JP4395820B2 - Magnesium alloy for galvanic anode - Google Patents

Magnesium alloy for galvanic anode Download PDF

Info

Publication number
JP4395820B2
JP4395820B2 JP2000175245A JP2000175245A JP4395820B2 JP 4395820 B2 JP4395820 B2 JP 4395820B2 JP 2000175245 A JP2000175245 A JP 2000175245A JP 2000175245 A JP2000175245 A JP 2000175245A JP 4395820 B2 JP4395820 B2 JP 4395820B2
Authority
JP
Japan
Prior art keywords
alloy
mass
anode
present
galvanic anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000175245A
Other languages
Japanese (ja)
Other versions
JP2001355033A5 (en
JP2001355033A (en
Inventor
浩之 小林
Original Assignee
株式会社ナカボーテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ナカボーテック filed Critical 株式会社ナカボーテック
Priority to JP2000175245A priority Critical patent/JP4395820B2/en
Publication of JP2001355033A publication Critical patent/JP2001355033A/en
Publication of JP2001355033A5 publication Critical patent/JP2001355033A5/ja
Application granted granted Critical
Publication of JP4395820B2 publication Critical patent/JP4395820B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Prevention Of Electric Corrosion (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電気防食に使用される流電陽極用マグネシウム合金に関する。
【0002】
【従来の技術】
一般に、マグネシウム系流電陽極材は、現在実用されているアルミニウム系あるいは亜鉛系流電陽極材と比較して最も卑な電位を示すことから、土壌中あるいは高比抵抗水溶液中で使用されることが多い。
【0003】
従来、これらの環境中で使用されているマグネシウム系流電陽極は、JIS H6125に規定されている純Mg(JIS1種)、AZ63合金(JIS2種、3種)およびMn1質量%含有Mg合金が挙げられ、特にわが国ではAZ63合金が主流をなしている。このAZ63合金はAl:5.3〜6.7%、Zn:2.5〜3.5%、Mn:0.15〜0.60%、残部が不純物を別にしてMgからなる組成を有するものである(%は質量%を示す。以下同じ)。
【0004】
前記AZ63合金は、(社)腐食防食協会制定の流電陽極試験法(JSCE S−9301)で陽極効率が約55%(発生電気量1210A・h/kg)と高いものの電位は、約−1450mV(飽和甘汞電極基準、以下SCEと示す)程度でMg合金の中では高電位である。一方、Mn1質量%含有Mg合金は−1600mV(SCE)という低電位を示すものの陽極効率は約40%(発生電気量880A・h/kg)で非常に低い。流電陽極材として望ましい特性は、低電位で高陽極効率の材料であるが、既存のMg系流電陽極材の中ではこのような満足すべき特性を示す合金は未だ存在せず、経済性の観点からも低電位を維持したままで陽極特性の改善が望まれている。
【0005】
特公昭62−32266号公報のようにAZ63合金をベースとしこれに0.05〜0.4%のCaを添加含有させることにより、発生電気量を高め、結果的に流電陽極の寿命を延ばす発明が提案されている。しかし、この発明でも陽極電位−1472〜1495mV(SCE)、発生電気量1369〜1455A・h/kgで、未だ十分満足な流電陽極とはいい難いものである。
【0006】
【発明が解決しようとする課題】
本発明の目的は、陽極電位が十分に低くかつ発生電気量が高い流電陽極用マグネシウム合金を提供する点にある。
【0007】
【課題を解決するための手段】
本発明の第一は、Mn:0.1〜1.0質量%およびCa:0.05〜1.0質量%を含有し、残部がMgと不可避不純物よりなることを特徴とする流電陽極用マグネシウム合金に関する。
【0008】
本発明の第二は、Mn:0.1〜1.0質量%、Ca:0.05〜1.0質量%、Inおよび/またはZn:0.005〜0.1質量%を含有し、残部がMgと不可避不純物よりなることを特徴とする流電陽極用マグネシウム合金に関する。
【0009】
本発明におけるMnは、Mg地金中に不可避不純物として含有されている鉄によって生ずる発生電気量の低下という悪影響を低減するのに有効な元素であるが、その含有量が0.1質量%未満ではその作用は十分ではなく、一方、1.0質量%を超えると発生電気量の低下を招くので、その含有量を0.1〜1.0質量%とする必要があるが、好ましくは0.5〜1.0質量%である。
【0010】
本発明におけるCaは、Mn1.0質量%含有Mg合金の発生電気量を向上させる作用を有する元素であるが、0.05質量%未満ではその作用は十分でなく、一方、1.0質量%を超えると発生電気量の低下を招くので、その含有量を0.05〜1.0質量%とする必要があるが、好ましくは0.05〜0.73質量%である。
【0011】
本発明においては、Inおよび/またはZnを適正な範囲で添加すると、発生電気量を低下させないで溶解形態を改善することができる。その含有量は、0.005〜0.1質量%、好ましくは0.005〜0.03質量%であり、0.005質量%未満ではその作用は十分でなく0.1質量%を超えると発生電気量の低下を招く。InおよびZnの添加量の範囲はほぼ同一で、両者を混合して用いる場合も単独で用いる場合も同じである。
【0012】
【実施例】
以下に実施例を挙げて本発明を説明するが、本発明はこれにより何等限定されるものではない。
【0013】
実施例1
表1に示す組成の本発明合金および比較合金を黒鉛るつぼを用いて溶解し、金型を用いてφ20mm×150mmの丸棒を鋳造した。これら試験片表面はサンドペーパーの240番までを用いて仕上げ研磨し、側面の供試面積40cmを残し、他はビニールテープを用いて絶縁被覆をした。
【0014】
性能試験は(社)腐食防食協会が制定した「流電陽極試験法および同解説」に準拠し、実施した。試験液としては、人工海水に水酸化マグネシウムを十分飽和させた液を使用し、1.0リットルのプラスチックビーカーの試験容器内に、この試験液を入れた。試験片は容器中央に配置し、陰極は容器側面に添ってステンレス円筒板を配置した。
【0015】
電源として直流安定化電源を用い、陽極電流密度0.1mA/cmの定電流条件で240hr通電し、試験片の質量減から発生電気量を算出した。陽極電位は飽和甘汞電極を用いて1日につき1回測定した。これらの結果を表1に示す。これらの測定方法は、いずれも社団法人腐食防食協会規格、流電陽極試験法JSCE S−9301に準拠して行った。
【0016】
【表1】

Figure 0004395820
【0017】
表1より、本発明合金は比較合金に比べて低電位かつ高発生電気量であり、その時の値は、陽極電位−1610mV(SCE)前後、発生電気量1232〜1430A・h/kg(陽極効率56〜65%)を示す。このように本発明合金はAZ63合金の高い発生電気量とMn1質量%含有Mg合金の低い陽極電位を併せ持つものであることがわかる。
【0018】
実施例2
表2に示すとおり、Inおよび/またはZnを含む組成の本発明合金および比較合金、並びにAZ63合金、Mn1.0質量%含有Mg合金を、実施例1と同様にして試験片を調整し、実施例1と同様に試験して陽極電位、発生電気量および溶解面の状況を調べた。それらの結果を表2に示す。
【0019】
なお、溶解面の状況は、
A:溶解面積20%以上50%未満(孔食深さが浅い)
B:溶解面積0%以上20%未満(孔食深さが深い)
C:溶解面積50%以上100%以下(激しい孔食)
D:溶解面積90%以上100%以下(平滑な全面溶解)
として評価した。
【0020】
【表2】
Figure 0004395820
【0021】
表2より、本発明合金は比較合金に比べて低電位かつ高発生電気量であり、その時の値は、陽極電位は−1610mV(SCE)前後、発生電気量1243〜1427A・h/kg(陽極効率57〜65%)を示す。このように本発明合金は、比較合金などに比べて高い発生電気量と低い陽極電位を併せ持つものである。それに加えて、本発明合金は比較合金に比べて孔食深さが浅く、局部溶解性が低減されており、溶解面の状態がすぐれていることがわかる。
【0022】
【発明の効果】
(1) 請求項1の発明により、陽極電位が十分に低く、かつ発生電気量が高い流電陽極用マグネシウム合金を提供することができた。
(2) 請求項2の発明により、請求項1の発明の効果に加えて、流電陽極として用いたときの溶解形態が改善される結果、孔食深さが浅く、局部溶解が抑制された流電陽極用マグネシウム合金を提供することができた。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnesium alloy for galvanic anodes used for cathodic protection.
[0002]
[Prior art]
In general, magnesium-based galvanic anode materials have the lowest potential compared to aluminum-based or zinc-based galvanic anode materials currently in practical use, so they should be used in soil or in a high resistivity aqueous solution. There are many.
[0003]
Conventionally, magnesium-based galvanic anodes used in these environments include pure Mg (JIS type 1), AZ63 alloy (JIS type 2, type 3) and Mg alloy containing 1% by mass of Mn as defined in JIS H6125. In particular, AZ63 alloy is mainly used in Japan. This AZ63 alloy has a composition in which Al: 5.3 to 6.7%, Zn: 2.5 to 3.5%, Mn: 0.15 to 0.60%, and the balance is made of Mg except impurities. (% Indicates% by mass, the same applies hereinafter).
[0004]
The AZ63 alloy has a high anode efficiency of about 55% (generated electricity amount of 1210 A · h / kg) according to the galvanic anode test method (JSCE S-9301) established by the Corrosion and Corrosion Protection Association, but the potential is about −1450 mV. It is high potential in the Mg alloy to the extent (saturated sweet potato electrode reference, hereinafter referred to as SCE). On the other hand, the Mg alloy containing 1% by mass of Mn shows a low potential of −1600 mV (SCE), but the anode efficiency is about 40% (generated electricity amount 880 A · h / kg), which is very low. Desirable properties as a galvanic anode material are materials with low potential and high anode efficiency, but there are no alloys that exhibit such satisfactory properties among existing Mg-based galvanic anode materials, and they are economical. From this point of view, it is desired to improve anode characteristics while maintaining a low potential.
[0005]
As disclosed in Japanese Patent Publication No. 62-32266, AZ63 alloy is used as a base, and 0.05 to 0.4% of Ca is added and contained therein, thereby increasing the amount of generated electricity and consequently extending the life of the galvanic anode. An invention has been proposed. However, even with this invention, it is difficult to say that the anode is sufficiently satisfactory with an anode potential of −1472 to 1495 mV (SCE) and an amount of generated electricity of 1369 to 1455 A · h / kg.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a magnesium alloy for a galvanic anode having a sufficiently low anode potential and a high amount of generated electricity.
[0007]
[Means for Solving the Problems]
A first aspect of the present invention is a galvanic anode containing Mn: 0.1 to 1.0 % by mass and Ca: 0.05 to 1.0 % by mass, the balance being composed of Mg and inevitable impurities. Relates to magnesium alloys.
[0008]
The second aspect of the present invention, Mn: 0.1 to 1.0 mass%, Ca: 0.05 to 1.0 wt%, an In and / or Zn: containing 0.005 to 0.1 wt%, The present invention relates to a magnesium alloy for galvanic anodes, characterized in that the balance consists of Mg and inevitable impurities.
[0009]
Mn in the present invention is an element effective for reducing the adverse effect of lowering the amount of generated electricity caused by iron contained as an inevitable impurity in Mg metal, but its content is less than 0.1% by mass. However, its action is not sufficient. On the other hand, if it exceeds 1.0 % by mass, the amount of generated electricity is reduced, so the content must be 0.1 to 1.0 % by mass, preferably 0. 0.5 to 1.0 % by mass.
[0010]
Ca in the present invention is an element having an effect of improving the generation amount of electricity Mn 1.0 wt% containing Mg alloy, its effect is not sufficient at less than 0.05 wt%, whereas, 1.0 mass If it exceeds 50%, the amount of generated electricity is reduced, so the content must be 0.05 to 1.0 % by mass, preferably 0.05 to 0.73% by mass.
[0011]
In the present invention, when In and / or Zn is added within an appropriate range, the dissolved form can be improved without reducing the amount of generated electricity. The content is 0.005 to 0.1% by mass, preferably 0.005 to 0.03% by mass. When the content is less than 0.005% by mass, the action is not sufficient and exceeds 0.1% by mass. The amount of generated electricity is reduced. The ranges of addition amounts of In and Zn are almost the same, and both the case where they are mixed and the case where they are used alone are the same.
[0012]
【Example】
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited thereto.
[0013]
Example 1
The alloys of the present invention and comparative alloys having the compositions shown in Table 1 were melted using a graphite crucible, and a round bar of φ20 mm × 150 mm was cast using a mold. The surface of these test pieces was finish-polished using sandpaper No. 240, leaving a test area of 40 cm 2 on the side, and the others were covered with vinyl tape.
[0014]
The performance test was conducted in accordance with the “galvanic anode test method and explanation” established by the Corrosion Protection Association. As a test solution, a solution obtained by sufficiently saturating magnesium hydroxide in artificial seawater was used, and this test solution was put in a test container of a 1.0 liter plastic beaker. The test piece was placed in the center of the container, and the cathode was a stainless cylindrical plate placed along the side of the container.
[0015]
A direct current stabilized power source was used as a power source, energized for 240 hours under a constant current condition of an anode current density of 0.1 mA / cm 2 , and the amount of generated electricity was calculated from the weight loss of the test piece. The anodic potential was measured once a day using a saturated sweet potato electrode. These results are shown in Table 1. All of these measurement methods were performed in accordance with the standards of the Japan Corrosion Protection Association and the galvanic anode test method JSCE S-9301.
[0016]
[Table 1]
Figure 0004395820
[0017]
According to Table 1, the alloy of the present invention has a low potential and a high generated electric quantity as compared with the comparative alloy. 56-65%). Thus, it can be seen that the alloy of the present invention has both the high generated electricity of the AZ63 alloy and the low anode potential of the Mg alloy containing 1% by mass of Mn.
[0018]
Example 2
As shown in Table 2, the alloy of the present invention and the comparative alloy having a composition containing In and / or Zn, AZ63 alloy, Mg alloy containing 1.0 % by mass of Mn were prepared in the same manner as in Example 1, The test was performed in the same manner as in Example 1 to examine the anode potential, the amount of generated electricity, and the state of the melting surface. The results are shown in Table 2.
[0019]
The status of the melting surface is
A: Melting area 20% or more and less than 50% (pitting corrosion depth is shallow)
B: Melting area 0% or more and less than 20% (pitting corrosion depth is deep)
C: dissolved area 50% to 100% (violent pitting)
D: Melting area 90% to 100% (smooth entire surface melting)
As evaluated.
[0020]
[Table 2]
Figure 0004395820
[0021]
From Table 2, the alloy of the present invention has a low potential and a high generated electric quantity as compared with the comparative alloy, and the values at that time are the anode potential around -1610 mV (SCE), the generated electric quantity 1243-1427 A · h / kg (anode Efficiency 57-65%). As described above, the alloy of the present invention has both a high amount of generated electricity and a low anodic potential as compared with comparative alloys and the like. In addition, it can be seen that the alloy of the present invention has a shallow pitting depth compared to the comparative alloy, has reduced local solubility, and has an excellent state of the melting surface.
[0022]
【The invention's effect】
(1) According to the invention of claim 1, a magnesium alloy for an galvanic anode having a sufficiently low anode potential and a high amount of generated electricity could be provided.
(2) According to the invention of claim 2, in addition to the effect of the invention of claim 1, the dissolution form when used as a galvanic anode is improved, so that the pitting depth is shallow and local dissolution is suppressed. A magnesium alloy for galvanic anodes could be provided.

Claims (2)

Mn:0.1〜1.0質量%およびCa:0.05〜1.0質量%を含有し、残部がMgと不可避不純物よりなることを特徴とする流電陽極用マグネシウム合金。A magnesium alloy for a galvanic anode containing Mn: 0.1 to 1.0 % by mass and Ca: 0.05 to 1.0 % by mass, the balance being composed of Mg and inevitable impurities. Mn:0.1〜1.0質量%、Ca:0.05〜1.0質量%、Inおよび/またはZn:0.005〜0.1質量%を含有し、残部がMgと不可避不純物よりなることを特徴とする流電陽極用マグネシウム合金。Mn: 0.1 to 1.0 % by mass, Ca: 0.05 to 1.0 % by mass, In and / or Zn: 0.005 to 0.1% by mass, with the balance being Mg and inevitable impurities A magnesium alloy for galvanic anodes, characterized in that
JP2000175245A 2000-06-12 2000-06-12 Magnesium alloy for galvanic anode Expired - Fee Related JP4395820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000175245A JP4395820B2 (en) 2000-06-12 2000-06-12 Magnesium alloy for galvanic anode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000175245A JP4395820B2 (en) 2000-06-12 2000-06-12 Magnesium alloy for galvanic anode

Publications (3)

Publication Number Publication Date
JP2001355033A JP2001355033A (en) 2001-12-25
JP2001355033A5 JP2001355033A5 (en) 2007-08-02
JP4395820B2 true JP4395820B2 (en) 2010-01-13

Family

ID=18677151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000175245A Expired - Fee Related JP4395820B2 (en) 2000-06-12 2000-06-12 Magnesium alloy for galvanic anode

Country Status (1)

Country Link
JP (1) JP4395820B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017222240A1 (en) * 2016-06-23 2017-12-28 주식회사 포스코 Magnesium alloy material and manufacturing method therefor
KR20190098307A (en) * 2018-02-13 2019-08-22 서울대학교산학협력단 Magnesium alloy having excellent strength and corrosion resistance and manufacturing method for the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017222240A1 (en) * 2016-06-23 2017-12-28 주식회사 포스코 Magnesium alloy material and manufacturing method therefor
KR101831385B1 (en) * 2016-06-23 2018-02-22 주식회사 포스코 Magnesium alloy material and method for manufacturing the same
KR20190098307A (en) * 2018-02-13 2019-08-22 서울대학교산학협력단 Magnesium alloy having excellent strength and corrosion resistance and manufacturing method for the same
KR102084304B1 (en) 2018-02-13 2020-03-04 서울대학교산학협력단 Magnesium alloy having excellent strength and corrosion resistance and manufacturing method for the same

Also Published As

Publication number Publication date
JP2001355033A (en) 2001-12-25

Similar Documents

Publication Publication Date Title
JP2892449B2 (en) Magnesium alloy for galvanic anode
JPH0414177B2 (en)
US4141725A (en) Aluminum alloy for galvanic anode
JP4395820B2 (en) Magnesium alloy for galvanic anode
JPH0733555B2 (en) Magnesium alloy for galvanic anode used for cathodic protection
GB2161180A (en) An aluminium alloy for a galvanic anode
JPH07118784A (en) Aluminum alloy for corrosion protection of steel structure
JP4126633B2 (en) Aluminum alloy galvanic anode for low temperature seawater
JP3184516B2 (en) Magnesium alloy for galvanic anode
JPH09310131A (en) Production of magnesium alloy for voltaic anode
US4626329A (en) Corrosion protection with sacrificial anodes
US5547560A (en) Consumable anode for cathodic protection, made of aluminum-based alloy
CN112647001A (en) AZ31M alloy and preparation method and application thereof
JP2773971B2 (en) Magnesium alloy for galvanic anode
JPH09310130A (en) Production of magnesium alloy for galvanic anode
RU2263154C2 (en) Aluminum based protective alloy
JPS6176644A (en) Magnesium alloy for galvanic anode for electric protection
JP2705844B2 (en) Magnesium alloy for galvanic anode
JP3183603B2 (en) Aluminum alloy for galvanic anodic protection of steel bars in reinforced concrete and corrosion protection method using the same
JP4436553B2 (en) Aluminum alloy for low temperature seawater environmental current anode
JPH0368942B2 (en)
US3464909A (en) Aluminum alloy galvanic anodes
JP4539199B2 (en) Zinc alloy galvanic anode and method for galvanic protection of equipment placed in a high temperature environment using the zinc alloy galvanic anode
JPH0368943B2 (en)
JPH07228938A (en) Aluminum alloy for galvanic anode

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070612

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091008

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4395820

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees