JP2828284B2 - Method for producing rare earth element doped glass - Google Patents

Method for producing rare earth element doped glass

Info

Publication number
JP2828284B2
JP2828284B2 JP1294259A JP29425989A JP2828284B2 JP 2828284 B2 JP2828284 B2 JP 2828284B2 JP 1294259 A JP1294259 A JP 1294259A JP 29425989 A JP29425989 A JP 29425989A JP 2828284 B2 JP2828284 B2 JP 2828284B2
Authority
JP
Japan
Prior art keywords
rare earth
earth element
soot body
mandrel
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1294259A
Other languages
Japanese (ja)
Other versions
JPH03153544A (en
Inventor
大一郎 田中
哲弥 酒井
哲郎 野澤
朗 和田
良三 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP1294259A priority Critical patent/JP2828284B2/en
Publication of JPH03153544A publication Critical patent/JPH03153544A/en
Application granted granted Critical
Publication of JP2828284B2 publication Critical patent/JP2828284B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/01433Reactant delivery systems for delivering and depositing additional reactants as liquids or solutions, e.g. for solution doping of the porous glass preform
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/34Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、希土類元素ドープガラスの製造方法に関
し、特に希土類元素が均一にドープされたガラスを提供
可能としたものである。
Description: TECHNICAL FIELD The present invention relates to a method for producing a rare earth element-doped glass, and more particularly to a method capable of providing a glass uniformly doped with a rare earth element.

[従来の技術] 従来、希土類元素ドープガラスの製造方法として以下
のような方法が用いられていた。
[Prior Art] Conventionally, the following method has been used as a method for producing rare earth element doped glass.

まずVAD法等によりガラス微粒子が心棒の先端部に堆
積されてなるスート体を作成し、このスート体を、希土
類元素が溶媒中に溶解されてなる溶液中に浸漬し、スー
ト体中に希土類元素を充分に含浸させる。ついで第2図
に示したような均熱炉2内で上記処理が施されたスート
体1に加熱乾燥処理を行う。さらにこの後に焼結処理を
施してスート体1を透明ガラス化し、かくして希土類元
素ドープガラスとすることができる。
First, a soot body is prepared by depositing glass fine particles on the tip of a mandrel by VAD method or the like, and this soot body is immersed in a solution in which a rare earth element is dissolved in a solvent, and the rare earth element is contained in the soot body. Is sufficiently impregnated. Next, the soot body 1 subjected to the above-mentioned treatment is subjected to a heating and drying treatment in a soaking furnace 2 as shown in FIG. Further, thereafter, a sintering process is performed to turn the soot body 1 into a transparent glass, and thus a rare earth element-doped glass can be obtained.

[発明が解決しようとする課題] ところが上記従来方法においては、第2図に示したよ
うに、希土類元素が含浸されたスート体1を鉛直方向に
配置して加熱乾燥処理を施すので、スート体1に含浸さ
れた希土類元素溶液が自重でスート体1の下部に集中す
る。よってスート体1の下部の希土類元素の含浸濃度が
高くなり、希土類元素が長尺方向で均一濃度でドープさ
れたガラスを得ることは困難であった。
[Problems to be Solved by the Invention] However, in the above-mentioned conventional method, as shown in FIG. 2, the soot body 1 impregnated with the rare earth element is arranged in the vertical direction and subjected to the heating and drying treatment. The rare earth element solution impregnated in 1 is concentrated on the lower part of the soot body 1 by its own weight. Therefore, the impregnation concentration of the rare earth element in the lower part of the soot body 1 becomes high, and it is difficult to obtain glass doped with the rare earth element at a uniform concentration in the longitudinal direction.

この発明は上記課題を解決するためになされたもので
あって、希土類元素が均一濃度でドープされたガラスが
得られる製造方法を提供することを目的としている。
The present invention has been made to solve the above-described problems, and has as its object to provide a manufacturing method capable of obtaining a glass doped with a rare earth element at a uniform concentration.

[課題を解決するための手段] この発明の希土類元素添加ガラスの製造方法は、ガラ
ス微粒子を心棒の先端もしくは外周に堆積させてなるス
ート体を、希土類元素を溶解してなる希土類元素溶液中
に浸漬して、上記スート体中に希土類元素溶液を含浸せ
しめた後、加熱乾燥させ、ついで焼結処理を施して希土
類元素ドープガラスを製造する方法において、希土類元
素溶液が含浸されたスート体の心棒を水平に保ち、かつ
上記心棒を中心軸として回転させつつ加熱乾燥処理を施
すことを解決手段とした。
[Means for Solving the Problems] The method for producing a rare earth element-added glass according to the present invention is to provide a soot body obtained by depositing glass fine particles on the tip or outer periphery of a mandrel in a rare earth element solution obtained by dissolving a rare earth element. After immersion, the soot body is impregnated with the rare earth element solution, dried by heating, and then subjected to a sintering process to produce a rare earth element-doped glass, the soot body impregnated with the rare earth element solution, The solution is to carry out the heating and drying process while keeping the horizontal surface and rotating the mandrel about the center axis.

[作用] 希土類元素溶液が含浸されたスート体の心棒を平行に
保ち、かつその心棒を中心軸として回転させつつ加熱乾
燥処理を施すようにし、スート体の特定部分が下方を向
かないようにした。
[Action] The soot mandrel impregnated with the rare earth element solution is kept parallel, and the drying process is performed while rotating the mandrel about the mandrel so that a specific part of the soot body does not face downward. .

よって加熱乾燥処理工程中に希土類元素溶液が自重で
特定部分に集中することがなくなり、均一に含浸された
状態で乾燥させることができる。
Therefore, the rare earth element solution does not concentrate on a specific portion by its own weight during the heating and drying process, and can be dried in a state of being uniformly impregnated.

以下、この発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

まず通常のVAD法等により、スート体1を作成する。
すなわち酸水素火炎中に四塩化ケイ素等の原料ガスを供
給し、火炎加水分解反応および熱酸化反応によりガラス
微粒子を発生させ、このガラス微粒子を心棒4の軸方向
に沿って付着させることによりスート体1を得る。ここ
でスート体1とは、心棒4の先端部もしくは外周にガラ
ス微粒子が堆積された多孔質母材を指呼している。また
上記原料ガスとして、四塩化ケイ素とともに、四塩化ゲ
ルマニウム、ふっ素等の屈折率調整用の各種ドーパント
ガスを適宜供給してもよい。
First, a soot body 1 is prepared by a normal VAD method or the like.
That is, a raw material gas such as silicon tetrachloride is supplied into an oxyhydrogen flame, glass fine particles are generated by a flame hydrolysis reaction and a thermal oxidation reaction, and the glass fine particles are adhered along the axial direction of the mandrel 4 to form a soot body. Get 1. Here, the soot body 1 refers to a porous base material in which glass fine particles are deposited on the tip or outer periphery of the mandrel 4. As the source gas, various dopant gases for adjusting the refractive index, such as germanium tetrachloride and fluorine, may be appropriately supplied together with silicon tetrachloride.

次に必要に応じて上記スート体1に加熱処理を施し
て、スート体1の嵩密度を増加せしめても良い。加熱処
理の方法は特に限定されないが、たとえば均熱炉内にス
ート体1を入れ、これを不活性ガス雰囲気中で回転させ
つつ加熱する方法等を用いることができる。この加熱条
件は所望の嵩密度等に応じて適宜選択されるが、通常温
度1280〜1320℃、時間2〜6時間程度の条件で行い、嵩
密度0.4〜1.6g/cm3程度のスート体1が得られる条件を
選択することが好ましい。ここでスート体1の嵩密度を
上記範囲に限定したのは、0.4g/cm3未満であると、スー
ト体1のクラックの発生率が非常に高く、製品歩溜が低
くなる不都合あり、また1.6g/cm3を越えるとスート体1
への希土類元素溶液の含浸が困難あるいは不可能となる
欠点があるためである。
Next, if necessary, the soot body 1 may be subjected to a heat treatment to increase the bulk density of the soot body 1. The method of the heat treatment is not particularly limited. For example, a method in which the soot body 1 is placed in a soaking furnace and heated while rotating it in an inert gas atmosphere can be used. The heating conditions are appropriately selected depending on the desired bulk density and the like, but the heating is usually carried out under the conditions of a temperature of 1280 to 1320 ° C. and a time of about 2 to 6 hours, and a soot body 1 having a bulk density of about 0.4 to 1.6 g / cm 3. Is preferably selected. Here, the reason why the bulk density of the soot body 1 is limited to the above range is that when the bulk density is less than 0.4 g / cm 3 , the rate of occurrence of cracks in the soot body 1 is extremely high, and the product yield is disadvantageously reduced. exceeds 1.6 g / cm 3 soot body 1
This is because it is difficult or impossible to impregnate the rare earth element solution into the solution.

このようにスート体1の嵩密度を増加せしめると、希
土類元素溶液をスート体1に含浸させた後の乾燥工程に
おいて、クラック等の発生を減少させることができ、製
品歩溜を向上させることができる。
When the bulk density of the soot body 1 is increased in this manner, cracks and the like can be reduced in the drying step after the soot body 1 is impregnated with the rare earth element solution, and the product yield can be improved. it can.

次に希土類元素溶液を用意する。希土類元素には、エ
ルビウムの塩化物やネオジムの塩化物等を好適に用いる
ことができるが、得られるガラスの目的、用途等に応じ
て適宜選択される。溶媒としては水に塩酸を添加してな
る塩酸水溶液を好適に用いることができる。塩酸濃度は
上記希土類元素塩化物を完全に溶解可能であればよく、
たとえば水300cm3に35wt%塩酸を1〜5cm3程度添加して
なる濃度である。またこの溶液中の希土類元素塩化物の
濃度は、ガラスへの高濃度ドープを可能とするように希
土類元素塩化物が完全に溶解し得る濃度であれば高い程
良く、2〜10wt%程度が好ましい。
Next, a rare earth element solution is prepared. Erbium chloride, neodymium chloride, or the like can be suitably used as the rare earth element, and is appropriately selected according to the purpose, use, and the like of the obtained glass. As the solvent, an aqueous hydrochloric acid solution obtained by adding hydrochloric acid to water can be suitably used. Hydrochloric acid concentration should just be able to completely dissolve the rare earth element chloride,
For example, a concentration that made the 35 wt% hydrochloric acid in water 300 cm 3 by addition of about 1 to 5 cm 3. The concentration of the rare earth element chloride in this solution is preferably as high as possible so that the rare earth element chloride can be completely dissolved so as to enable high concentration doping of the glass, and is preferably about 2 to 10% by weight. .

この希土類元素溶液中に上記スート体1を浸漬し、ス
ート体1中に希土類元素溶液を含浸させる。含浸は、温
度20〜25℃で10〜100時間程度行い、スート体1に溶液
として10〜200cm3程度含浸させる。ここで含浸された希
土類元素は、塩化物あるいはイオンの形態をとっている
ものと考えられる。
The soot body 1 is immersed in the rare earth element solution, and the soot body 1 is impregnated with the rare earth element solution. The impregnation is performed at a temperature of 20 to 25 ° C. for about 10 to 100 hours, and the soot body 1 is impregnated as a solution to about 10 to 200 cm 3 . Here, the impregnated rare earth element is considered to be in the form of chloride or ions.

次にこの含浸後のスート体1を乾燥させる。この乾燥
工程は第1図に示したような横型均熱炉3内で行なわれ
ることが好ましい。この横型均熱炉3は、加熱乾燥処理
を施すスート体1の心棒4を水平に収容し、かつスート
体1の心棒4を中心軸として回転させつつ加熱乾燥を行
うものである。この横型均熱炉3内は、窒素またはアル
ゴン等の不活性ガスにより満たされている。この加熱乾
燥処理の条件は特に限定されるものではないが、たとえ
ば均熱炉3内への乾燥窒素ガス流量20/分、温度100
℃、スート体1の回転60rpm、処理時間72時間などとす
ることができる。
Next, the soot body 1 after the impregnation is dried. This drying step is preferably performed in a horizontal soaking furnace 3 as shown in FIG. The horizontal soaking furnace 3 accommodates the mandrel 4 of the soot body 1 to be subjected to the heating and drying process horizontally, and performs the heating and drying while rotating the mandrel 4 of the soot body 1 around the center axis. The inside of the horizontal soaking furnace 3 is filled with an inert gas such as nitrogen or argon. The conditions for the heating and drying treatment are not particularly limited.
° C, the rotation of the soot body 1 is 60 rpm, and the processing time is 72 hours.

またスート体1の回転速度は10〜100rpm程度が好まし
い。10rpm未満であると、含浸された希土類元素溶液が
偏り、また100rpmより大きいと遠心力により希土類元素
溶液がスート体1の外周部分に偏るためである。
The rotation speed of the soot body 1 is preferably about 10 to 100 rpm. If the speed is less than 10 rpm, the impregnated rare earth element solution is biased. If the speed is greater than 100 rpm, the rare earth element solution is biased toward the outer peripheral portion of the soot body 1 due to centrifugal force.

上記加熱乾燥処理の後、ゾーン焼結炉内にてスート体
1の脱水および焼結を行い、スート体1を透明ガラス化
する。まず脱水工程においては、ゾーン焼結炉内を0.2
%程度の濃度で塩素ガスを添加した不活性ガス雰囲気と
し、温度1000℃程度で2〜3時間の処理とする。
After the heating and drying treatment, the soot body 1 is dehydrated and sintered in a zone sintering furnace, and the soot body 1 is turned into a transparent glass. First, in the dewatering step, the inside of the zone sintering furnace was
An inert gas atmosphere to which chlorine gas is added at a concentration of about% is used, and the treatment is performed at a temperature of about 1000 ° C. for 2 to 3 hours.

また焼結工程においては、上記脱水の後、ゾーン焼結
炉内への塩素ガスの供給を中止し、不活性ガス雰囲気中
で引き続き加熱を行う。炉内の温度は1500〜1550℃程度
であり、スート体1が完全に透明ガラス化するまで行
う。
In the sintering step, after the dehydration, the supply of chlorine gas into the zone sintering furnace is stopped, and heating is continued in an inert gas atmosphere. The temperature in the furnace is about 1500 to 1550 ° C., and the process is performed until the soot body 1 is completely vitrified.

このような製造方法によれば、加熱乾燥処理工程にお
いて希土類元素溶液が含浸されたスート体1の心棒4が
水平に保たれ、かつ心棒4を中心軸として回転されてい
るので、スート体1の一定箇所が下方に固定されること
がなくなり、含浸された希土類元素溶液が自重で一箇所
に集中することがなくなる。よってガラス中に均一濃度
で希土類元素をドープすることができる。
According to such a manufacturing method, since the mandrel 4 of the soot body 1 impregnated with the rare earth element solution is kept horizontal and rotated about the mandrel 4 in the heating and drying step, the soot body 1 A fixed portion is not fixed downward, and the impregnated rare earth element solution is not concentrated at one position by its own weight. Therefore, the rare earth element can be doped in the glass at a uniform concentration.

[実施例] (実施例) 通常のVAD法により、純粋石英からなるスート体を作
成した。
[Example] (Example) A soot body made of pure quartz was prepared by a normal VAD method.

ヘリウムガス雰囲気とされた均熱炉内に上記スート体
を入れ、1000℃にて3時間の加熱処理を施した。この加
熱処理後のスート体の嵩密度は0.45g/cm3であった。
The soot body was placed in a soaking furnace in a helium gas atmosphere, and subjected to a heat treatment at 1000 ° C. for 3 hours. The bulk density of the soot body after this heat treatment was 0.45 g / cm 3 .

4.5gのErCl3・0.5H2Oと1.8mm3のHClとを純水300cm3
に溶解せしめ、Erを含有した希土類元素溶液とした。こ
の希土類元素溶液中に上記スート体を18時間浸漬させて
スート体中に希土類元素を充分に含浸させた。
4.5 g of ErCl 3 .0.5H 2 O and 1.8 mm 3 of HCl were dissolved in 300 cm 3 of pure water to obtain a rare earth element solution containing Er. The soot body was immersed in this rare earth element solution for 18 hours to sufficiently impregnate the soot body with the rare earth element.

ついで上記スート体を第1図に示したと同様の均熱炉
内に入れ、加熱乾燥処理を施した。この加熱乾燥処理条
件は温度100℃、窒素供給量20/分、スート体の回転
速度60rpm、処理時間72時間とした。
Next, the soot body was placed in a soaking furnace similar to that shown in FIG. 1 and subjected to a heat drying treatment. The heating and drying conditions were a temperature of 100 ° C., a nitrogen supply rate of 20 / min, a rotation speed of the soot body of 60 rpm, and a processing time of 72 hours.

以上のような加熱乾燥処理が施されたスート体に、VA
D法で通常用いられる脱水、焼結処理を施して透明ガラ
ス化を行い、希土類元素ドープガラスとした。
VA is applied to the soot body that has been subjected to the heating and drying treatment as described above.
Dehydration and sintering processes commonly used in Method D were performed to form a transparent vitrified glass, thereby obtaining a rare earth element-doped glass.

このようにして得られた希土類元素ドープガラスの上
部および下部からそれぞれサンプルを採取し、SIMSによ
り各サンプルのErのドープ量を調べたところ、両者とも
に100ppmであり、均一濃度でErがドープされていること
が確認できた。
Samples were taken from the upper and lower portions of the rare earth element-doped glass obtained in this way, and the amount of Er doped in each sample was checked by SIMS. Both were 100 ppm, and Er was doped at a uniform concentration. Was confirmed.

(比較例) 加熱乾燥処理工程にて第2図に示したような均熱炉を
用いた以外は、上記実施例と全く同様にして希土類元素
ドープガラスを製造した。
(Comparative Example) A rare earth element-doped glass was manufactured in exactly the same manner as in the above example except that a soaking furnace as shown in FIG. 2 was used in the heating and drying process.

上記のようにして得られた希土類元素ドープガラスの
上部および下部からそれぞれサンプルを採取し、SIMSに
より各サンプルのErのドープ量を調べたところ、上部の
サンプルでは80ppm、下部のサンプルでは120ppmとなっ
ており、Erのドープ濃度に分布が生じた。
Samples were taken from the upper and lower portions of the rare earth element-doped glass obtained as described above, and the amount of Er doping of each sample was examined by SIMS.The upper sample was 80 ppm, and the lower sample was 120 ppm. And a distribution was generated in the Er doping concentration.

[発明の効果] 以上説明したように、この発明の希土類元素添加ガラ
スの製造方法は、希土類元素溶液が含浸されたスート体
の心棒を水平に保ち、かつ上記心棒を中心軸として回転
させつつ加熱乾燥処理を施すものであるので、スート体
に含浸された希土類元素溶液が加熱乾燥処理時に、自重
により特定の一箇所に集中することがなくなり、希土類
元素のドープ濃度が均一なガラスを得ることができる。
[Effects of the Invention] As described above, the method for producing a rare earth element-added glass according to the present invention keeps the soot mandrel impregnated with the rare earth element solution horizontal, and heats while rotating the mandrel about the mandrel as a central axis. Since the drying treatment is performed, the rare earth element solution impregnated in the soot body does not concentrate at a specific location due to its own weight during the heat drying treatment, and it is possible to obtain a glass having a uniform doping concentration of the rare earth element. it can.

またこの発明の製造方法によって得られた希土類元素
ドープガラスを光ファイバのコアとすれば、光ファイバ
の長尺方向に沿って希土類元素が均一にドープされた希
土類元素ドープ光ファイバを得ることができる。
When the rare earth element-doped glass obtained by the manufacturing method of the present invention is used as the core of the optical fiber, a rare earth element-doped optical fiber in which the rare earth element is uniformly doped along the longitudinal direction of the optical fiber can be obtained. .

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の製造方法において実施されるスート
体の加熱乾燥処理方法の一例を示す概略構成図であり、
第2図は従来のVAD法による製造方法において実施され
る加熱乾燥処理方法の例を示した概略構成図である。 1……スート体、 3……横型均熱炉、 4……心棒。
FIG. 1 is a schematic configuration diagram showing an example of a soot body heat drying treatment method carried out in the production method of the present invention,
FIG. 2 is a schematic configuration diagram showing an example of a heating and drying treatment method performed in a conventional production method by the VAD method. 1 ... soot body 3 ... horizontal soaking furnace 4 ... mandrel.

フロントページの続き (72)発明者 和田 朗 千葉県佐倉市六崎1440番地 藤倉電線株 式会社佐倉工場内 (72)発明者 山内 良三 千葉県佐倉市六崎1440番地 藤倉電線株 式会社佐倉工場内 (56)参考文献 特開 平1−96021(JP,A) 実開 平1−142424(JP,U) (58)調査した分野(Int.Cl.6,DB名) C03C 8/04 C03B 8/00 C03B 8/04Continued on the front page (72) Akira Wada, Inventor 1440, Rokkazaki, Sakura-shi, Chiba Prefecture, Fujikura Electric Wire Co., Ltd. References JP-A-1-96021 (JP, A) JP-A-1-142424 (JP, U) (58) Fields investigated (Int. Cl. 6 , DB name) C03C 8/04 C03B 8/00 C03B 8/04

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ガラス微粒子を心棒の先端もしくは外周に
堆積させてなるスート体を、希土類元素を溶解してなる
希土類元素溶液中に浸漬して、上記スート体中に希土類
元素溶液を含浸せしめた後、加熱乾燥させ、ついで焼結
処理を施して希土類元素ドープガラスを製造する方法に
おいて、 希土類元素溶液が含浸されたスート体の心棒を水平に保
ち、かつ上記心棒を中心軸として回転させつつ加熱乾燥
処理を施すことを特徴とする希土類元素ドープガラスの
製造方法
A soot body formed by depositing glass fine particles on the tip or outer periphery of a mandrel is immersed in a rare earth element solution obtained by dissolving a rare earth element, and the soot body is impregnated with the rare earth element solution. After that, in a method of producing a rare earth element-doped glass by heating and drying and then performing a sintering process, the soot mandrel impregnated with the rare earth element solution is kept horizontal, and heated while rotating about the mandrel as a central axis. Method for producing rare earth element-doped glass, characterized by performing a drying treatment
JP1294259A 1989-11-13 1989-11-13 Method for producing rare earth element doped glass Expired - Fee Related JP2828284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1294259A JP2828284B2 (en) 1989-11-13 1989-11-13 Method for producing rare earth element doped glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1294259A JP2828284B2 (en) 1989-11-13 1989-11-13 Method for producing rare earth element doped glass

Publications (2)

Publication Number Publication Date
JPH03153544A JPH03153544A (en) 1991-07-01
JP2828284B2 true JP2828284B2 (en) 1998-11-25

Family

ID=17805402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1294259A Expired - Fee Related JP2828284B2 (en) 1989-11-13 1989-11-13 Method for producing rare earth element doped glass

Country Status (1)

Country Link
JP (1) JP2828284B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013525956A (en) 2010-04-16 2013-06-20 エヴォルシア インコーポレイテッド Solid outdoor overhead lamp assembly

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6337469A (en) * 1986-07-31 1988-02-18 Sharp Corp Statistical processing system
JP2582592B2 (en) * 1987-10-06 1997-02-19 三菱電線工業株式会社 Method for manufacturing base material for optical functional element

Also Published As

Publication number Publication date
JPH03153544A (en) 1991-07-01

Similar Documents

Publication Publication Date Title
US4225330A (en) Process for producing glass member
JPS5844619B2 (en) Manufacturing method of optical fiber base material
JPS58145634A (en) Manufacture of doped glassy silica
JPH0478568B2 (en)
KR940011118B1 (en) Method of producing glass preform for optical fiber
JPH05350B2 (en)
JPS6081033A (en) Manufacture of optical fiber
JP2828284B2 (en) Method for producing rare earth element doped glass
US6966201B2 (en) High-temperature sintering of soot bodies doped using molecular stuffing
JPH04367536A (en) Production of rare earth elements-containing quartz
JP2931026B2 (en) Method for producing rare earth element doped glass
JP2677871B2 (en) Manufacturing method of quartz-based doped glass
JPH0425213B2 (en)
JP2604466B2 (en) Method for producing rare earth element doped quartz glass
JPH0686305B2 (en) Manufacturing method of rare earth element-doped core optical fiber
JPH038744A (en) Rare earth element-doped quartz glass fiber preform and preparation thereof
JPH0328135A (en) Production of glass doped with rare earth element
JP3748910B2 (en) Heat treatment method for glass base material
JP4234389B2 (en) Manufacturing method of rare earth element added glass
JP4230073B2 (en) Method for producing aluminum-added glass base material
JP2710446B2 (en) Production method of rare earth doped glass
JPS638053B2 (en)
JP4676118B2 (en) Manufacturing method of optical fiber preform
JPH0627011B2 (en) Heat treatment method for doped quartz porous glass preform
JPH0776093B2 (en) Quartz glass manufacturing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080918

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080918

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090918

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees