JP2791564B2 - Magnetostrictive material - Google Patents

Magnetostrictive material

Info

Publication number
JP2791564B2
JP2791564B2 JP63284133A JP28413388A JP2791564B2 JP 2791564 B2 JP2791564 B2 JP 2791564B2 JP 63284133 A JP63284133 A JP 63284133A JP 28413388 A JP28413388 A JP 28413388A JP 2791564 B2 JP2791564 B2 JP 2791564B2
Authority
JP
Japan
Prior art keywords
magnetostriction
magnetostrictive material
magnetic field
magnetostrictive
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63284133A
Other languages
Japanese (ja)
Other versions
JPH02129339A (en
Inventor
雅詔 賀屋
重夫 岡本
輝夫 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP63284133A priority Critical patent/JP2791564B2/en
Publication of JPH02129339A publication Critical patent/JPH02129339A/en
Application granted granted Critical
Publication of JP2791564B2 publication Critical patent/JP2791564B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、磁歪材料、すなわち、、外部磁場を作用さ
せた場合、長さが変化する磁性材料に関する。
The present invention relates to a magnetostrictive material, that is, a magnetic material whose length changes when an external magnetic field is applied.

<従来の技術> 磁性体に外部磁場を作用させると、磁性体に伸びある
いは縮みを生じる磁歪が発生する。
<Related Art> When an external magnetic field is applied to a magnetic body, magnetostriction that causes the magnetic body to expand or contract is generated.

この磁歪は、例えば、変位制御用アクチュエータ、超
音波発生用磁歪振動子、超音波遅延線、超音波波器等
に応用されている。
This magnetostriction is applied to, for example, a displacement control actuator, an ultrasonic generation magnetostrictive vibrator, an ultrasonic delay line, an ultrasonic wave device, and the like.

これらに用いる磁歪材料は、飽和磁歪値、材料強度、
低磁界における磁歪値等が大きく、耐食性に優れている
必要がある。
Magnetostrictive materials used for these, saturation magnetostriction value, material strength,
It is necessary to have a large magnetostriction value in a low magnetic field and to have excellent corrosion resistance.

さらに、磁歪材料は、磁界強度変化に対する磁歪変化
が大きい必要があり、磁界の強さHの微小変化量に対す
る磁歪値λの微小変化量の割合である磁歪率∂λ/∂H
の最大値(最大磁歪率が大きいことが要求される。
Further, the magnetostrictive material needs to have a large change in the magnetostriction with respect to the change in the magnetic field strength.
(The maximum magnetostriction is required to be large).

飽和磁歪値が300×10-6以上であるものとしては、 (i)鉄と希土類元素(Tb、Sm、Dy、Ho、Er、Tm)との
合金(米国特許第4,375,372号、同第4、152、178号、
同第3,949,351号、同第4,308,474号明細書等)、 (ii)鉄族元素またはMnと、TbまたはSmとの合金(米国
特許第4,378,258号明細書)、 (iii)Ti、V、Cr、Mn、Ni、Cu、Nb、Mo、Ta、W、
C、Si、Ge、Sn、B、In、La、Ce、Pr、Nd、Sm、Gd、T
b、Eu、Dy、Ho、Er、Yb、Lu、Tmの1種以上と、FeとAl
とCoとからなる磁歪材料、およびTi、V、Cr、Mn、Co、
Ni、Cu、Nb、Mo、Ta、W、C、Si、Ge、Sn、B、In、L
a、Ce、Pr、Nd、Sm、Gd、Eu、Er、Yb、Lu、Tmの1種以
上と、TbとDyとHoとFeとからなる磁歪材料(特開昭53−
64798号公報) 等が提案されている。
The ones having a saturation magnetostriction value of 300 × 10 −6 or more include (i) an alloy of iron and a rare earth element (Tb, Sm, Dy, Ho, Er, Tm) (US Pat. Nos. 4,375,372 and 4, 152, 178,
(Nos. 3,949,351 and 4,308,474), (ii) an alloy of iron group element or Mn with Tb or Sm (U.S. Pat. No. 4,378,258), (iii) Ti, V, Cr, Mn , Ni, Cu, Nb, Mo, Ta, W,
C, Si, Ge, Sn, B, In, La, Ce, Pr, Nd, Sm, Gd, T
one or more of b, Eu, Dy, Ho, Er, Yb, Lu, Tm, Fe and Al
And Co and a magnetostrictive material comprising Ti, V, Cr, Mn, Co,
Ni, Cu, Nb, Mo, Ta, W, C, Si, Ge, Sn, B, In, L
a, Ce, Pr, Nd, Sm, Gd, Eu, Er, Yb, Lu, and at least one of Tm and a magnetostrictive material comprising Tb, Dy, Ho, and Fe
No. 64798).

これらのうち、希土類元素としてSmを用いて希土類−
鉄系合金は、負の磁歪を示す。
Of these, rare earth-using Sm as a rare earth element
Iron-based alloys exhibit negative magnetostriction.

そして、これらの明細書ないし公報に記載のSm系合金
としては、米国特許第3,949,351号、同4,378,258号明細
書等に記載のSmFe2系化合物、また同4,308,474号明細書
記載の(SmHo)Fe2系、(SmDy)Fe2系、(SmDyHo)Fe2
系の化合物がある。
Examples of the Sm-based alloy described in these specifications and publications include SmFe 2 -based compounds described in U.S. Pat. Nos. 3,949,351 and 4,378,258, and (SmHo) Fe 2 described in U.S. Pat. No. 4,308,474. System, (SmDy) Fe 2 system, (SmDyHo) Fe 2
There are compounds of the system.

<発明が解決しようとする課題> しかし、従来のSm系磁歪材料は、低磁界での磁歪値で
の点で十分でなく、しかも最大磁歪率について十分な値
が得られない。従って、最大磁歪率が大きく、低磁界に
おける磁歪値が大きい負の磁歪を示す磁歪材料が望まれ
ている。
<Problems to be Solved by the Invention> However, conventional Sm-based magnetostrictive materials are not sufficient in terms of magnetostriction value in a low magnetic field, and a sufficient value cannot be obtained for the maximum magnetostriction. Therefore, a magnetostrictive material having a large maximum magnetostriction and exhibiting a negative magnetostriction having a large magnetostriction value in a low magnetic field is desired.

本発明の目的は、最大磁歪率が大きく、低磁界におけ
る磁歪値が大きい負の磁歪を示す磁歪材料を提供するこ
とにある。
An object of the present invention is to provide a magnetostrictive material having a large maximum magnetostriction and exhibiting a negative magnetostriction having a large magnetostriction value in a low magnetic field.

<課題を解決するための手段> このような目的は、下記の本発明によって達成され
る。
<Means for Solving the Problems> Such an object is achieved by the present invention described below.

Smと、Feと、Y、NdおよびTbから選ばれる一種以上の
元素とを含有し、 Y、NdおよびTbから選ばれる一種以上の元素をRとし
たとき、 Sm1-xRxFey で表され、かつ、 0.005≦x≦0.10 1.7≦y≦1.98 である磁歪材料。
And Sm, and Fe, Y, containing the one or more elements selected from Nd and Tb, Y, one or more elements selected from Nd and Tb when the R, at Sm 1-x R x Fe y A magnetostrictive material represented by: 0.005 ≦ x ≦ 0.10 1.7 ≦ y ≦ 1.98.

<発明の具体的構成> 本発明の磁歪材料は、Smと、Feと、Y、NdおよびTbか
ら選ばれる一種以上の元素とを含有する。
<Specific Configuration of the Invention> The magnetostrictive material of the present invention contains Sm, Fe, and one or more elements selected from Y, Nd and Tb.

Smは、外部磁界の作用により磁歪材料が縮むため、す
なわち負の磁歪を示すために必須とされる。
Sm is essential for the magnetostrictive material to shrink by the action of an external magnetic field, that is, for exhibiting negative magnetostriction.

Feは、キュリー点が常温以上であることから、これも
必須の組成元素とされる。
Fe has a Curie point of room temperature or higher, and thus is also an essential constituent element.

Y、NdおよびTbから選ばれる一種以上の元素は最大磁
歪率(∂λ/∂H)maxおよび低磁界における磁歪値の
絶対値を増大させる。
One or more elements selected from Y, Nd and Tb increase the maximum magnetostriction (∂λ / ∂H) max and the absolute value of the magnetostriction value in a low magnetic field.

ここで磁歪率∂λ/∂Hとは、磁界の強さHの微小変
化量に対する磁歪値λの微小変化量の割合、すなわちH
−λ曲線における接線の傾きをいう。
Here, the magnetostriction rate ∂λ / ∂H is a ratio of a minute change amount of the magnetostriction value λ to a minute change amount of the magnetic field strength H, that is, H
-Refers to the slope of the tangent in the λ curve.

従って、(∂λ/∂H)maxは、H−λ曲線における
接線の傾きの絶対値の最大値である。
Therefore, (∂λ / ∂H) max is the maximum value of the absolute value of the slope of the tangent in the H-λ curve.

上記の各元素の含有量は、下記のような範囲とするこ
とが好ましい。
The content of each of the above elements is preferably set in the following range.

すなわち、Y、NdおよびTbから選ばれる一種以上の元
素をRとしたとき、 Sm1-xRxFey で表れる組成において、0.005≦x≦0.10、より好まし
くは0.005≦x≦0.07である。
That is, when one or more elements selected from Y, Nd and Tb are R, the composition represented by Sm 1-x R x Fe y satisfies 0.005 ≦ x ≦ 0.10, and more preferably 0.005 ≦ x ≦ 0.07.

また、1.7≦y≦1.98、 特に1.85≦y≦1.98である。 Also, 1.7 ≦ y ≦ 1.98, particularly 1.85 ≦ y ≦ 1.98.

x,yが上記範囲内であると本発明の効果はいっそう向
上し、最大磁歪率が十分大きく、低磁界における磁歪値
も大きい磁歪材料が得られる。
When x and y are within the above ranges, the effect of the present invention is further improved, and a magnetostrictive material having a sufficiently large maximum magnetostriction and a large magnetostriction value in a low magnetic field can be obtained.

なお、Rとして、Y、NdおよびTbの2種以上が含有さ
れるとき、その量比は任意である。
When two or more of R, Y, Nd and Tb are contained as R, the amount ratio is arbitrary.

このような磁歪材料は、一般的な合金製造法、例え
ば、アークメルト法、ブリッジマン法、一方向性凝固
法、ゾーンメルト法、高周波溶解法、粉末冶金法、高速
急冷法等によって製造される。
Such a magnetostrictive material is manufactured by a general alloy manufacturing method, for example, an arc melt method, a Bridgman method, a directional solidification method, a zone melt method, a high frequency melting method, a powder metallurgy method, a rapid quenching method, or the like. .

また、必要に応じ異方性化してもよい。 In addition, it may be anisotropic if necessary.

上記のようにして製造される磁歪材料には必要に応じ
て熱処理を施してもよい。
The magnetostrictive material manufactured as described above may be subjected to a heat treatment as needed.

熱処理を施すことにより、本発明の効果はいっそう向
上し、最大磁歪率、低磁界における磁歪値の大きな磁歪
材料を得ることができる。
By performing the heat treatment, the effect of the present invention is further improved, and a magnetostrictive material having a maximum magnetostriction rate and a large magnetostriction value in a low magnetic field can be obtained.

熱処理条件は、600〜900℃、より好ましくは、700〜8
50℃の温度に加熱することが好ましい。
Heat treatment conditions are 600-900 ° C, more preferably 700-8
Heating to a temperature of 50 ° C. is preferred.

そして、600〜900℃の温度に加熱する時間は、10分〜
32時間、より好ましくは、1〜10時間であることが好ま
しい。
And the time to heat to the temperature of 600 ~ 900 ℃, 10 minutes ~
It is preferably 32 hours, more preferably 1 to 10 hours.

熱処理雰囲気は、不活性ガス、より好ましくは希ガ
ス、特にArであることが好ましい。
The heat treatment atmosphere is preferably an inert gas, more preferably a rare gas, especially Ar.

<実施例> 実施例1〜3 下記表1に示す組成の合金をアークメルト法により作
製した。
<Examples> Examples 1 to 3 Alloys having the compositions shown in Table 1 below were produced by the arc melt method.

これを保持温度800℃において10時間熱処理し、磁歪
材料1〜3を得た。
This was heat-treated at a holding temperature of 800 ° C. for 10 hours to obtain magnetostrictive materials 1 to 3.

各磁歪材料1〜3について、印加する磁界の強さHに
対する磁歪値λを測定し、それから最大磁歪率(∂λ/
∂H)maxを求めた。
For each of the magnetostrictive materials 1 to 3, the magnetostriction value λ with respect to the applied magnetic field strength H was measured, and then the maximum magnetostriction rate (率 λ /
∂H) The max was determined.

磁歪値の測定は、ストレーンゲージにより行った。 The measurement of the magnetostriction value was performed using a strain gauge.

結果を表1に示す。 Table 1 shows the results.

比較例1、2 下記表1に示す組成の合金について、実施例と同様な
方法で磁歪材料4〜7を得た。
Comparative Examples 1 and 2 For alloys having the compositions shown in Table 1 below, magnetostrictive materials 4 to 7 were obtained in the same manner as in the examples.

各磁歪材料4〜7について、実施例と同様に測定を行
い、最大磁歪率(∂λ/∂H)maxを求めた。
Measurement was performed for each of the magnetostrictive materials 4 to 7 in the same manner as in the example, and the maximum magnetostriction rate (Δλ / ΔH) max was determined.

結果を表1に示す。 Table 1 shows the results.

表1より明らかなように本発明の磁歪材料は、比較例
に比べ十分大きな最大磁歪率と、低磁界での磁歪値とを
得ることができる。
As is clear from Table 1, the magnetostrictive material of the present invention can obtain a sufficiently large maximum magnetostriction and a magnetostriction value in a low magnetic field as compared with the comparative example.

<発明の効果> 本発明の磁歪材料は、負の磁歪材料であって、低磁界
における磁歪値が大きく、特に最大磁歪率が大きいもの
である。
<Effect of the Invention> The magnetostrictive material of the present invention is a negative magnetostrictive material, which has a large magnetostriction value in a low magnetic field, and particularly has a large maximum magnetostriction.

従って本発明は、例えば、変位制御用アクチュエー
タ、超音波発生用磁歪振動子、超音波遅延線、超音波
波器等に応用することにより、従来の磁歪材料では得ら
れない非常に良好な特性を発揮する。
Therefore, by applying the present invention to, for example, an actuator for displacement control, a magnetostrictive vibrator for generating ultrasonic waves, an ultrasonic delay line, an ultrasonic wave device, etc., very good characteristics that cannot be obtained with conventional magnetostrictive materials can be obtained. Demonstrate.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭55−122851(JP,A) 特開 平1−246342(JP,A) (58)調査した分野(Int.Cl.6,DB名) C22C 28/00────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-51-222851 (JP, A) JP-A-1-246342 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C22C 28/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Smと、Feと、Y、NdおよびTbから選ばれる
一種以上の元素とを含有し、 Y、NdおよびTbから選ばれる一種以上の元素をRとした
とき、 Sm1-xRxFey で表され、かつ、 0.005≦x≦0.10 1.7≦y≦1.98 である磁歪材料。
And 1. A Sm, and Fe, Y, containing the one or more elements selected from Nd and Tb, Y, when one or more elements selected from Nd and Tb was R, Sm 1-x A magnetostrictive material represented by R x Fe y and 0.005 ≦ x ≦ 0.10 1.7 ≦ y ≦ 1.98.
JP63284133A 1988-11-10 1988-11-10 Magnetostrictive material Expired - Fee Related JP2791564B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63284133A JP2791564B2 (en) 1988-11-10 1988-11-10 Magnetostrictive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63284133A JP2791564B2 (en) 1988-11-10 1988-11-10 Magnetostrictive material

Publications (2)

Publication Number Publication Date
JPH02129339A JPH02129339A (en) 1990-05-17
JP2791564B2 true JP2791564B2 (en) 1998-08-27

Family

ID=17674595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63284133A Expired - Fee Related JP2791564B2 (en) 1988-11-10 1988-11-10 Magnetostrictive material

Country Status (1)

Country Link
JP (1) JP2791564B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105734377B (en) * 2014-12-10 2017-06-27 有研稀土新材料股份有限公司 A kind of SmFexAlloy and preparation method thereof
JP7358989B2 (en) * 2018-01-30 2023-10-11 Tdk株式会社 permanent magnet
CN109825881B (en) * 2019-01-09 2020-12-01 江西嘉圆磁电科技有限公司 Process for preparing magnetostrictive material by oriented crystal zone melting method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55122851A (en) * 1979-03-15 1980-09-20 Takeshi Masumoto Manufacture of amorphous alloy of rare earth metal and 3d group transition metal, and thin strip of said alloy
JPH01246342A (en) * 1988-03-29 1989-10-02 Daido Steel Co Ltd Supermagnetostrictive material and its manufacture

Also Published As

Publication number Publication date
JPH02129339A (en) 1990-05-17

Similar Documents

Publication Publication Date Title
EP0361969B1 (en) Super-magnetostrictive alloy
JP3452210B2 (en) Manufacturing method of magnetostrictive material
JPS586778B2 (en) Anisotropic permanent magnet alloy and its manufacturing method
EP0476606B1 (en) Permanent magnet powders
JP2791564B2 (en) Magnetostrictive material
US6352649B1 (en) Material for magnetostrictive sensors and other applications based on ferrite materials
Hilzinger et al. Magnetic properties of amorphous alloys with low magnetostriction
US6093337A (en) Material for magnetostrictive sensors and other applications based on ferrite materials
JP2881006B2 (en) Magnetostrictive material
US5223046A (en) Super-magnetostrictive alloy
JP3354183B2 (en) Magnetostrictive material and magnetostrictive actuator using the same
JPH0436401A (en) Manufacture of super magnetostrictive material
JP2848643B2 (en) Giant magnetostrictive alloy and actuator for micro displacement control
JP3385667B2 (en) Iron-terbium-based magnetostrictive material and method for producing the same
JP3207892B2 (en) Magnetostrictive material and manufacturing method thereof
JPH02129316A (en) Heat treatment method for magnetostrictive material
JPH0551704A (en) Ultra-magnetostrictive alloy
JP4146120B2 (en) Magnetostrictive material
JPH02221350A (en) Magnetostriction material
JP3312908B2 (en) Iron-rare earth-nitrogen permanent magnet material
JPH01290733A (en) Magnetostrictive material
JPH01123049A (en) Magnetostrictive material
JP2934460B2 (en) Ultra-microcrystalline alloy with permimber properties and method for producing the same
JP2689544B2 (en) Method for manufacturing giant magnetostrictive alloy and giant magnetostrictive material
Masumoto et al. Nonferromagnetic Elinvar-Type Alloys in the Mn–Ni–V, Mn–Ni–Nb and Mn–Ni–Ta Systems

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees