JPH1161307A - Aluminum alloy for galvanic anode - Google Patents

Aluminum alloy for galvanic anode

Info

Publication number
JPH1161307A
JPH1161307A JP9219385A JP21938597A JPH1161307A JP H1161307 A JPH1161307 A JP H1161307A JP 9219385 A JP9219385 A JP 9219385A JP 21938597 A JP21938597 A JP 21938597A JP H1161307 A JPH1161307 A JP H1161307A
Authority
JP
Japan
Prior art keywords
anode
galvanic anode
aluminum alloy
corrosion
reinforced concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9219385A
Other languages
Japanese (ja)
Inventor
Kunio Watanabe
邦夫 渡辺
Shiro Matsuda
史朗 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUMIKOU BOSHOKU KK
Sumitomo Metal Mining Co Ltd
Original Assignee
SUMIKOU BOSHOKU KK
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUMIKOU BOSHOKU KK, Sumitomo Metal Mining Co Ltd filed Critical SUMIKOU BOSHOKU KK
Priority to JP9219385A priority Critical patent/JPH1161307A/en
Publication of JPH1161307A publication Critical patent/JPH1161307A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Prevention Of Electric Corrosion (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a galvanic anode suitable for preventing the corrosion of iron reinforcing bars in reinforced concrete by using an Al alloy contg. specified amts. of Zn and Ca and the balance Al with inevitable impurities. SOLUTION: The Al alloy contains 7-50 wt.% Zn and 0.01-0.60 wt.% Ca. Both Zn and Ca inhibit self-dissolution and act to increase the quantity of electricity generated. In the case of <7 wt.% Zn and <0.01 wt.% Ca, the action is not satisfactorily exhibited. In the case of >50 wt.% Zn and >0.60 wt.% Ca, anode potential is liable to become noble. When the Al alloy is used as a galvanic anode, such a sufficiently base anode potential as <=-1,333 mV and such a sufficiently large quantity of electricity generated as >=1,255 A.hr/kg are ensured and the corrosion of iron reinforcing bars in reinforced concrete is prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、流電陽極用アルミ
ニウム合金に関し、特に鉄筋コンクリート構造物中の鉄
筋の防食に最適な流電陽極用アルミニウム合金に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy for a galvanic anode, and more particularly to an aluminum alloy for a galvanic anode which is optimal for preventing corrosion of reinforcing steel in a reinforced concrete structure.

【0002】[0002]

【従来の技術】コンクリートが強アルカリであるため
に、通常の環境の鉄筋コンクリート構造物中の鉄筋の腐
食はあまり進行しない。しかし、例えば海水上や海水中
のような環境や、あるいは凍結防止用に塩化物が散布さ
れる環境のような、塩水が浸透する環境に鉄筋コンクリ
ート構造物を設けると、鉄筋コンクリート構造物中の鉄
筋の腐食が進行するという問題がある。
2. Description of the Related Art Corrosion of reinforcing steel in a reinforced concrete structure in a normal environment does not progress so much because concrete is strongly alkaline. However, if the reinforced concrete structure is installed in an environment where salt water penetrates, for example, in an environment such as seawater or seawater, or an environment in which chlorides are sprayed to prevent freezing, the reinforcement of the reinforced concrete structure may be reduced. There is a problem that corrosion progresses.

【0003】この問題に対して、長期間低廉で安定した
防食ができる流電陽極法が注目されており、流電陽極に
亜鉛合金の使用が検討されているが、流電陽極の重要な
特性の一つである陽極電位が高(貴)すぎるという問題
がある。
[0003] To solve this problem, a galvanic anode method that can provide stable corrosion protection at low cost for a long time has attracted attention, and the use of a zinc alloy for the galvanic anode has been studied. One of the problems is that the anode potential is too high (noble).

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、上記
問題点を解消し、鉄筋コンクリート構造物中の鉄筋の防
食用に好適な組成の流電陽極、すなわち陽極電位が十分
に卑で、かつ発生電気量が十分に大きいアルミニウム合
金からなる流電陽極を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to provide a galvanic anode having a composition suitable for preventing corrosion of reinforcing steel in a reinforced concrete structure, that is, a sufficiently low anode potential, and An object of the present invention is to provide a galvanic anode made of an aluminum alloy that generates a sufficiently large amount of electricity.

【0005】[0005]

【課題を解決するための手段】7〜50重量%のZn
と、0.01〜0.60重量%のCaとを含み、残部が
Alおよび不可避不純物からなるアルミニウム合金を流
電陽極とする。
Means for Solving the Problems 7 to 50% by weight of Zn
And an aluminum alloy containing 0.01 to 0.60% by weight of Ca and the balance being Al and unavoidable impurities is used as a galvanic anode.

【0006】[0006]

【発明の実施の形態】7〜50重量%のZnと、0.0
1〜0.60重量%のCaとを含み、残部がAlおよび
不可避不純物からなるアルミニウム合金を流電陽極とし
て用いる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS 7 to 50% by weight of Zn and 0.0
An aluminum alloy containing 1 to 0.60% by weight of Ca and the balance being Al and unavoidable impurities is used as a galvanic anode.

【0007】該アルミニウム合金におけるZnおよびC
aには、いずれも自己溶解を抑制することにより発生電
気量を大きくする作用があるが、Znが7重量%未満で
あるか、またはCaが0.01重量%未満であると、該
作用は十分発揮されない。また、Znが50重量%を超
えるか、またはCaが0.60重量%を超えると、陽極
電位が貴となりやすい。
[0007] Zn and C in the aluminum alloy
a has the effect of increasing the amount of generated electricity by suppressing self-dissolution, but when Zn is less than 7% by weight or Ca is less than 0.01% by weight, the effect is reduced. Not enough. If Zn exceeds 50% by weight or Ca exceeds 0.60% by weight, the anodic potential tends to be noble.

【0008】[0008]

【実施例】【Example】

(実施例1〜11)実施例1〜11として、組成を調整
したアルミニウム合金を大気溶解後、金型鋳造して、直
径25mm、長さ250mmの丸棒形状の鋳塊を得た。
その後、これらの鋳塊を試料として、流電陽極の性能試
験を行った。性能試験は、(社)腐食防食協会が制定し
た「流電陽極試験法」(「流電陽極試験法および同解
説」、防食技術、第31巻、612〜620頁、198
2年)に準拠して実施した。
(Examples 1 to 11) As Examples 1 to 11, an aluminum alloy whose composition was adjusted was melted in the air and then cast in a mold to obtain a round bar-shaped ingot having a diameter of 25 mm and a length of 250 mm.
Thereafter, a performance test of a galvanic anode was performed using these ingots as samples. The performance test was conducted using the “electrostatic anode test method” established by the Corrosion and Corrosion Prevention Association of Japan (“electrostatic anode test method and its description”, anticorrosion technology, Vol. 31, pp. 612-620, 198).
2 years).

【0009】上記流電陽極試験法を略述すると次の通り
である。
The following is a brief description of the galvanostatic anode test method.

【0010】すなわち、試料の表面をサンドペーパーの
240番の粗さになるまで研磨し、側面を20cm2
して、他の面はビニールテープを用いて絶縁被覆した。
次に、KClが32.0g/l、NaOHが24.5g
/l、KOHが10.0g/l、Ca(OH)2 が0.
1g/lである組成の水溶液をコンクリート模擬液試験
液として、1リットルのビーカー内に満たした。陽極と
して試料をビーカー中央に配置し、陰極としてステンレ
ス円筒板をビーカー側壁に沿わせて配置し(極間距離3
0mm)、陽極と陰極との間に直流安定化電源を結線し
た。通電は、陽極電流密度が1.0mA/cm2 となる
定電流条件で、240時間行った。発生電気量は、試料
の重量減少から算出した。また、通電終了直後に、銀−
塩化銀電極を参照電極として陽極電位を測定した。
That is, the surface of the sample was polished until the roughness of the sandpaper became No. 240, and the other surface was insulated and coated with vinyl tape, leaving 20 cm 2 of the side surface.
Next, KCl was 32.0 g / l and NaOH was 24.5 g.
/ L, KOH 10.0 g / l, Ca (OH) 2 0.1.
An aqueous solution having a composition of 1 g / l was filled in a 1-liter beaker as a concrete simulation liquid test liquid. The sample was placed at the center of the beaker as the anode, and a stainless steel cylindrical plate was placed along the side wall of the beaker as the cathode (interelectrode distance 3
0 mm), and a DC stabilized power supply was connected between the anode and the cathode. The energization was performed for 240 hours under a constant current condition at which the anode current density was 1.0 mA / cm 2 . The amount of electricity generated was calculated from the weight loss of the sample. Immediately after the end of energization, silver-
The anode potential was measured using a silver chloride electrode as a reference electrode.

【0011】試料の組成および得られた結果を表1に示
す。
The composition of the sample and the results obtained are shown in Table 1.

【0012】(比較例1〜8)また、比較例1〜8とし
て組成を調整したアルミニウム合金を実施例1〜11と
同様にして試料の鋳塊に加工し、同様の性能試験を実施
した。
(Comparative Examples 1 to 8) As Comparative Examples 1 to 8, aluminum alloys whose compositions were adjusted were processed into sample ingots in the same manner as in Examples 1 to 11, and similar performance tests were performed.

【0013】試料の組成および得られた結果を表1に示
す。
The composition of the sample and the results obtained are shown in Table 1.

【0014】[0014]

【表1】 [Table 1]

【0015】表1に示したように本発明のアルミニウム
合金は比較例に比して、陽極電位が−1333mV以下
と十分に卑であり、かつ発生電気量が1255A・hr
/kg以上と十分に大きく、鉄筋コンクリート構造物中
の鉄筋の防食用に好適である。
As shown in Table 1, the aluminum alloy of the present invention has a sufficiently low anode potential of −1333 mV and a generated electricity of 1255 A · hr, as compared with the comparative example.
/ Kg or more, which is sufficiently large and suitable for corrosion prevention of reinforcing steel in a reinforced concrete structure.

【0016】[0016]

【発明の効果】以上のように、7〜50重量%のZn
と、0.01〜0.60重量%のCaとを含み、残部が
Alおよび不可避不純物からなるアルミニウム合金を流
電陽極とするので、陽極電位が十分に卑で、かつ発生電
気量が十分に大きく、鉄筋コンクリート構造物中の鉄筋
の防食用に好適となる。
As described above, 7 to 50% by weight of Zn
And an aluminum alloy containing 0.01 to 0.60% by weight of Ca and the balance being Al and unavoidable impurities is used as the galvanic anode, so that the anode potential is sufficiently low and the amount of generated electricity is sufficient. It is large and is suitable for corrosion prevention of reinforcing bars in reinforced concrete structures.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 7〜50重量%のZnと、0.01〜
0.60重量%のCaとを含み、残部がAlおよび不可
避不純物からなる流電陽極用アルミニウム合金。
1. A method according to claim 1, wherein said Zn is present in an amount of from 7 to 50% by weight.
An aluminum alloy for a galvanic anode containing 0.60% by weight of Ca, with the balance being Al and unavoidable impurities.
JP9219385A 1997-08-14 1997-08-14 Aluminum alloy for galvanic anode Withdrawn JPH1161307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9219385A JPH1161307A (en) 1997-08-14 1997-08-14 Aluminum alloy for galvanic anode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9219385A JPH1161307A (en) 1997-08-14 1997-08-14 Aluminum alloy for galvanic anode

Publications (1)

Publication Number Publication Date
JPH1161307A true JPH1161307A (en) 1999-03-05

Family

ID=16734598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9219385A Withdrawn JPH1161307A (en) 1997-08-14 1997-08-14 Aluminum alloy for galvanic anode

Country Status (1)

Country Link
JP (1) JPH1161307A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2189548A1 (en) * 2007-09-14 2010-05-26 Nissan Motor Co., Ltd. Stress-buffering material
JP2011068933A (en) * 2009-09-24 2011-04-07 Kobe Steel Ltd Aluminum alloy clad material for heat exchanger

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2189548A1 (en) * 2007-09-14 2010-05-26 Nissan Motor Co., Ltd. Stress-buffering material
EP2189548A4 (en) * 2007-09-14 2010-10-20 Nissan Motor Stress-buffering material
US8241561B2 (en) 2007-09-14 2012-08-14 Nissan Motor Co., Ltd. Stress-buffering material
JP2011068933A (en) * 2009-09-24 2011-04-07 Kobe Steel Ltd Aluminum alloy clad material for heat exchanger

Similar Documents

Publication Publication Date Title
JP2892449B2 (en) Magnesium alloy for galvanic anode
US3368958A (en) Aluminum alloy for cathodic protection system and primary battery
US2913384A (en) Aluminum anodes
KR0165720B1 (en) Aluminium alloy for galvanic anode
US3418230A (en) Galvanic anode and aluminum alloy therefor
JPH1161307A (en) Aluminum alloy for galvanic anode
JP6681500B1 (en) Backfill for cathodic protection
JPH1161309A (en) Aluminum alloy for galvanic anode
JP3183603B2 (en) Aluminum alloy for galvanic anodic protection of steel bars in reinforced concrete and corrosion protection method using the same
JPH1161308A (en) Aluminum alloy for galvanic anode
JP3183604B2 (en) Aluminum alloy for galvanic anodic protection of steel bars in reinforced concrete and corrosion protection method using the same
JP2773971B2 (en) Magnesium alloy for galvanic anode
JPH11310840A (en) Aluminum alloy for galvanic electricity anode
JP3184516B2 (en) Magnesium alloy for galvanic anode
US3321306A (en) Galvanic anode alloy and products produced therefrom
JP2006063439A (en) Sprayed coating for corrosion prevention to reinforcing bar in concrete structure
JP2705844B2 (en) Magnesium alloy for galvanic anode
JPH08120382A (en) Aluminum alloy for galvanic anode
JPH09310131A (en) Production of magnesium alloy for voltaic anode
JPH09310130A (en) Production of magnesium alloy for galvanic anode
JPH11217645A (en) Aluminum alloy for sacrifice anode
US5547560A (en) Consumable anode for cathodic protection, made of aluminum-based alloy
JPH04157128A (en) Aluminum alloy for galvanic anode
JPH10219380A (en) Alminum alloy for sacrificial anode
JPH09157782A (en) Magnesium alloy for galvanic anode

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041102