の
貴化を招くのでその含有量を0.005〜0.5重量%とする必
要がある。Y,La,Ce,PrおよびNdの添加効果はほぼ同一
で、これらを混合して用いる場合も単独で用いる場合も
大差ない。
By adding Y, La, Ce, Pr and Nd together with Mn, they have the effect of enhancing the effect of reducing the adverse effect of iron that Mn has, and as a result are effective elements to increase the amount of generated electricity If the content is less than 0.005% by weight, the effect is not sufficient. On the other hand, if it exceeds 0.5% by weight, the anodic potential becomes noble. Therefore, the content needs to be 0.005 to 0.5% by weight. The effect of adding Y, La, Ce, Pr and Nd is almost the same, and there is no significant difference between the case where these are mixed and the case where they are used alone.

〔実施例〕〔Example〕

以下に実施例を示す。 Examples will be described below.

第1表に示す組成で添加元素を配合し黒鉛ルツボを用
いて熔解し、直径20mm、長さ150mmの丸棒状の金型に鋳
造して試験片とした。この試料を(社)腐食防食協会が
制定した「流電陽極試験法」(「流電陽極試験法および
同解説」、防食技術、vo1.31、p612−620、1982)に準
拠し、実施した。略述すると、これらの試験片は鋳肌表
面の酸化物の影響を除くために最終的にサンドペーパー
の240番の粗さになるまで表面を研磨し、側面の供試面
積40cm2を残して他はビニールテープを用いて絶縁被覆
した。さらに人工海水に水酸化マグネシウムを飽和させ
た液を1.0lのビーカー内に満たし、これを試験液とし
た。試験片は容器中央に配置してこれを陽極とし、容器
側壁に沿って配置したステンレス円筒板を極間距離30mm
にとり陰極とし、間に直流安定化電源をはさんで結線し
た。これを陽極電流密度0.1mA/cm2の定電流条件で240時
間通電し、試験片の重量減から発生電気量を算出した。
また終了直前の陽極電位を銀−塩化銀電極を用いて測定
し飽和甘汞電極基準値(SCE)に換算した。結果を第1
表に示す。
The additive elements were mixed according to the composition shown in Table 1, melted using a graphite crucible, and cast into a round bar-shaped mold having a diameter of 20 mm and a length of 150 mm to obtain a test piece. This sample was carried out in accordance with the “Current Anode Test Method” (“Current Anode Test Method and its Explanation”, Corrosion Protection Technology, vo1.31, p612-620, 1982) established by the Corrosion Protection Association. . Briefly, these test pieces were polished surface until 240 No. roughness ultimately sandpaper to remove the influence of the oxide of the cast skin surface, leaving a test area 40 cm 2 sides Others were insulated with vinyl tape. Further, a 1.0-liter beaker was filled with a solution of artificial seawater saturated with magnesium hydroxide, and this was used as a test solution. The test piece was placed in the center of the container and this was used as the anode.
A negative DC power supply was connected between them. This was energized for 240 hours under a constant current condition of an anode current density of 0.1 mA / cm 2, and the amount of generated electricity was calculated from the weight loss of the test piece.
The anodic potential immediately before completion was measured using a silver-silver chloride electrode and converted to a saturated calomel electrode reference value (SCE). First result
It is shown in the table.

第1表から本発明の合金はいずれも比較合金ならびに
従来材のAZ63合金に比較しても−1500mV(vs.SCE)前後
の十分に卑な陽極電位と1450〜1480A・hr/kgと十分に高
い発生電気量を具備していることが分る。
Table 1 shows that the alloy of the present invention has a sufficiently low anode potential of about -1500 mV (vs. SCE) and a sufficiently low anode potential of 1450 to 1480 A · hr / kg as compared with the comparative alloy and the conventional AZ63 alloy. It can be seen that it has a high amount of generated electricity.

〔発明の効果〕〔The invention's effect〕

本発明合金は、土壌中あるいは地上は設置された鉄鋼
構造物の電気防食に使用される場合、十分に卑な陽極電
位を有しながらかつ発生電気量1450〜1480A・hr/kgと合
金の効率を従来の50〜55%から約65%にまで高めるもの
であり、長期間安定して使用され得る超寿命の流電陽極
を得ることができ、実用上顕著な効果を発揮するもので
ある。
When the alloy of the present invention is used for electrolytic protection of a steel structure installed in soil or on the ground, it has a sufficiently low anode potential and generates 1450-1480 Ahr / kg of electricity and has an efficiency of the alloy. Is increased from 50-55% of the prior art to about 65%, so that a current-carrying anode having a long life that can be used stably for a long period of time can be obtained, and has a remarkable effect in practical use.

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C23F 13/12,13/14 C22C 23/00 - 23/06 Continuation of the front page (58) Field surveyed (Int. Cl. 6 , DB name) C23F 13 / 12,13 / 14 C22C 23/00-23/06

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Al5〜12,Zn0.5〜5,Mn0.1〜1各重量%を含
み、かつY,La,Ce,PrおよびNdからなる群から選ばれる少
くとも1種の元素を0.005〜0.5重量%含有し、残部がマ
グネシウムと不可避不純物からなることを特徴とする流
電陽極用マグネシウム合金。
1. The method according to claim 1, wherein at least one element selected from the group consisting of Y, La, Ce, Pr and Nd is contained in an amount of 0.005 to 5% each containing Al 5 to 12, Zn 0.5 to 5, and Mn 0.1 to 1 respectively. A magnesium alloy for a galvanic anode, comprising about 0.5% by weight and the balance consisting of magnesium and unavoidable impurities.
JP2176287A 1990-07-05 1990-07-05 Magnesium alloy for galvanic anode Expired - Lifetime JP2892449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2176287A JP2892449B2 (en) 1990-07-05 1990-07-05 Magnesium alloy for galvanic anode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2176287A JP2892449B2 (en) 1990-07-05 1990-07-05 Magnesium alloy for galvanic anode

Publications (2)

Publication Number Publication Date
JPH0466684A JPH0466684A (en) 1992-03-03
JP2892449B2 true JP2892449B2 (en) 1999-05-17

Family

ID=16010949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2176287A Expired - Lifetime JP2892449B2 (en) 1990-07-05 1990-07-05 Magnesium alloy for galvanic anode

Country Status (1)

Country Link
JP (1) JP2892449B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021134947A1 (en) * 2019-12-31 2021-07-08 龙南龙钇重稀土科技股份有限公司 High-strength and high corrosion resistance magnesium alloy and preparation method therefor

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101638786B (en) * 2008-07-29 2011-06-01 天津东义镁制品股份有限公司 High-potential sacrificial magnesium alloy anode and manufacturing method thereof
CN101768745A (en) * 2010-03-05 2010-07-07 陕西电力科学研究院 Magnesium sacrificial anode with high current efficiency and preparation method thereof
CN104745906B (en) * 2013-12-25 2017-09-29 比亚迪股份有限公司 A kind of magnesium alloy and preparation method thereof
CN104862566A (en) * 2014-02-21 2015-08-26 中国科学院金属研究所 High-strength high-plasticity medical magnesium alloy, and preparation method and applications thereof
CN104404329A (en) * 2014-12-19 2015-03-11 中北大学 Magnesium alloy material with high corrosion resistance and preparation method of magnesium alloy material
CN105838951B (en) * 2016-05-25 2018-04-13 河南科技大学 A kind of magnesium alloy of sacrificial anode containing La
CN107523729A (en) * 2016-06-20 2017-12-29 张家港市华舰五金工具有限公司 Deformable rare earth magnesium alloy and preparation method thereof
CN106591844A (en) * 2016-10-21 2017-04-26 洛阳理工学院 Magnesium alloy sacrificial anode containing Sn and Sb
CN106591843A (en) * 2016-10-21 2017-04-26 洛阳理工学院 Magnesium alloy sacrificial anode containing Sn and Bi
CN106591842A (en) * 2016-10-21 2017-04-26 洛阳理工学院 Magnesium alloy sacrificial anode containing Sm and Bi
CN106609372A (en) * 2016-10-21 2017-05-03 洛阳理工学院 Magnesium alloy sacrificial anode containing Sm and Sb
CN107164675B (en) * 2017-05-27 2019-02-22 东北大学 A kind of magnalium zinc cerium alloy and its preparation method and application
CN108998713B (en) * 2017-06-06 2020-10-23 比亚迪股份有限公司 Magnesium alloy and preparation method and application thereof
CN108193111B (en) * 2018-01-31 2019-10-18 中南大学 A kind of magnesium-rare earth anode material and preparation method thereof
CN110699562A (en) * 2019-11-07 2020-01-17 西安交通大学 High-plastic-deformation rare earth magnesium alloy and preparation method thereof
CN116180092A (en) * 2021-10-25 2023-05-30 芜湖美的厨卫电器制造有限公司 Ce-containing magnesium alloy sacrificial anode and preparation method and application thereof
CN116287915B (en) * 2023-02-28 2024-04-16 中国地质大学(武汉) Magnesium alloy material for jewelry and preparation method and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021134947A1 (en) * 2019-12-31 2021-07-08 龙南龙钇重稀土科技股份有限公司 High-strength and high corrosion resistance magnesium alloy and preparation method therefor

Also Published As

Publication number Publication date
JPH0466684A (en) 1992-03-03

Similar Documents

Publication Publication Date Title
JP2892449B2 (en) Magnesium alloy for galvanic anode
US3368958A (en) Aluminum alloy for cathodic protection system and primary battery
US2913384A (en) Aluminum anodes
JP3184516B2 (en) Magnesium alloy for galvanic anode
JP2773971B2 (en) Magnesium alloy for galvanic anode
JP2705844B2 (en) Magnesium alloy for galvanic anode
JPH04157128A (en) Aluminum alloy for galvanic anode
JP4126633B2 (en) Aluminum alloy galvanic anode for low temperature seawater
JPH09310131A (en) Production of magnesium alloy for voltaic anode
JP3183604B2 (en) Aluminum alloy for galvanic anodic protection of steel bars in reinforced concrete and corrosion protection method using the same
JPH09157782A (en) Magnesium alloy for galvanic anode
JPH0733555B2 (en) Magnesium alloy for galvanic anode used for cathodic protection
JPH09310130A (en) Production of magnesium alloy for galvanic anode
JP3183603B2 (en) Aluminum alloy for galvanic anodic protection of steel bars in reinforced concrete and corrosion protection method using the same
US4626329A (en) Corrosion protection with sacrificial anodes
JPH04157127A (en) Aluminum alloy for galvanic anode
US3464909A (en) Aluminum alloy galvanic anodes
JP4395820B2 (en) Magnesium alloy for galvanic anode
JPH037735B2 (en)
JPH04157126A (en) Aluminum alloy for calvanic anode
JPS6232266B2 (en)
JPH1161307A (en) Aluminum alloy for galvanic anode
JPH036978B2 (en)
JPH1161309A (en) Aluminum alloy for galvanic anode
JPH0254421B2 (en)