JP2883016B2 - Lightweight inorganic molded article and method for producing the same - Google Patents

Lightweight inorganic molded article and method for producing the same

Info

Publication number
JP2883016B2
JP2883016B2 JP870095A JP870095A JP2883016B2 JP 2883016 B2 JP2883016 B2 JP 2883016B2 JP 870095 A JP870095 A JP 870095A JP 870095 A JP870095 A JP 870095A JP 2883016 B2 JP2883016 B2 JP 2883016B2
Authority
JP
Japan
Prior art keywords
weight
cement
core layer
mat
molded article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP870095A
Other languages
Japanese (ja)
Other versions
JPH08198689A (en
Inventor
貞行 富安
盛仁 中谷
正之 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP870095A priority Critical patent/JP2883016B2/en
Publication of JPH08198689A publication Critical patent/JPH08198689A/en
Application granted granted Critical
Publication of JP2883016B2 publication Critical patent/JP2883016B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00612Uses not provided for elsewhere in C04B2111/00 as one or more layers of a layered structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、建材等に使用される軽
量無機質成形体とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lightweight inorganic molded article used for building materials and the like and a method for producing the same.

【0002】[0002]

【従来の技術】セメント板のような無機質成形体におい
て、パーライトのような中空状の無機質軽量骨材を使用
することによってその軽量化を図るという技術は一般に
知られている。しかし、パーライトは表面積が小さく活
性度が低いためセメント中の石灰と充分に反応せず、強
度の高い無機質成形体を得ることが難しい。これに対し
て、上記中空状のパーライトを粉砕することによって表
面積の大きな細片状のパーライトを得て、これを骨材と
して用いることにより、該パーライトと上記セメントの
石灰との反応(ケイカル反応)性を高め、得られる無機
質成形体の強度を高めるという提案はある(特開昭56
−54268号公報参照)。
2. Description of the Related Art It is generally known to reduce the weight of an inorganic molded article such as a cement board by using a hollow inorganic lightweight aggregate such as perlite. However, since pearlite has a small surface area and low activity, it does not sufficiently react with lime in cement, and it is difficult to obtain an inorganic molded body having high strength. On the other hand, the pearlite having a large surface area is obtained by pulverizing the hollow pearlite, and by using the pearlite as an aggregate, a reaction between the pearlite and the lime of the cement (caical reaction). There is a proposal to increase the strength and to increase the strength of the obtained inorganic molded article (Japanese Patent Application Laid-Open No.
-54268).

【0003】[0003]

【発明が解決しようとする課題】しかし、上記提案の場
合は、中空状パーライトを一旦粉砕するという手間が必
要であり、また、粉砕という手段では細片状パーライト
を適切な粒径にコントロールすることが難しく、期する
強度向上及び軽量化を図ることができない。さらに、中
空状のパーライトを粉砕するということは、それによっ
てパーライト自体の嵩比重が増大することを意味し、無
機質成形体の軽量化という点からは不利になる。
However, in the case of the above proposal, it is necessary to once crush the hollow pearlite, and in the means of crushing, it is necessary to control the flake pearlite to an appropriate particle size. It is difficult to achieve the desired strength improvement and weight reduction. Further, pulverizing the hollow pearlite means that the bulk specific gravity of the pearlite itself increases, which is disadvantageous in terms of weight reduction of the inorganic molded article.

【0004】すなわち、本発明の課題は、軽量で且つ強
度が高く、しかも表面のエンボス成形が容易な無機質成
形体及びその製造方法を提供することにある。
[0004] That is, an object of the present invention is to provide an inorganic molded article that is lightweight, has high strength, and is easily embossed on the surface, and a method for producing the same.

【0005】[0005]

【課題を解決するための手段及びその作用】本発明者
は、このような課題に対して、種々の試験・研究を行な
った結果、パーライト等の中空状の無機質発泡体であっ
ても、その粒径を調整してセメント粒子との接触が密に
なるようにすればケイカル反応が促進されることを見出
だし、本発明を完成するに至ったものである。以下、特
許請求の範囲の各請求項に係る発明について具体的に説
明する。
The present inventor has conducted various tests and studies on such a problem, and as a result, the present inventors have found that even a hollow inorganic foam such as pearlite is used. It has been found that if the particle size is adjusted so that the contact with the cement particles becomes dense, the cical reaction is promoted, and the present invention has been completed. Hereinafter, the invention according to each claim of the claims will be specifically described.

【0006】<請求項1に係る発明>この発明は、芯層
と表裏の層とを有する三層構造の軽量無機質成形体に関
するものであって、上記芯層が、セメント60〜80重
量%と、シリカを主成分とし且つ粒径200〜300μ
mの粒子を35%以上含む嵩比重0.07〜0.10の
粒状無機質発泡体10〜30重量%と、補強繊維0.5
〜10重量%とを含有し、上記表裏の層が、セメント4
0〜60重量%と、ケイ酸含有物質30〜40重量%
と、補強繊維5〜10重量%とを含有することを特徴と
する。
<Invention according to claim 1> The present invention relates to a lightweight inorganic molded article having a three-layer structure having a core layer and front and back layers, wherein the core layer comprises 60 to 80% by weight of cement. , Mainly composed of silica and having a particle size of 200 to 300 μm
m to 30% by weight of a particulate inorganic foam having a bulk specific gravity of 0.07 to 0.10.
-10% by weight, and the top and bottom layers are cement 4
0 to 60% by weight, and 30 to 40% by weight of a silicic acid-containing substance
And 5 to 10% by weight of reinforcing fibers.

【0007】−芯層について− 当該発明において、芯層の粒状の無機質発泡体は主成分
がシリカであり、セメントとのケイカル反応によってケ
イ酸カルシウムを形成し該セメントを介して互いに結合
している。この無機質発泡体の粒径分布に関して、20
0〜300μmのものが35%以上になるようにしてい
るのは、セメント粒子のほとんどを上記無機質発泡体の
粒子間隙に充填し且つ該セメント粒子と無機質発泡体と
を密に接触させるためである。
-Regarding the core layer- In the present invention, the granular inorganic foam of the core layer is mainly composed of silica, and forms calcium silicate by a silical reaction with cement and is bonded to each other via the cement. . Regarding the particle size distribution of this inorganic foam,
The reason why the diameter is 0% to 300 μm is set to 35% or more in order to fill most of the cement particles into the particle gap of the inorganic foam and to bring the cement particles into close contact with the inorganic foam. .

【0008】すなわち、一般的に市販されているセメン
ト(普通ポルトランドセメント)のセメント粒子の分布
は図1に示す通りであり、セメント粒子の70%以上が
粒径10〜60μmの範囲にあり、平均粒径は25μm
程度になる。一方、上記無機質発泡体を等大球形の1次
球とした場合、この1次球を最密充填(六方最密充填)
したときの粒子間隙としては、6つの1次球で囲まれた
大きな粒子間隙と、4つの1次球で囲まれた小さな粒子
間隙とができる。大きな粒子間隙に入る最大球を2次
球、小さな粒子間隙に入る最大球を3次球、1次球と2
次球との間隙に入る最大球を4次球、1次球と3次球と
の間隙に入る最大球を5次球とすると、1次〜5次の各
球の粒径の関係は表1のようになる。
That is, the distribution of cement particles of a commercially available cement (ordinary Portland cement) is as shown in FIG. 1, where 70% or more of the cement particles have a particle size of 10 to 60 μm and an average Particle size is 25 μm
About. On the other hand, when the above-mentioned inorganic foam is a primary spherical sphere, the primary sphere is closest packed (hexagonal closest packing).
As a result, a large particle gap surrounded by six primary spheres and a small particle gap surrounded by four primary spheres are formed. The largest sphere entering the large particle gap is a secondary sphere, and the largest sphere entering the small particle gap is a tertiary sphere, primary sphere and 2
If the largest sphere entering the gap between the secondary sphere and the primary sphere is the fourth sphere and the largest sphere entering the gap between the primary and tertiary sphere is the fifth sphere, the relationship between the particle diameters of the primary to fifth spheres is shown in the table. It looks like 1.

【0009】[0009]

【表1】 [Table 1]

【0010】この場合、上記2次球乃至5次球がセメン
ト粒子に該当することになるが、1次球である無機質発
泡体の粒径が例えば100μm以上200μm未満であ
れば、その最大粒子間隙(2次球の大きさ)は41.2
〜82.8μmとなるから、図1によれば、理論的には
セメントの80〜95%程度が2次球乃至5次球として
無機質発泡体の粒子間隙に入ることになる。しかし、実
際にはセメント粒子同士の干渉があるため、当該粒子間
隙に入らないセメント粒子の量が多くなる。
In this case, the secondary sphere to the fifth sphere correspond to the cement particles. If the particle diameter of the inorganic foam which is the primary sphere is, for example, not less than 100 μm and less than 200 μm, the maximum particle gap is not larger. (Size of secondary sphere) is 41.2
According to FIG. 1, theoretically, about 80 to 95% of the cement enters the particle gap of the inorganic foam as secondary spheres to quinary spheres. However, since there is actually interference between cement particles, the amount of cement particles that do not enter the particle gap increases.

【0011】一方、無機質発泡体の粒径が300μmを
越えると、その最大粒子間隙(2次球の大きさ)は12
4.2μmを越え、ほとんどのセメント粒子が無機質発
泡体の粒子間隙に入ることになる。しかし、無機質発泡
体の粒子間隙が大きすぎるために、1つの大きな粒子間
隙あるいは小さな粒子間隙に大小多数のセメント粒子が
充填されることが多くなり、セメント粒子同士が互いに
接触しても、セメント粒子と無機質発泡体との接触は少
なくなる。
On the other hand, when the particle diameter of the inorganic foam exceeds 300 μm, the maximum particle gap (size of the secondary sphere) becomes 12 μm.
Above 4.2 μm, most of the cement particles will enter the interstices of the inorganic foam. However, since the particle gap of the inorganic foam is too large, many large and small cement particles are often filled in one large particle gap or small particle gap. And the contact with the inorganic foam is reduced.

【0012】これに対して、無機質発泡体の粒径が20
0〜300μmの範囲であれば、ほとんどのセメント粒
子が無機質発泡体の粒子間隙に入るとともに、粒子間隙
が過度に大きくないから、無機質発泡体とセメント粒子
との接触率も高くなる。このため、該無機質発泡体とセ
メントとのケイカル反応が促進されて結合が強いものに
なり、従って芯層の強度が高い。
On the other hand, when the particle diameter of the inorganic foam is 20
In the range of 0 to 300 μm, most of the cement particles enter the particle gap of the inorganic foam and the particle gap is not excessively large, so that the contact ratio between the inorganic foam and the cement particles also increases. For this reason, the calcium reaction between the inorganic foam and the cement is promoted, and the bonding is strong, and therefore, the strength of the core layer is high.

【0013】ここで重要な点は、上述の如くケイカル反
応の促進のために粒径を調整するという手段を用いてい
るから、上記無機質発泡体を粉砕する必要がないという
ことであり、また、セメントは最密充填状態の無機質発
泡体の粒子間隙を埋める量が最低限あればよいから、強
度の低下を招くことなく無機質発泡体の量を相対的に多
くすることができる、ということである。従って、芯層
は単に強度が高いだけでなく、密度が0.6〜0.9程
度の相当に軽量なものとなる。また、このように芯層は
高強度且つ軽量であるとともに、低密度であるがために
クッション性が高く、表裏の層にエンボス成形を施した
際に、表裏層自体が比較的硬いものであっても、該表裏
層が柔らかな芯層に簡単に押し込まれ鮮明な成形面を得
ることができる。
The important point here is that, since the means for adjusting the particle size is used to promote the chical reaction as described above, it is not necessary to pulverize the inorganic foam. Since the cement only needs to have a minimum amount of filling the particle gap of the inorganic foam in the close-packed state, it is possible to relatively increase the amount of the inorganic foam without lowering the strength. . Accordingly, the core layer has not only high strength but also a considerably light weight having a density of about 0.6 to 0.9. In addition, the core layer is high in strength and lightweight, and has low cushioning properties due to its low density. When the front and back layers are embossed, the front and back layers themselves are relatively hard. Even so, the front and back layers can be easily pressed into the soft core layer to obtain a clear molded surface.

【0014】ここに、セメントを60〜80重量%と
し、無機質発泡体を10〜30重量%とするのは、無機
質発泡体の粒子間隙がセメント粒子によって埋めつくさ
れるようにするためであり、セメントの割合が少なくな
ると無機質発泡体同士の結合が不充分になって芯層の強
度が低くなり、セメントの割合が多すぎると軽量化の点
で不利になる。
Here, the reason why the content of the cement is set to 60 to 80% by weight and the content of the inorganic foam is set to 10 to 30% by weight is that the particle gap of the inorganic foam is filled with cement particles. When the proportion of cement is small, the bonding between the inorganic foams is insufficient, and the strength of the core layer is reduced. When the proportion of cement is too large, it is disadvantageous in terms of weight reduction.

【0015】また、上記無機質発泡体の嵩比重を0.0
7〜0.10とするのは、該嵩比重が小さい場合には芯
層の強度が低くなり、該嵩比重が大きい場合には軽量化
の点で不利になるからである。
Further, the bulk specific gravity of the above-mentioned inorganic foam is set to 0.0
The reason for setting it to 7 to 0.10 is that when the bulk specific gravity is small, the strength of the core layer is low, and when the bulk specific gravity is large, it is disadvantageous in terms of weight reduction.

【0016】補強繊維は、芯層の強度向上に寄与する
が、その量が10重量%よりも多くなると、ケイカル反
応による無機質発泡体同士の結合に不利になる。
The reinforcing fibers contribute to the improvement of the strength of the core layer. However, if the amount of the reinforcing fibers is more than 10% by weight, it is disadvantageous for the bonding between the inorganic foams by the Caical reaction.

【0017】−表裏層について− また、当該発明において、表裏層のセメントを40〜6
0重量%とし、ケイ酸含有物質を30〜40重量%とす
るのは、このような比率でケイカル反応が効果的に行な
われ、表裏層の強度が高いものになからである。表裏層
の密度は1.0〜1.4程度である。補強繊維の割合を
5〜10重量%とするのは、該補強繊維によって表裏層
の強度、特に引張強度を高めるためであり、また、その
量が多すぎると、上記ケイカル反応による無機質発泡体
同士の結合に不利になる。補強繊維の繊維長は表面を平
滑にする観点からは平均繊維長が5mm以下になるよう
にすることが好ましい。
-Regarding the front and back layers-In the present invention, the cement of the front and back layers is 40 to 6%.
The reason why the content is set to 0% by weight and the content of the silicic acid-containing substance is set to 30 to 40% by weight is that the silical reaction is effectively performed at such a ratio and the strength of the front and back layers is high. The density of the front and back layers is about 1.0 to 1.4. The reason for setting the proportion of the reinforcing fiber to 5 to 10% by weight is to increase the strength of the front and back layers, particularly the tensile strength, with the reinforcing fiber. Is disadvantageous for combining From the viewpoint of smoothing the surface, the fiber length of the reinforcing fibers is preferably such that the average fiber length is 5 mm or less.

【0018】−芯層と表裏層との層間結合について− 芯層と表裏層とは、表裏層のセメント粒子の一部が芯層
の無機質発泡体の間隙に嵌まり込み、該無機質発泡体と
セメント粒子とのケイカル反応によって密に結合してい
る。このため、層間の密着性が高く、層状構造であって
も剥離強度が高いものになっている。この剥離強度向上
の観点から、上記芯層の無機質発泡体の粒径分布は、2
00〜300μmのものが50%以上であることがより
好ましいものとなる。
Regarding the interlayer bonding between the core layer and the front and back layers The core layer and the front and back layers are such that a part of the cement particles of the front and back layers fits into the gaps between the inorganic foam of the core layer, It is tightly bound by the Caical reaction with the cement particles. Therefore, the adhesion between the layers is high, and the peel strength is high even in a layered structure. From the viewpoint of improving the peel strength, the particle size distribution of the inorganic foam of the core layer is 2
It is more preferable that the thickness of the layer having a thickness of 00 to 300 μm is 50% or more.

【0019】−セメント等の種類について− セメントについては、特に限定するものではないが、ポ
ルトランドセメント、高炉セメント、シリカセメント等
を用いることができる。
-Types of Cement and the Like-Cement is not particularly limited, but Portland cement, blast furnace cement, silica cement and the like can be used.

【0020】シリカを主成分とする無機質発泡体として
は、種々のものを用いることができるが、パーライトの
ような閉鎖型の無機質発泡体よりも開放型の無機質発泡
体、特にシラス発泡体が好適である。すなわち、閉鎖型
無機質発泡体は気泡が閉じたもの(独立気泡)である。
開放型無機質発泡体は気泡が外部に開放したものであ
り、内部に連続気泡を有するもの、並びに複数の粒子の
集合体である場合にはその一部の粒子の気泡が外部に開
放しているものを含む。開放型無機質発泡体が好適であ
るのは、セメントの一部が気泡の開口部から内部に入
り、該内部におけるケイカル反応によって当該無機質発
泡体とセメントとの一体化がより一層図れ、芯層の強度
向上に有利になるからである。
Various inorganic foams containing silica as a main component can be used, but open-type inorganic foams, particularly shirasu foams, are more preferable than closed-type inorganic foams such as perlite. It is. That is, the closed-type inorganic foam is a closed cell (closed cell).
The open-type inorganic foam is one in which cells are open to the outside, and has open cells inside, and in the case of an aggregate of a plurality of particles, some of the particles are open to the outside. Including things. The open type inorganic foam is preferable because a part of the cement enters the inside from the opening of the cell, and the inorganic foam and the cement can be further integrated by the silical reaction in the inside, so that the core layer can be used. This is because it is advantageous for improving the strength.

【0021】ケイ酸含有物質についても、特に限定する
ものではないが、セメント中の石灰とケイカル反応をす
るものであればよく、例えば珪石、珪砂、珪藻土等を用
いることができる。
The silicic acid-containing substance is not particularly limited as long as it has a silical reaction with the lime in the cement. For example, quartzite, quartz sand, diatomaceous earth and the like can be used.

【0022】補強繊維としては、特に限定するものでは
ないが、木質繊維(木片を含む)やポリプロピレンその
他の合成繊維を用いることができ、あるいは無機繊維で
あってもよい。
The reinforcing fibers are not particularly limited, but wood fibers (including wood chips), polypropylene and other synthetic fibers can be used, or inorganic fibers may be used.

【0023】<請求項2に係る発明>この発明は、上記
請求項1に係る軽量無機質成形体の製造方法に関するも
のであって、セメント100重量部にケイ酸含有物質5
0〜100重量部、溶融温度もしくは分解温度が150
℃以上の補強繊維8〜25重量部及び適量の水を添加し
てなる表裏層成形用の混合物をベースの上にマット状に
敷き、該マットの上に、セメント100重量部にシリカ
を主成分とし且つ粒径200〜300μmの粒子を35
%以上含む嵩比重0.07〜0.10の粒状無機質発泡
体12〜50重量部、補強繊維1〜17重量部及び適量
の水を添加してなる芯層成形用の混合物をマット状に敷
き、該マットの上に上記表裏層成形用の混合物をマット
状に敷き、得られた三層構造のマットを圧締硬化させた
後に、オートクレーブによって150℃以上の温度で養
生硬化させることにより、芯層と表裏の層とを有する三
層構造の軽量無機質成形体を得ることを特徴とする。
<Invention according to claim 2> The present invention relates to a method for producing a lightweight inorganic molded article according to claim 1, wherein 100 parts by weight of cement contains a silicic acid-containing substance
0-100 parts by weight, melting temperature or decomposition temperature is 150
A mixture for forming a front and back layer obtained by adding 8 to 25 parts by weight of a reinforcing fiber having a temperature of not less than 8 ° C. and an appropriate amount of water is laid in a mat shape on a base, and 100 parts by weight of cement is mainly composed of silica on the mat. And particles having a particle size of 200 to 300 μm are 35
% Of a granular inorganic foam having a bulk specific gravity of 0.07 to 0.10, a reinforcing fiber of 1 to 17 parts by weight, and an appropriate amount of water for forming a core layer. The mixture for forming the front and back layers is spread on the mat in the form of a mat, and the obtained three-layered mat is pressed and cured. A lightweight inorganic molded article having a three-layer structure having a layer and front and back layers is obtained.

【0024】当該発明の表裏層成形用混合物及び芯層成
形用混合物の各々における各配合材の重量比率は、請求
項1に係る無機質成形体の表裏層及び芯層の該当する構
成要素の比率に対応するものである。また、無機質発泡
体の粒径分布、嵩比重を上記のように設定しているの
は、請求項1に係る発明の説明に記載した理由からであ
る。
In each of the mixture for forming the front and back layers and the mixture for forming the core layer according to the present invention, the weight ratio of each compounding material is determined by the ratio of the corresponding constituent elements of the front and back layers and the core layer of the inorganic molded article according to claim 1. Corresponding. The particle size distribution and bulk specific gravity of the inorganic foam are set as described above for the reason described in the description of the first aspect of the present invention.

【0025】しかして、当該発明の場合、その嵩比重
0.07〜0.10の無機質発泡体は、圧締(プレス成
形)時にその容積が25〜30%減少して最密充填状態
になり、該無機質発泡体の粒子間の間隙がセメント粒子
の粒径と略同じかそれよりも小さくなり、該無機質発泡
体とセメント粒子との接触が密になる。例えば、無機質
発泡体の粒径が200μmである場合は、その容積の減
少量が平均すると27%となる。そうして、このように
加圧され、無機質発泡体とセメント粒子との接触が密に
なるために、該両者のケイカル反応が促進されることに
なる。
In the case of the present invention, the volume of the inorganic foam having a bulk specific gravity of 0.07 to 0.10. The gap between the particles of the inorganic foam is substantially the same as or smaller than the particle size of the cement particles, and the contact between the inorganic foam and the cement particles is increased. For example, when the particle size of the inorganic foam is 200 μm, the amount of decrease in the volume is 27% on average. As a result, the inorganic foam and the cement particles are brought into close contact with each other, so that the calical reaction between the two is promoted.

【0026】また、表裏層成形用のマットのセメント粒
子は上記圧締によって芯層成形用のマットの無機質発泡
体の間隙に嵌まり込んで、該セメント粒子と無機質発泡
体との密着性が高くなり、オートクレーブによる養生硬
化時に該両者のケイカル反応によって表裏層と芯層とが
強固に結合された状態になる。
Further, the cement particles of the mat for forming the front and back layers are fitted into the gaps between the inorganic foams of the mat for forming the core layer by the above-mentioned pressing, and the adhesion between the cement particles and the inorganic foams is high. Thus, during curing and curing by the autoclave, the front and back layers and the core layer are firmly bonded to each other due to the caical reaction between the two.

【0027】ここに、上記表裏層成形用混合物及び芯層
成形用混合物の各々の補強繊維の溶融温度もしくは分解
温度を150℃以上としているのは、オートクレーブに
よる養生硬化時に溶融ないしは分解することを避けるた
めである。すなわち、合成繊維であればその溶融温度が
150℃以上のものであればよく、天然繊維であればそ
の分解温度が150℃以上のものであればよい。
The reason why the melting temperature or the decomposition temperature of each reinforcing fiber of the mixture for forming the front and back layers and the mixture for forming the core layer is set to 150 ° C. or more is to avoid melting or decomposition during curing and curing in an autoclave. That's why. That is, synthetic fibers may have a melting temperature of 150 ° C. or higher, and natural fibers may have a decomposition temperature of 150 ° C. or higher.

【0028】また、上記表裏層成形用混合物及び芯層成
形用混合物の各々の補強繊維の長さについては、請求項
1の場合と同様に特に限定するものではないが、表裏層
側の補強繊維については、先に述べた通り表面平滑性を
得るという観点から平均繊維長5mm以下のものが好適
であり、芯層側の補強繊維については、マットの形崩れ
を生じ難い繊維長にすることが好適である。
The length of the reinforcing fibers of each of the mixture for forming the front and back layers and the mixture for forming the core layer is not particularly limited as in the case of the first aspect, but the reinforcing fibers on the front and back layers are preferably used. As described above, from the viewpoint of obtaining surface smoothness as described above, those having an average fiber length of 5 mm or less are preferable. For the reinforcing fibers on the core layer side, a fiber length that does not easily cause the mat to lose its shape can be used. It is suitable.

【0029】[0029]

【発明の効果】請求項1に係る発明によれば、シリカを
主成分とし且つ粒径200〜300μmの粒子を35%
以上含む嵩比重0.07〜0.10の粒状無機質発泡体
を芯層に用いたから、これを粉砕せずとも該無機質発泡
体がセメント粒子とのケイカル反応によって強固に結合
した芯層が得られ、しかも、無機質発泡体を多量に添加
した場合でも充分な強度が得られることになって、無機
質成形体の強度を高めながらその軽量化を図る上で有利
になり、さらに、表裏層と芯層との結合も強いものにな
って層間の剥離強度が向上するとともに、表裏層のエン
ボス成形も容易になる。
According to the first aspect of the present invention, particles containing silica as a main component and having a particle size of 200 to 300 μm are reduced to 35%.
Since a granular inorganic foam having a bulk specific gravity of 0.07 to 0.10 containing the above was used for the core layer, a core layer in which the inorganic foam was firmly bonded to the cement particles by a Caical reaction without being crushed was obtained. In addition, even when a large amount of inorganic foam is added, sufficient strength can be obtained, which is advantageous in reducing the weight of the inorganic molded body while increasing the strength of the inorganic molded body. The bond between the layers is also strong, the peel strength between the layers is improved, and the embossing of the front and back layers is facilitated.

【0030】請求項2に係る発明によれば、所定配合の
表裏層成形用混合物、芯層成形用混合物及び芯層成形用
混合物を順にマット状に敷いて重ね、圧締硬化後にオー
トクレーブによる養生硬化を行なうようにするととも
に、溶融温度もしくは分解温度が150℃以上の補強繊
維を用いるようにしたから、無機質発泡体を粉砕するこ
となく、請求項1に係る軽量且つ高強度の無機質成形体
を簡単に得ることができ、また、オートクレーブによる
養生時に補強繊維の劣化を防止することができ期する補
強効果を得ることができる。
According to the second aspect of the present invention, the mixture for forming the front and back layers, the mixture for forming the core layer, and the mixture for forming the core layer having a predetermined composition are sequentially laid in a mat shape and laminated, and after curing by pressing, curing and curing by an autoclave. And a reinforcing fiber having a melting temperature or a decomposition temperature of 150 ° C. or more is used, so that the lightweight and high-strength inorganic molded article according to claim 1 can be easily formed without crushing the inorganic foam. In addition, it is possible to prevent deterioration of the reinforcing fibers during curing by an autoclave, and obtain a desired reinforcing effect.

【0031】[0031]

【実施例】以下、本発明の実施例を説明する。Embodiments of the present invention will be described below.

【0032】<実施例1>表2に示す配合の表裏層成形
用混合物を下板(ベース)の上に敷いて10mm厚さの
表裏層マットを形成し、その上に表2に示す配合の芯層
成形用混合物を敷いて26mmの芯層マットを形成し、
その上に同様の表裏層成形用混合物を敷いて10mm厚
さの表裏層マットを形成した。シラス発泡体は嵩比重が
0.07〜0.09であり、その粒径分布は表3に示す
通りである。
Example 1 A mixture for forming the front and back layers having the composition shown in Table 2 was laid on a lower plate (base) to form a front and back layer mat having a thickness of 10 mm. Laying the core layer molding mixture to form a core layer mat of 26 mm,
The same mixture for forming the front and back layers was spread thereon, thereby forming a front and back layer mat having a thickness of 10 mm. Shirasu foam has a bulk specific gravity of 0.07 to 0.09, and the particle size distribution is as shown in Table 3.

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【表3】 [Table 3]

【0035】上記三層構造のマット(総厚46mm)の
上に上板を被せて、圧力15kg/cm2 、温度80℃
で4〜8時間の圧締硬化を行なうことにより、15mm
厚さの成形体を得た。次にこの成形体に対して、オート
クレーブにて温度150℃で8時間の養生硬化を行なっ
た。得られた無機質成形体は表面が緻密で平滑性に優
れ、また、絶乾比重を変えて曲げ強度及び剥離強度を測
定したところ、強度的にも充分のものであった。測定結
果については後に述べる。
An upper plate was put on the above-mentioned three-layered mat (total thickness 46 mm), the pressure was 15 kg / cm 2 , and the temperature was 80 ° C.
By performing press hardening for 4 to 8 hours at 15 mm
A molded body having a thickness was obtained. Next, the molded body was cured and cured at 150 ° C. for 8 hours in an autoclave. The surface of the obtained inorganic molded article was dense and excellent in smoothness, and the flexural strength and peel strength were measured while changing the absolute specific gravity. As a result, the strength was sufficient. The measurement results will be described later.

【0036】<実施例2>シラス発泡体としてその粒径
が200〜300μmの範囲のもののみを用い、実施例
1と同様の条件及び方法によって無機質成形体を得て、
曲げ強度及び剥離強度を測定した。
<Example 2> An inorganic molded article was obtained by using the same shirasu foam having a particle size in the range of 200 to 300 µm under the same conditions and method as in Example 1.
The bending strength and peel strength were measured.

【0037】<実施例3>シラス発泡体として表4に示
す粒径分布のものを用い、実施例1と同様の条件及び方
法によって無機質成形体を得て、曲げ強度及び剥離強度
を測定した。
Example 3 An inorganic molded product was obtained under the same conditions and in the same manner as in Example 1 by using a shirasu foam having a particle size distribution shown in Table 4, and the bending strength and the peel strength were measured.

【0038】[0038]

【表4】 [Table 4]

【0039】<比較例1>シラス発泡体としてその粒径
が100μm以下のもののみを用い、実施例1と同様の
条件及び方法によって無機質成形体を得て、曲げ強度及
び剥離強度を測定した。
<Comparative Example 1> An inorganic molded article was obtained under the same conditions and in the same manner as in Example 1 by using only shirasu foam having a particle size of 100 μm or less, and the bending strength and the peel strength were measured.

【0040】<比較例2>シラス発泡体としてその粒径
が100〜200μmの範囲のもののみを用い、実施例
1と同様の条件及び方法によって無機質成形体を得て、
曲げ強度及び剥離強度を測定した。
<Comparative Example 2> An inorganic molded article was obtained by using only the shirasu foam having a particle size in the range of 100 to 200 μm under the same conditions and method as in Example 1.
The bending strength and peel strength were measured.

【0041】<比較例3>シラス発泡体としてその粒径
が300μm以上のもののみを用い、実施例1と同様の
条件及び方法によって無機質成形体を得て、曲げ強度及
び剥離強度を測定した。
<Comparative Example 3> An inorganic molded body was obtained under the same conditions and in the same manner as in Example 1 by using only a Shirasu foam having a particle size of 300 μm or more, and the bending strength and the peel strength were measured.

【0042】<実施例及び比較例と強度について>上記
各例の曲げ強度及び剥離強度を表5に示す。
<Examples and Comparative Examples and Strength> Table 5 shows the bending strength and peel strength of each of the above examples.

【0043】[0043]

【表5】 [Table 5]

【0044】同表によれば、実施例1〜3は、いずれも
比較例よりも曲げ強度が高くなっており、また、剥離強
度も比較例と同等もしくはそれ以上の値を示している。
実施例1の結果から、絶乾比重が高くなるにつれて曲げ
強度及び剥離強度が高くなることがわかる。また、実施
例1〜3と比較例1〜3との比較から、シラス発泡体の
粒径が200〜300μmであるときに曲げ強度及び剥
離強度が高くなること、そして、実施例1〜3の結果か
ら粒径200〜300μmのシラス発泡体が多くなるほ
ど当該強度が高くなることがわかる。
According to the table, the flexural strength of each of Examples 1 to 3 is higher than that of the comparative example, and the peel strength is equal to or higher than that of the comparative example.
From the results of Example 1, it is understood that the bending strength and the peel strength increase as the absolute dry specific gravity increases. In addition, from the comparison between Examples 1 to 3 and Comparative Examples 1 to 3, the bending strength and the peel strength are increased when the particle size of the shirasu foam is 200 to 300 μm. The results show that the strength increases as the number of shirasu foams having a particle size of 200 to 300 μm increases.

【0045】以上から、粒径200〜300μmの粒子
を35%以上含むシラス発泡体が無機質成形体の軽量化
を図りながらその強度を高めることに有効であること、
上記粒径のものが50%以上にすることが剥離強度を高
める上で特に有効であることがわかる。
As described above, the fact that a shirasu foam containing 35% or more of particles having a particle diameter of 200 to 300 μm is effective in increasing the strength of an inorganic molded article while reducing its weight;
It can be seen that setting the particle size to 50% or more is particularly effective in increasing the peel strength.

【図面の簡単な説明】[Brief description of the drawings]

【図1】普通ポルトランドセメントの粒度分布を示すグ
ラフ図
FIG. 1 is a graph showing the particle size distribution of ordinary Portland cement.

【符号の説明】[Explanation of symbols]

なし None

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B32B 13/04 B32B 13/04 C04B 14/14 C04B 14/14 16/02 16/02 Z 28/18 28/18 40/02 40/02 // C04B 111:40 (56)参考文献 特開 昭57−183342(JP,A) 特開 昭60−199610(JP,A) 特開 平8−26850(JP,A) (58)調査した分野(Int.Cl.6,DB名) C04B 38/08 ────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 6 Identification code FI B32B 13/04 B32B 13/04 C04B 14/14 C04B 14/14 16/02 16/02 Z 28/18 28/18 40/02 40/02 // C04B 111: 40 (56) Reference JP-A-57-183342 (JP, A) JP-A-60-199610 (JP, A) JP-A-8-26850 (JP, A) (58) Field surveyed (Int. Cl. 6 , DB name) C04B 38/08

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 芯層と表裏の層とを有する三層構造の軽
量無機質成形体であって、 上記芯層が、セメント60〜80重量%と、シリカを主
成分とし且つ粒径200〜300μmの粒子を35%以
上含む嵩比重0.07〜0.10の粒状無機質発泡体1
0〜30重量%と、補強繊維0.5〜10重量%とを含
有し、 上記表裏の層が、セメント40〜60重量%と、ケイ酸
含有物質30〜40重量%と、補強繊維5〜10重量%
とを含有することを特徴とする軽量無機質成形体。
1. A lightweight inorganic molded article having a three-layer structure having a core layer and front and back layers, wherein the core layer comprises 60 to 80% by weight of cement, silica as a main component, and a particle size of 200 to 300 μm. Inorganic foam 1 having a bulk specific gravity of 0.07 to 0.10.
0 to 30% by weight and 0.5 to 10% by weight of reinforcing fiber, wherein the front and back layers are composed of 40 to 60% by weight of cement, 30 to 40% by weight of a silicic acid-containing substance, and 5 to 5% by weight of reinforcing fiber. 10% by weight
And a lightweight inorganic molded article characterized by containing:
【請求項2】 セメント100重量部にケイ酸含有物質
50〜100重量部、溶融温度もしくは分解温度が15
0℃以上の補強繊維8〜25重量部及び適量の水を添加
してなる表裏層成形用の混合物をベースの上にマット状
に敷き、該マットの上に、セメント100重量部にシリ
カを主成分とし且つ粒径200〜300μmの粒子を3
5%以上含む嵩比重0.07〜0.10の粒状無機質発
泡体12〜50重量部、補強繊維1〜17重量部及び適
量の水を添加してなる芯層成形用の混合物をマット状に
敷き、該マットの上に上記表裏層成形用の混合物をマッ
ト状に敷き、 得られた三層構造のマットを圧締硬化させた後に、オー
トクレーブによって150℃以上の温度で養生硬化させ
ることにより、芯層と表裏の層とを有する三層構造の軽
量無機質成形体を得ることを特徴とする軽量無機質成形
体の製造方法。
2. 100 parts by weight of cement, 50 to 100 parts by weight of a silicic acid-containing substance, a melting temperature or a decomposition temperature of 15 parts.
A mixture for forming a front and back layer obtained by adding 8 to 25 parts by weight of a reinforcing fiber of 0 ° C. or more and an appropriate amount of water is laid in a mat shape on a base, and silica is mainly used for 100 parts by weight of cement on the mat. Particles of 200 to 300 μm as components
A mixture for forming a core layer obtained by adding 12 to 50 parts by weight of a granular inorganic foam having a bulk specific gravity of 0.07 to 0.10 containing 5% or more, 1 to 17 parts by weight of reinforcing fibers, and an appropriate amount of water is formed into a mat. Laying, laying the mixture for molding the front and back layers on the mat in the form of a mat, pressing and curing the obtained mat having a three-layer structure, and then curing and curing at a temperature of 150 ° C. or more by an autoclave, A method for producing a lightweight inorganic molded article, comprising obtaining a three-layer lightweight inorganic molded article having a core layer and front and back layers.
JP870095A 1995-01-24 1995-01-24 Lightweight inorganic molded article and method for producing the same Expired - Fee Related JP2883016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP870095A JP2883016B2 (en) 1995-01-24 1995-01-24 Lightweight inorganic molded article and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP870095A JP2883016B2 (en) 1995-01-24 1995-01-24 Lightweight inorganic molded article and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08198689A JPH08198689A (en) 1996-08-06
JP2883016B2 true JP2883016B2 (en) 1999-04-19

Family

ID=11700217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP870095A Expired - Fee Related JP2883016B2 (en) 1995-01-24 1995-01-24 Lightweight inorganic molded article and method for producing the same

Country Status (1)

Country Link
JP (1) JP2883016B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4412909B2 (en) * 2003-03-18 2010-02-10 ニチハ株式会社 Wood cement board and manufacturing method thereof

Also Published As

Publication number Publication date
JPH08198689A (en) 1996-08-06

Similar Documents

Publication Publication Date Title
CN103261539B (en) What strengthen cement based light structures cement panel has the non-combustible gypsum-cement compositions of high-performance increasing resistance to water and heat stability
US4955171A (en) Building panel constructed in layers
JPH07503191A (en) Composite structure with waste plastic core material and its manufacturing method
CA2496333A1 (en) Abuse-resistant cast acoustical ceiling tile having an excellent sound absorption value
US2198885A (en) Composite thermal insulating unit
CN111003991A (en) Light high-strength silicate ceramsite concrete
JP2883016B2 (en) Lightweight inorganic molded article and method for producing the same
KR101089091B1 (en) Manufacturing method of environment-friendly water permeable concrete block including red clay
CA2533206A1 (en) Method for the production of dual-layer slab or board-like articles and slab or board-like articles which can be obtained by the method
JP4180861B2 (en) Wood cement board and manufacturing method thereof
CN113185232B (en) Preparation method of silicon-plastic heat-insulating material
KR100773106B1 (en) Shock absorbing materials for inter layer noise proofing of a construction, manufacturing method thereof and floor forming method using the shock absorbing materials
JPH08268775A (en) Lightweight concrete block and its production
JP4283484B2 (en) Wood cement board and manufacturing method thereof
KR20070108332A (en) Method for manufacturing bottom structure between floors of building using porous material for insulation and absorption of sound, method for manufacturing side wall structure of building using the same
JPH08175861A (en) Formed plate of inorganic material and its production
JP3352061B2 (en) Wood cement board and method for producing the same
JP3225025B2 (en) Wood cement board and method for producing the same
JP3037683B1 (en) Wood cement board and method for producing the same
JPS5931454B2 (en) sandwich panel
JP3569042B2 (en) Lightweight inorganic molded body
JP4198889B2 (en) Manufacturing method of wood cement board
JPH0267128A (en) Fire-resistant panel
JP4313466B2 (en) Block for embankment
KR100459677B1 (en) Panel for soundproofing between floors of an apartment house and manufacturing method of the panel

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990119

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080205

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090205

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees