JP2877365B2 - Giant magnetostrictive alloy and actuator for micro displacement control - Google Patents

Giant magnetostrictive alloy and actuator for micro displacement control

Info

Publication number
JP2877365B2
JP2877365B2 JP1211423A JP21142389A JP2877365B2 JP 2877365 B2 JP2877365 B2 JP 2877365B2 JP 1211423 A JP1211423 A JP 1211423A JP 21142389 A JP21142389 A JP 21142389A JP 2877365 B2 JP2877365 B2 JP 2877365B2
Authority
JP
Japan
Prior art keywords
magnetostriction
giant magnetostrictive
magnetostrictive alloy
alloy
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1211423A
Other languages
Japanese (ja)
Other versions
JPH02170942A (en
Inventor
忠彦 小林
陽一 東海
政司 佐橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1211423A priority Critical patent/JP2877365B2/en
Priority to DE68926768T priority patent/DE68926768T2/en
Priority to EP89310001A priority patent/EP0361969B1/en
Publication of JPH02170942A publication Critical patent/JPH02170942A/en
Priority to US07/671,074 priority patent/US5110376A/en
Priority to US07/845,827 priority patent/US5223046A/en
Application granted granted Critical
Publication of JP2877365B2 publication Critical patent/JP2877365B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は磁歪が大きく、磁気−機械変位変換デバイス
等に用いられる磁歪素子用として好適な超磁歪合金に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial application field) The present invention relates to a giant magnetostrictive alloy having a large magnetostriction and suitable for a magnetostrictive element used in a magneto-mechanical displacement conversion device or the like.

(従来の技術) 磁性体に外部磁場を印加した際生じる歪である磁歪の
応用として、磁歪フィルタ、磁歪センサ、超音波遅延
線、磁歪振動子等がある。従来はNi基合金、Fe-Co合
金、フェライト等が用いられている。
(Prior Art) Applications of magnetostriction, which is distortion generated when an external magnetic field is applied to a magnetic material, include a magnetostrictive filter, a magnetostrictive sensor, an ultrasonic delay line, and a magnetostrictive vibrator. Conventionally, Ni-based alloys, Fe-Co alloys, ferrites and the like have been used.

近年、計測工学の進歩および精密機械分野の発展に伴
い、ミクロンオーダーの微小変位制御に不可欠の変位駆
動部の開発が必要とされている。この変位駆動部の駆動
機構の一つとして磁歪物質を用いた磁気−機械変換デバ
イスが有力である。しかしながら従来の磁歪材料では変
位の絶対量が充分でなく、ミクロンオーダーの精密変位
制御駆動部材料としては絶対駆動変位量のみならず、精
密制御の点からも満足し得るものではなかった。
In recent years, with the advancement of measurement engineering and the development of the field of precision machinery, development of a displacement drive unit indispensable for micro displacement control on the order of microns has been required. As one of the driving mechanisms of the displacement driving unit, a magneto-mechanical conversion device using a magnetostrictive material is effective. However, the conventional magnetostrictive material does not have a sufficient absolute displacement, and as a material for a precision displacement control drive unit on the order of microns, it cannot be satisfied not only from the absolute drive displacement but also from the point of precision control.

このような課題を解決すべく本発明者等が研究を進め
た結果、Dy-Tb-Fe-Mn系のラーベス型金属間化合物で飽
和磁歪(λs)が1000×10-6を超えるものが得られるこ
とを見出した(特公昭61-33892号)。
As a result of research conducted by the present inventors to solve such problems, a Dy-Tb-Fe-Mn Laves-type intermetallic compound having a saturation magnetostriction (λs) exceeding 1000 × 10 -6 was obtained. (Japanese Patent Publication No. 61-33892).

(発明が解決しようとする課題) 特公昭61-33892号にも示されているように、実用上は
数kOe程度の低磁界で大きな磁気歪を示し、かつ高い靱
性を有することが要求されている。しかしながらこの特
公昭61-33892号に示されている材料でもまだ不十分であ
り、より高性能の磁歪材料が望まれている。
(Problems to be Solved by the Invention) As shown in Japanese Patent Publication No. 61-33892, practically, it is required to show large magnetostriction in a low magnetic field of about several kOe and to have high toughness. I have. However, the material disclosed in JP-B-61-33892 is still insufficient, and a higher-performance magnetostrictive material is desired.

また微小変位等を考えた場合、使用温度範囲で磁歪特
性の温度変化が小さいことが要求される。
In addition, in consideration of minute displacement and the like, it is required that the temperature change of the magnetostriction characteristics is small in the operating temperature range.

本発明はこのような問題点を考慮してなされたもの
で、低磁場で大きな磁歪を示し、温度特性が良好でかつ
機械的性質にも優れた超磁歪合金を提供することを目的
とする。
The present invention has been made in view of such problems, and has as its object to provide a giant magnetostrictive alloy that exhibits large magnetostriction in a low magnetic field, has good temperature characteristics, and has excellent mechanical properties.

〔発明の構成〕[Configuration of the invention]

(課題を解決するための手段及び作用) 本発明は、原子比で (TbxDy1-x)(Fe1-yMny)z ただし 0.35 x0.9 0.001y0.6 1.4 z2.1 の組成を有し、ラーベス型金属間化合物相を主相とす
ることを特徴とする超磁歪合金。
(Means and Actions for Solving the Problems) The present invention relates to a composition having an atomic ratio of (Tb x Dy 1-x ) (Fe 1-y Mny) z where 0.35 x 0.9 0.001 y 0.6 1.4 z 2.1 And a Laves-type intermetallic compound phase as a main phase.

本発明者等が(TbxDy1-x)(Fe1-yMny)zの合金系につい
て詳細な検討を進めた結果その結果、Feの一部をMnで置
換すると希土類磁性原子の磁気異方性を大きく変化させ
得るとの知見を得た。そこで同じ希土類磁性原子ではあ
るが磁気異方性の異なるDyとTbを含む4元系合金におけ
る磁歪値とTb濃度の関係を調べたところ、Mnを含んだ系
では高Tb濃度組成において、優れた磁歪特性が得られる
ことを見出した。
The present inventors have conducted detailed studies on the alloy system of (Tb x Dy 1-x ) (Fe 1-y Mn y ) z.As a result, when a part of Fe is replaced with Mn, the magnetic properties of the rare earth magnetic atom It has been found that the anisotropy can be greatly changed. Therefore, the relationship between the magnetostriction value and the Tb concentration in a quaternary alloy containing Dy and Tb, which are the same rare-earth magnetic atoms but different in magnetic anisotropy, was investigated. It has been found that magnetostrictive characteristics can be obtained.

希土類金属と遷移金属の比(Z)において、Z>2.1
では希土類金属と遷移金属の比が1:3の化合物相が生成
し磁歪特性を低下する。またZ>1.95ではラーベス型金
属間化合物が合金体積中に占める割合がほぼ100%とな
り、延性に富む希土類金属相が消失するため靱性が低下
し、難加工性材料となり、磁歪特性も低下するため、望
ましくはZ≦1.95である。一方、Z<1.4ではラーベス
型金属間化合物が合金体積中に占める割合が50%を下回
り、磁歪特性が大幅に減少する。例えば、Z=2におい
て、100%ラーベス型金属間化合物のときの磁歪定数を1
00とした場合、Z≦1.4では磁歪定数が30〜50となり、
磁歪特性の劣化が顕著であることから実用材にはならな
い。
In the ratio (Z) between the rare earth metal and the transition metal, Z> 2.1
In this case, a compound phase having a ratio of rare earth metal to transition metal of 1: 3 is formed, and the magnetostriction characteristics are reduced. When Z> 1.95, the ratio of the Laves-type intermetallic compound to the alloy volume becomes almost 100%, and the rare-earth metal phase rich in ductility disappears. , Desirably, Z ≦ 1.95. On the other hand, when Z <1.4, the ratio of the Laves-type intermetallic compound in the alloy volume is less than 50%, and the magnetostriction characteristics are significantly reduced. For example, when Z = 2, the magnetostriction constant for a 100% Laves-type intermetallic compound is 1
When it is set to 00, the magnetostriction constant becomes 30 to 50 when Z ≦ 1.4,
Since the magnetostriction characteristic deteriorates remarkably, it does not become a practical material.

希土類金属の組成比(x)と磁歪特性との関係を調べ
た結果を第1図に示す。磁歪特性の評価方法としては、
歪ゲージ法により、10kOe迄の磁界を印加して求めた。
図中縦軸の磁歪値は、低磁界駆動(低入力パワー)の実
用性を考慮し、2kOe(キロエルステッド)の磁界を印加
した時の各組成合金の磁歪値をDyFe2の同条件下での磁
歪値で規格化した相対値をして示す。また第2図は印加
磁界を変化させた時の磁歪である。同図から明らかなよ
うに(TbxDy1-x)-Fe-Mnの組成において、x≧0.35の領域
で磁歪定数のピークをとるが、さらに0.35x0.9の
組成域において極めて大きな磁歪定数が得られることが
判明した。
FIG. 1 shows the result of examining the relationship between the composition ratio (x) of the rare earth metal and the magnetostriction characteristics. As a method for evaluating magnetostriction characteristics,
It was determined by applying a magnetic field of up to 10 kOe by the strain gauge method.
Considering the practicality of low magnetic field drive (low input power), the magnetostriction value on the vertical axis in the figure is the magnetostriction value of each composition alloy when a magnetic field of 2 kOe (kilo Oersted) is applied under the same conditions of DyFe 2 Are shown as relative values normalized by the magnetostriction value. FIG. 2 shows the magnetostriction when the applied magnetic field is changed. As is clear from the figure, in the composition of (Tb x Dy 1-x ) -Fe-Mn, the peak of the magnetostriction constant is obtained in the region of x ≧ 0.35, and further, the extremely large magnetostriction constant is obtained in the composition range of 0.35 × 0.9. Was obtained.

またこの範囲において、磁歪特性の温度特性が良好と
なる。これはスピン再配列温度が−100℃より低温側に
シフトしたためと考えられる。本発明によれば磁歪量が
−100℃〜+100℃で±40%以内と良好な温度特性を得る
ことができる。
Further, in this range, the temperature characteristics of the magnetostriction characteristics are improved. This is probably because the spin rearrangement temperature shifted to a temperature lower than -100 ° C. According to the present invention, good temperature characteristics can be obtained with a magnetostriction of -100 ° C to + 100 ° C within ± 40%.

遷移金属の組成比yについては、靱性および加工性の
関点からy=0.001とした。またyが大きすぎるとキュ
リー温度が室温近傍まで低下するため温度安定性に問題
が生じてくることから上限を0.6とした。好ましくはy
=0.005〜0.6である。
The composition ratio y of the transition metal was set to y = 0.001 from the viewpoint of toughness and workability. If the value of y is too large, the Curie temperature decreases to around room temperature, causing a problem in temperature stability. Therefore, the upper limit is set to 0.6. Preferably y
= 0.005 to 0.6.

本発明の希土類−鉄系超磁歪合金では、主要合金(添
加)元素である鉄およびマンガンはテルビウムおよびデ
ィスプロシウムとラーベス型金属間化合物を形成し、加
工性および靱性が良好で更に室温以上の温度領域におけ
る磁歪特性を著しく向上せしめ、満足し得る特性に至ら
しめるものである。
In the rare earth-iron based giant magnetostrictive alloy of the present invention, iron and manganese, which are main alloying (additional) elements, form a Laves-type intermetallic compound with terbium and dysprosium, have good workability and toughness, and have a good workability and room temperature. This significantly improves the magnetostriction characteristics in the temperature range and achieves satisfactory characteristics.

加工性および靱性の向上は、ラーベス型金属間化合物
を構成する遷移金属として、鉄とマンガンを選択するこ
とによって達成される。またさらに加工性および靱性を
向上せしめる手段としてはラーベス型金属間化合物(AB
2)中に延性に富む希土類金属α相(R)、を分散せし
め破壊靱性値を向上せしめることである(第3図)。し
かしこの場合、ラーベス型金属間化合物以外の化合物が
生成すると磁歪特性が大幅に劣化することから、熱平衡
状態図より、上記鉄・マンガン・希土類金属系に限定さ
れる。
Improvement in workability and toughness can be achieved by selecting iron and manganese as transition metals constituting the Laves-type intermetallic compound. As means for further improving workability and toughness, Laves-type intermetallic compounds (AB
2 ) The purpose is to improve the fracture toughness value by dispersing a rare earth metal α-phase (R) having a high ductility in it (FIG. 3). However, in this case, when a compound other than the Laves-type intermetallic compound is generated, the magnetostriction characteristics are significantly deteriorated. Therefore, from the thermal equilibrium diagram, it is limited to the iron-manganese-rare earth metal system.

本発明では希土類元素はDy-Tbの2元素を基本とする
が、本発明の特性を損なわない範囲で、La,Ce,Pr,Nd,P
m,Sm,Eu,Gd,Ho,Er,Tm,Yb,Lu,Yの他の希土類元素を添加
しても良い。添加量の上限はDy-Tbの合計量中の50at%
程度までである。
In the present invention, the rare earth element is based on two elements of Dy-Tb, but La, Ce, Pr, Nd, P
Other rare earth elements other than m, Sm, Eu, Gd, Ho, Er, Tm, Yb, Lu, and Y may be added. The upper limit of the addition amount is 50at% of the total amount of Dy-Tb
To the extent.

(実施例) 表1に示した合金をアーク溶解にて作成した後、900
℃×1weekの均一化処理を施した試料を切削加工にて10m
m×10mm×5mm厚の試験片とした。
(Example) After making the alloys shown in Table 1 by arc melting, 900
10m by cutting the sample that has been homogenized at ℃ x 1week
A test piece of m × 10 mm × 5 mm thickness was used.

磁歪特性は、室温下で抗磁性ゲージを用い、磁界は対
向磁極型電磁石により発生させ、2kOe印加磁界中で評価
した。
The magnetostriction characteristics were evaluated at room temperature using a coercivity gauge, a magnetic field was generated by a facing magnetic pole type electromagnet, and a magnetic field of 2 kOe was applied.

靱性の比較評価法は鉄製敷板への落下試験を採用し、
同一形状(ほぼ同一重量)の試験片を3mの位置より自然
落下させ破壊の有無を調べた。このとき、同じ組成の試
験片10個を落下試験し、全数とも破壊しなかったときを
○、1つでも破壊したものを△、全数破壊したものを×
とした。
The comparative evaluation method of toughness adopts a drop test on an iron floor plate,
A test piece of the same shape (almost the same weight) was dropped naturally from a position of 3 m, and the presence or absence of breakage was examined. At this time, 10 specimens of the same composition were subjected to a drop test, and when all specimens were not destroyed, ○ indicates that at least one specimen was destroyed, and × indicates that all specimens were destroyed.
And

また、合金組成は光学顕微鏡、EDXにより2相状態あ
るいは単相状態であるかを同定した。
Further, it was identified whether the alloy composition was in a two-phase state or a single-phase state by an optical microscope and EDX.

温度変化量は室温における磁歪量を1とした場合の−
100℃〜+100℃での変化量を示す。
The amount of temperature change is as follows when the magnetostriction at room temperature is 1.
The amount of change from 100 ° C to + 100 ° C is shown.

表1に示した実施例から明らかな如く、本発明による
希土類・鉄系超磁歪合金は、低磁界において極めて大き
な磁歪特性を有しており、ラーベス型金属間化合物相と
残部TbおよびDyを主成分とした希土類金属α相より増成
される2相合金組織を有していることから、靱性も大幅
に改善されることが確認された。
As is clear from the examples shown in Table 1, the rare-earth / iron-based giant magnetostrictive alloy according to the present invention has extremely large magnetostriction characteristics in a low magnetic field, and mainly contains the Laves-type intermetallic compound phase and the balance Tb and Dy. Since it has a two-phase alloy structure grown from the rare earth metal α phase used as a component, it was confirmed that the toughness was also greatly improved.

比較のために、従来材として知られている材料につい
て表1比較例1〜5を示す。
For comparison, Table 1 Comparative Examples 1 to 5 are shown for materials known as conventional materials.

比較例1は、磁歪特性については良好な特性を示して
いるものの、靱性が低く、脆弱である。
Comparative Example 1 shows good magnetostriction characteristics, but has low toughness and is brittle.

比較例4は、靱性が良好であるが、磁歪特性が著しく
劣化してしまう。
In Comparative Example 4, the toughness is good, but the magnetostriction characteristics are significantly deteriorated.

比較例2,3,5は、磁歪、靱性ともに低い。 Comparative Examples 2, 3, and 5 have low magnetostriction and low toughness.

第4図に実施例Tb0.5Dy0.5(Fe0.9Mn0.1)1.9及びTb0.4
Dy0.6(Fe0.8Mn0.2)1.75及び比較例Tb0.27Dy0.73Fe2の磁
歪量の温度特性を示す。比較例の場合はスピン再配列温
度近傍での磁歪量の大きな変化がみられ、温度特性的に
いって実用上問題がある。これに対し本発明の如くDy-T
b-Fe系にMnを加えることにより、Tb高濃度側で良好な磁
歪特性が得られるとともに、スピン再配列温度が、実用
温度範囲(−100℃〜+100℃)からはずれるため、磁歪
量の温度変化が著しく小さくなる。
FIG. 4 shows examples Tb 0.5 Dy 0.5 (Fe 0.9 Mn 0.1 ) 1.9 and Tb 0.4
The temperature characteristics of the magnetostriction of Dy 0.6 (Fe 0.8 Mn 0.2 ) 1.75 and Comparative Example Tb 0.27 Dy 0.73 Fe 2 are shown. In the case of the comparative example, a large change in the amount of magnetostriction was observed near the spin rearrangement temperature, and there was a practical problem in terms of temperature characteristics. On the other hand, as in the present invention, Dy-T
By adding Mn to the b-Fe system, good magnetostriction characteristics can be obtained at the high concentration side of Tb, and the spin rearrangement temperature deviates from the practical temperature range (-100 ° C to + 100 ° C). The change is significantly smaller.

〔発明の効果〕 以上説明した如く本発明によりテルビウム−ディスプ
ロシウム−鉄−マンガン系の希土類−鉄系超磁歪合金は
従来の磁歪材料の特性に比べ、極めて優れた磁歪特性を
有するとともにその温度特性及び靱性が、良好である等
の実用材料に不可欠な要因をも満たし、特にミクロンオ
ーダーの微小変位制御用駆動部、強力超音波発生用振動
子、センサ等の構成材料として極めて優れた特性を有す
るものである。
[Effects of the Invention] As described above, according to the present invention, a terbium-dysprosium-iron-manganese rare earth-iron based giant magnetostrictive alloy has extremely excellent magnetostrictive properties as compared with the properties of conventional magnetostrictive materials, Satisfies the indispensable factors such as good properties and toughness of practical materials, especially excellent properties as constituent materials such as micro displacement control drive unit, powerful ultrasonic generation vibrator, sensor etc. Have

【図面の簡単な説明】[Brief description of the drawings]

第1図及び第2図は磁歪特性と組成比の関係図、第3図
は2相合金組織の構成図、第4図は磁歪量・温度特性
図。
1 and 2 are diagrams showing the relationship between magnetostriction characteristics and composition ratios, FIG. 3 is a diagram showing the structure of a two-phase alloy structure, and FIG. 4 is a diagram showing magnetostriction / temperature characteristics.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C22C 28/00 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 6 , DB name) C22C 28/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】原子比で ((TbxDy1-x)1-wREw)(Fe1-yMny)z ただし、REは、La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Ho,Er,Tm,Yb,
Lu,Yから選ばれる希土類元素であり、 0.35≦x≦0.9 0.001≦y≦0.6 1.4≦z≦2.1 0≦w<0.5 の組成を有し、ラーベス型金属間化合物相を主相とする
ことを特徴とする超磁歪合金。
1. A atomic ratio ((Tb x Dy 1-x ) 1-w RE w) (Fe 1-y Mn y) z , however, RE is, La, Ce, Pr, Nd , Pm, Sm, Eu , Gd, Ho, Er, Tm, Yb,
A rare earth element selected from Lu and Y, having a composition of 0.35 ≦ x ≦ 0.9 0.001 ≦ y ≦ 0.6 1.4 ≦ z ≦ 2.10 ≦ w <0.5, and having a Laves-type intermetallic compound phase as a main phase. Giant magnetostrictive alloy.
【請求項2】請求項1に記載の超磁歪合金において、 0.001≦y≦0.3 を満足することを特徴とする超磁歪合金。2. The giant magnetostrictive alloy according to claim 1, wherein 0.001 ≦ y ≦ 0.3 is satisfied. 【請求項3】請求項1に記載の超磁歪合金を用いたこと
を特徴とする微少変位制御用駆動部。
3. A drive unit for controlling minute displacement, wherein the giant magnetostrictive alloy according to claim 1 is used.
JP1211423A 1988-09-29 1989-08-18 Giant magnetostrictive alloy and actuator for micro displacement control Expired - Lifetime JP2877365B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1211423A JP2877365B2 (en) 1988-09-29 1989-08-18 Giant magnetostrictive alloy and actuator for micro displacement control
DE68926768T DE68926768T2 (en) 1988-09-29 1989-09-29 Super magnetostrictive alloy
EP89310001A EP0361969B1 (en) 1988-09-29 1989-09-29 Super-magnetostrictive alloy
US07/671,074 US5110376A (en) 1988-09-29 1991-03-18 Super-magnetostrictive alloy
US07/845,827 US5223046A (en) 1988-09-29 1992-03-06 Super-magnetostrictive alloy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP24231788 1988-09-29
JP63-242317 1988-09-29
JP1211423A JP2877365B2 (en) 1988-09-29 1989-08-18 Giant magnetostrictive alloy and actuator for micro displacement control

Publications (2)

Publication Number Publication Date
JPH02170942A JPH02170942A (en) 1990-07-02
JP2877365B2 true JP2877365B2 (en) 1999-03-31

Family

ID=26518632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1211423A Expired - Lifetime JP2877365B2 (en) 1988-09-29 1989-08-18 Giant magnetostrictive alloy and actuator for micro displacement control

Country Status (1)

Country Link
JP (1) JP2877365B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1322599C (en) * 2003-09-28 2007-06-20 北京航空航天大学 Novel wide temperature domain giant magnetostriction material and its preparing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6133892A (en) * 1984-07-26 1986-02-17 株式会社東芝 Method of measuring driving torque of joint of robot

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1322599C (en) * 2003-09-28 2007-06-20 北京航空航天大学 Novel wide temperature domain giant magnetostriction material and its preparing method

Also Published As

Publication number Publication date
JPH02170942A (en) 1990-07-02

Similar Documents

Publication Publication Date Title
EP0898778B1 (en) Bonded magnet with low losses and easy saturation
EP0344018B1 (en) Rare earth permanent magnet
EP0361969B1 (en) Super-magnetostrictive alloy
JP3466481B2 (en) Giant magnetostrictive material
JP2002069596A5 (en)
US20030010405A1 (en) Magnetostrictive devices and methods using high magnetostriction, high strength fega alloys
Wang et al. Effect of copper on magnetostriction and mechanical properties of TbDyFe alloys
JP3452210B2 (en) Manufacturing method of magnetostrictive material
US8308874B1 (en) Magnetostrictive materials, devices and methods using high magnetostriction, high strength FeGa and FeBe alloys
JPH03183738A (en) Rare earth-cobalt series supermagnetostrictive alloy
JP2576671B2 (en) Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JP2877365B2 (en) Giant magnetostrictive alloy and actuator for micro displacement control
Mei et al. Preparation and magnetostriction of Tb Dy Fe sintered compacts
US5223046A (en) Super-magnetostrictive alloy
JPS61159708A (en) Permanent magnet
JP3354183B2 (en) Magnetostrictive material and magnetostrictive actuator using the same
EP0774762B1 (en) Temperature stable permanent magnet
JP3313386B2 (en) Giant magnetostrictive alloy and magneto-mechanical mutation conversion device
US4340435A (en) Isotropic and nearly isotropic permanent magnet alloys
JP2848643B2 (en) Giant magnetostrictive alloy and actuator for micro displacement control
JPS6133892B2 (en)
JP2791564B2 (en) Magnetostrictive material
CN1254171A (en) High saturation magnetic flux density and low remanence magnetism double-ferrromagnetism phase soft-magnetic alloy
JPS602645A (en) Magnetostrictive bimetal
JPH0375340A (en) Supermagnetstriction alloy

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080122

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090122

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100122

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100122

Year of fee payment: 11