JP2794889B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JP2794889B2
JP2794889B2 JP2086527A JP8652790A JP2794889B2 JP 2794889 B2 JP2794889 B2 JP 2794889B2 JP 2086527 A JP2086527 A JP 2086527A JP 8652790 A JP8652790 A JP 8652790A JP 2794889 B2 JP2794889 B2 JP 2794889B2
Authority
JP
Japan
Prior art keywords
secondary battery
aqueous electrolyte
negative electrode
electrolyte secondary
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2086527A
Other languages
Japanese (ja)
Other versions
JPH03285259A (en
Inventor
幸雄 西川
純一 山浦
雅規 北川
彰克 守田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2086527A priority Critical patent/JP2794889B2/en
Publication of JPH03285259A publication Critical patent/JPH03285259A/en
Application granted granted Critical
Publication of JP2794889B2 publication Critical patent/JP2794889B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、リチウム二次電池の安全性および充放電サ
イクル特性の向上に関するものである。
Description: TECHNICAL FIELD The present invention relates to improvement of safety and charge / discharge cycle characteristics of a lithium secondary battery.

従来の技術 近年、AV機器などエレクトロニクス機器のポータブル
化、コードレス化に伴い、その駆動用電源として、小
形、軽量であり、しかも高エネルギー密度のリチウム二
次電池への期待が大きい。しかし、実用化するために
は、まだいくつかの課題が残されている。そのひとつと
して、負極の充放電可逆性の向上が挙げられる。
2. Description of the Related Art In recent years, as electronic devices such as AV devices have become more portable and cordless, there is a great expectation for a small, lightweight, and high energy density lithium secondary battery as a power supply for driving the devices. However, there are still some issues for practical use. As one of them, improvement of charge / discharge reversibility of the negative electrode can be cited.

たとえば、金属リチウムを負極材料に用いた場合、放
電によりリチウムが負極から電解液中にイオンとして溶
解し、充電により再び負極上に析出する。その析出形態
は、電解液の組成および充電条件により異なるが、主に
針状となり、これが負極から離脱して、あるいはセパレ
ータを貫通して、正極と接触し、内部短絡および発火が
発生する原因となる。
For example, when metallic lithium is used for the negative electrode material, lithium is dissolved as an ion from the negative electrode into the electrolytic solution by discharging, and deposited on the negative electrode again by charging. The deposition form varies depending on the composition of the electrolyte and the charging conditions, but mainly becomes acicular, which is detached from the negative electrode, or penetrates through the separator, comes into contact with the positive electrode, causing internal short circuit and ignition. Become.

そこで、充電により電解液中のリチウムイオンを吸蔵
してリチウムとの合金を形成し、放電によりリチウムを
イオンとして電解液中へ放電する機能を有する金属また
は合金を負極材料に用いる方法が提案された。すなわ
ち、この場合、充電時にはリチウムイオンが速やかに吸
蔵・拡散されて合金が形成されるため、負極上に針状リ
チウムが析出せず、安全性は向上する。
Therefore, a method has been proposed in which a metal or an alloy having a function of absorbing lithium ions in an electrolytic solution by charging to form an alloy with lithium and discharging lithium as ions into the electrolytic solution by discharging is used as a negative electrode material. . That is, in this case, during charging, lithium ions are quickly absorbed and diffused to form an alloy, so that needle-like lithium is not deposited on the negative electrode, and safety is improved.

発明が解決しようとする課題 電気化学的にリチウムを吸蔵・放出しうる金属あるい
は合金の代表的ものに、(1)鉛を必須成分とし、これ
単独かあるいはスズ、カドミウム、亜鉛、インジウムお
よびビスマスよりなる群から選んだ少なくとも一つとの
合金、(2)スズを必須成分とし、これ単独かあるいは
鉛、カドミウム、亜鉛、インジウムおよびビスマスより
なる群から選んだ少なくとも一つとの合金、(3)アル
ミニウム、などが提案されている。(1)および(2)
は低融点の性質から可融合金と呼ばれる。しかし、いず
れもリチウムを吸蔵・放出するに伴い、膨張・収縮す
る。可融合金の場合、充放電を繰り返すと、サイクル初
期から表面にクラックが発生し、サイクルが進むにつ
れ、微粉化するとともにクラックに沿って崩壊し、芯材
から脱落することが観察された。また、アルミニウムの
場合、微粉化が著しく生じて泥状になり、芯材に保持で
きなくなることが観察された。可融合金の負極材料とし
ての性能(リチウムを吸蔵・放出する能力、充放電に伴
う形状変化を抑制する能力)は可融合金を形成する成分
とその組成比に依存する。たとえば、カドミウムを含有
する系の可融合金では、カドミウムがリチウムを吸蔵・
放出する能力に乏しく、あまり膨張・収縮しないため、
20重量%以上含有されていれば、充放電に伴う形状変化
をある程度抑制できる。しかし、サイクル初期からの崩
壊こそないが、いずれ表面にクラックが発生し、サイク
ルが進むにつれ、微粉化するとともにクラックに沿って
崩壊し、芯材から脱落することが観察された。これは集
電不能による充放電容量の低下だけでなく、セパレータ
を貫通して正極と接触し、内部短絡および発火が発生す
る危険性がある。
PROBLEM TO BE SOLVED BY THE INVENTION A typical metal or alloy capable of occluding / releasing lithium electrochemically is as follows: (1) Lead is an essential component, which is used alone or from tin, cadmium, zinc, indium and bismuth. An alloy with at least one selected from the group consisting of: (2) an alloy containing tin as an essential component, alone or with at least one selected from the group consisting of lead, cadmium, zinc, indium and bismuth; (3) aluminum; And so on. (1) and (2)
Is called a fusible alloy because of its low melting point. However, both expand and contract as lithium is absorbed and released. In the case of fusible gold, when charge and discharge were repeated, cracks were generated on the surface from the beginning of the cycle, and as the cycle proceeded, it was observed that the powder became finer, collapsed along the cracks, and dropped off from the core material. In addition, in the case of aluminum, it was observed that pulverization was remarkable, resulting in a muddy state, and the aluminum could not be held on the core material. The performance of the fusible gold as a negative electrode material (the ability to occlude and release lithium and the ability to suppress the shape change due to charge and discharge) depends on the components forming the fusible gold and the composition ratio thereof. For example, in a fusible alloy containing cadmium, cadmium absorbs lithium.
Poor ability to release, does not expand or contract too much,
When the content is 20% by weight or more, a change in shape due to charge and discharge can be suppressed to some extent. However, although there was no collapse from the beginning of the cycle, it was observed that cracks eventually occurred on the surface, and as the cycle proceeded, the powder was pulverized, collapsed along the cracks, and dropped off from the core material. This not only lowers the charge / discharge capacity due to the inability to collect current, but also causes a risk of internal short circuit and ignition occurring through the separator and contact with the positive electrode.

本発明は、このような課題をか解決するもので、高エ
ネルギー密度であり、しかも安全性および充放電サイク
ル特性に優れたリチウム二次電池を提供することを目的
とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a lithium secondary battery that has high energy density and is excellent in safety and charge / discharge cycle characteristics.

課題を解決するための手段 これらの課題を解決するための本発明は、電気化学的
にリチウムを吸蔵・放出しうる可融合金などの負極材料
をシート状とし、その表面にカーボンをコーティングす
るものである。
Means for Solving the Problems The present invention for solving these problems is to form a negative electrode material such as fusible gold capable of electrochemically inserting and extracting lithium into a sheet and coat the surface with carbon. It is.

作用 本発明により、可融合金が充放電に伴い膨張・収縮を
繰り返し、形状変化(可融合金の場合はクラックが発生
し微粉化するとともにクラックに沿って崩壊する)が起
きた場合においても、これらをシート状とし、その表面
にカーボンをコーティングすることにより、芯材からの
脱落を防止するとともに集電を可能とし、サイクルに伴
う充放電容量の低下、内部短絡および発火の発生という
課題を解決することとなる。
According to the present invention, even when the fusible alloy repeatedly expands and contracts with charging and discharging, and the shape changes (in the case of fusible gold, cracks occur, the powder becomes finer and collapses along the cracks), These are made into a sheet, and the surface is coated with carbon to prevent falling off from the core material and enable current collection, solving the problems of reduced charge / discharge capacity due to cycles, internal short circuit and ignition. Will be done.

実施例 以下、本発明の実施例について図面を参照し説明す
る。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1表に本発明の実施例に用いた可融合金(1)〜
(8)の組成をまとめた。
Table 1 shows the fusible alloys (1) used in the examples of the present invention.
The composition of (8) was summarized.

可融合金(1)〜(8)は各成分を所定重量比で混合
し、ステンレス容器中で加熱して溶融させた後、冷却し
てインゴットとした。このインゴットを圧延し、可融合
金シートとした。以下、これらを単に合金シートとい
う。
Each of the fusible golds (1) to (8) was mixed at a predetermined weight ratio, heated and melted in a stainless steel container, and then cooled to form an ingot. This ingot was rolled into a fusible gold sheet. Hereinafter, these are simply called alloy sheets.

初めに、上記合金シートを用いて充放電によるリチウ
ムの吸蔵・放出をさせるための試験極を作製した。第1
図は試験極の構成断面略図である。
First, a test electrode for absorbing and releasing lithium by charge and discharge was prepared using the alloy sheet. First
The figure is a schematic sectional view of the configuration of the test electrode.

厚さ0.2mmの合金シート1を幅20mm、長さ25mmに裁断
し、芯断としてニッケルエキスパント2を片面に圧入
し、ニッケルリード板3をニッケルエキスパント2にス
ポット溶接して試験極を作製した。芯材に圧入した片面
はポリエチレンコート4により充放電反応に関与しない
ようにした。
An alloy sheet 1 having a thickness of 0.2 mm is cut into a width of 20 mm and a length of 25 mm, and a nickel expander 2 is pressed into one side as a core cut, and a nickel lead plate 3 is spot-welded to the nickel expander 2 to produce a test electrode. did. One side pressed into the core material was prevented from participating in the charge / discharge reaction by the polyethylene coat 4.

次に、この試験極を用いて充放電によるリチウムの吸
蔵・放出をさせるための装置を構成した。第2図は充放
電試験装置の構成断面略図である。
Next, an apparatus for inserting and extracting lithium by charging and discharging using this test electrode was constructed. FIG. 2 is a schematic sectional view of the configuration of a charge / discharge test apparatus.

上記試験極5を、対極6および参照極7とともにセパ
レータ8で仕切られたH形セル9中に構成し、非水電解
液を注入して5mA定電流充放電させるものである。
The test electrode 5 is formed in an H-shaped cell 9 separated by a separator 8 together with a counter electrode 6 and a reference electrode 7, and a non-aqueous electrolyte is injected to charge and discharge at a constant current of 5 mA.

試験極がリチウムを吸蔵する反応を充電反応、放出す
る反応を放電反応とし、参照極に対して充電終止電圧の
50mV、放電終止電圧を800mVとした。また、対極および
参照極には金属リチウムを用い、芯材としてニッケルの
エキスパンドを圧入した、なお、対極の金属リチウム
は、その低い可逆性のため充放電に伴い消耗されるの
で、予想される充放電容量に比べ過剰に充填した。非水
電解液としては、プロピレンカーボネートおよびエチレ
ンカーボネートを体積比1:1で混合し、6フッ化リン酸
リチウムを1M溶解したものを用いた。
The reaction that the test electrode absorbs lithium is called the charging reaction, and the reaction that releases it is called the discharging reaction.
The discharge end voltage was 50 mV and the discharge end voltage was 800 mV. Metal lithium was used for the counter electrode and the reference electrode, and nickel expand was press-fitted as the core material. Since the lithium metal of the counter electrode was consumed during charging and discharging due to its low reversibility, the expected charging capacity was high. Filling was excessive compared to the discharge capacity. As the non-aqueous electrolyte, a solution obtained by mixing propylene carbonate and ethylene carbonate at a volume ratio of 1: 1 and dissolving 1 M of lithium hexafluorophosphate was used.

まず、上記合金シート(1)〜(8)を用いた従来の
試験極(1)〜(8)を充放電させた。第3図にサイク
ルに伴う充放電容量の変化を示した。
First, the conventional test electrodes (1) to (8) using the alloy sheets (1) to (8) were charged and discharged. FIG. 3 shows the change in charge / discharge capacity with the cycle.

サイクルに伴う試験極の形状変化を観察した結果、5
サイクル時では、試験極(1)、(5)は、すでに表面
にクラックが発生しており、10サイクル時では、クラッ
クに沿って崩壊し微粉化するとともに一部は芯材から脱
落しており、またこの時点で軽い衝撃を加えると、さら
に脱落が発生した。試験極(2)、(6)は25サイクル
時で、試験極(3)、(7)は35サイクル時で、試験極
(4)、(8)は40サイクル時でそれぞれ一部に芯材か
らの脱落が見られた。これは第3図に示した結果ともよ
く対応しており、サイクルに伴う形状変化、特に芯材か
らの脱落が見られると同時に、充放電容量も著しく低下
する。
As a result of observing the shape change of the test electrode with the cycle, 5
At the time of the cycle, the test electrodes (1) and (5) already had cracks on the surface, and at the time of 10 cycles, they disintegrated along the cracks, turned into fine powder, and partly fell off the core material. At this point, a slight impact was applied, causing further dropout. Test electrodes (2) and (6) are for 25 cycles, test electrodes (3) and (7) are for 35 cycles, and test electrodes (4) and (8) are for 40 cycles and each has a core material. Was seen falling off. This corresponds well to the results shown in FIG. 3, where a change in shape due to cycling, particularly dropping from the core material, is observed, and the charge / discharge capacity is significantly reduced.

実際に、このような可融合金(1)〜(8)を負極材
料に用いた電池に落下などの衝撃を与えれば、このよう
な脱落で生じた破片がセパレータを貫通して正極と接触
し内部短絡および発火を発生させると推測される。
In fact, if a battery using such a fusible alloy (1) to (8) as a negative electrode material is subjected to an impact such as dropping, fragments generated by such a drop will penetrate the separator and come into contact with the positive electrode. It is presumed to cause internal short circuit and ignition.

次に上記合金シート(1)〜(8)の表面にカーボン
をコーディングした本発明による試験極(1′)〜
(8′)を充放電させた。第4図にサイクルに伴う充放
電容量の変化を示した。
Next, the test electrodes (1 ') to (6) according to the present invention in which carbon is coated on the surfaces of the alloy sheets (1) to (8).
(8 ') was charged and discharged. FIG. 4 shows the change of the charge / discharge capacity with the cycle.

カーボンコーティングは、アセチレンブラックに増粘
剤としてカルボキシメチルセルロースを1重量%の添加
し、さらに結着剤としてポリ4フッ化エチレン樹脂の水
性ディスパージョンを5重量%混練してペースト状に
し、これを上記合金シートの片面に塗着、乾燥し圧延し
た。以下、同様に試験極を作製した。ここで、カーボン
コーティングは厚さ0.1mmである。
The carbon coating is obtained by adding 1% by weight of carboxymethylcellulose as a thickening agent to acetylene black, and further kneading 5% by weight of an aqueous dispersion of polytetrafluoroethylene resin as a binder to form a paste. It was coated on one side of the alloy sheet, dried and rolled. Hereinafter, test electrodes were prepared in the same manner. Here, the carbon coating is 0.1 mm thick.

サイクルに伴う試験極の形状変化を観察した結果、10
0サイクル時でも、試験極(1′)〜(8′)のいずれ
も、表面にモーティングされたカーボンにより、芯材か
らの脱落は見られなかった。これは第4図に示した結果
ともよく対応しており、サイクルに伴う形状変化、特に
芯材からの脱落が見られないので、充放電容量の低下は
第3図と比べ小さい。
As a result of observing the change in the shape of the test electrode due to the cycle,
Even in the 0 cycle, none of the test electrodes (1 ') to (8') dropped off from the core material due to the carbon moated on the surface. This also corresponds well to the results shown in FIG. 4, and since there is no change in shape due to the cycle, particularly no dropout from the core material, the decrease in the charge / discharge capacity is smaller than that in FIG.

なお、可融合金については、鉛あるいはスズをインジ
ウムに5重量%置換した組成の合金を用いた場合におい
ても差異は認められなかった。
Regarding the fusible gold, no difference was observed even when an alloy having a composition in which lead or tin was replaced with indium by 5% by weight was used.

また、芯材については、ニッケルの他にステンレス、
銅のいずれの材質を用いた場合においても、差異は認め
られなかった。
For the core material, besides nickel, stainless steel,
No difference was observed in any of the copper materials.

発明の効果 以上のように本発明によれば、電気化学的にリチウム
を吸蔵・放出しうる可融合金などを負極材料とて用いた
非水電解液二次電池において、これらをシート状とし、
その表面にカーボンをコーティングすることにより、可
融合金が充放電に伴い膨張・収縮を繰り返し、形状変化
(可融合金の場合はクラックが発生し微粉化するととも
にクラックに沿って崩壊する)が起きた場合において
も、芯材からの脱落を防止するとともに集電可能とし、
サイクルに伴う充放電容量の低下も小さく、内部短絡お
よび発火が発生しないという効果が得られた。
Effects of the Invention As described above, according to the present invention, in a non-aqueous electrolyte secondary battery using a fusible gold or the like that can electrochemically occlude and release lithium as a negative electrode material, these are formed into sheets,
By coating the surface with carbon, the fusible alloy repeatedly expands and contracts as it is charged and discharged, causing a change in shape (in the case of fusible gold, cracks occur and become fine powder and collapse along the cracks). In the case of
The decrease in charge / discharge capacity due to the cycle was small, and the effect of preventing occurrence of internal short circuit and ignition was obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は試験極の構成断面略図、第2図は充放電試験装
置の構成断面略図、第3図は従来の試験極の充放電容量
の変化を示した図、第4図は本発明による試験極のサイ
クルに伴う充放電容量の変化を示した図である。 1……合金シート、2……芯材、3……リード板、4…
…ポリエチレンコート、5……試験極、6……対極、7
……参照極、8……セパレータ、9……H形セル。
FIG. 1 is a schematic cross-sectional view of a test electrode, FIG. 2 is a schematic cross-sectional view of a charge / discharge test apparatus, FIG. 3 shows a change in charge / discharge capacity of a conventional test electrode, and FIG. FIG. 4 is a diagram showing a change in charge / discharge capacity according to a cycle of a test electrode. 1 ... alloy sheet, 2 ... core material, 3 ... lead plate, 4 ...
... Polyethylene coat, 5 ... Test electrode, 6 ... Counter electrode, 7
... reference electrode, 8 ... separator, 9 ... H-shaped cell.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 守田 彰克 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平2−215043(JP,A) 特開 平1−157067(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 4/02,10/40────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Akikatsu Morita 1006 Kazuma Kadoma, Kadoma City, Osaka Inside Matsushita Electric Industrial Co., Ltd. (56) References JP-A-2-215043 (JP, A) JP-A-1- 157067 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01M 4/02, 10/40

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電気化学的にリチウムを吸蔵・放出しうる
軽金属を除く負極材料の表面に、カーボンをコーティン
グしたことを特徴とする非水電解液二次電池。
1. A non-aqueous electrolyte secondary battery characterized in that carbon is coated on a surface of a negative electrode material excluding a light metal capable of occluding and releasing lithium electrochemically.
【請求項2】上記負極材料は、あらかじめシート状と
し、その表面にカーボンをコーティングしたことを特徴
とする特許請求の範囲第1項記載の非水電解液二次電
池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein said negative electrode material is formed in a sheet shape in advance, and the surface thereof is coated with carbon.
【請求項3】上記負極材料は、鉛を必須成分とし、これ
単独かあるいはスズ、カドミウム、亜鉛、インジウムお
よびビスマスよりなる群から選んだ少なくとも一つとの
合金であることを特徴とする特許請求の範囲第1項記載
の非水電解液二次電池。
3. The negative electrode material according to claim 1, wherein lead is an essential component and is an alloy alone or with at least one selected from the group consisting of tin, cadmium, zinc, indium and bismuth. 2. The non-aqueous electrolyte secondary battery according to claim 1.
【請求項4】上記負極材料は、スズを必須成分とし、こ
れ単独かあるいは鉛、カドミウム、亜鉛、インジウムお
よびビスマスよりなる群から選んだ少なくとも一つとの
合金であることを特徴とする特許請求の範囲第1項記載
の非水電解液二次電池。
4. The negative electrode material according to claim 1, wherein tin is an essential component and is an alloy of tin alone or at least one selected from the group consisting of lead, cadmium, zinc, indium and bismuth. 2. The non-aqueous electrolyte secondary battery according to claim 1.
【請求項5】上記負極材料はアルミニウムであることを
特徴とする特許請求の範囲第1項記載の非水電解液二次
電池。
5. The non-aqueous electrolyte secondary battery according to claim 1, wherein said negative electrode material is aluminum.
JP2086527A 1990-03-30 1990-03-30 Non-aqueous electrolyte secondary battery Expired - Lifetime JP2794889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2086527A JP2794889B2 (en) 1990-03-30 1990-03-30 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2086527A JP2794889B2 (en) 1990-03-30 1990-03-30 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH03285259A JPH03285259A (en) 1991-12-16
JP2794889B2 true JP2794889B2 (en) 1998-09-10

Family

ID=13889464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2086527A Expired - Lifetime JP2794889B2 (en) 1990-03-30 1990-03-30 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2794889B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5071056B2 (en) * 1995-06-28 2012-11-14 宇部興産株式会社 Non-aqueous secondary battery
JP2004200003A (en) * 2002-12-18 2004-07-15 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2753020B2 (en) * 1989-02-16 1998-05-18 株式会社東芝 Non-aqueous solvent secondary battery

Also Published As

Publication number Publication date
JPH03285259A (en) 1991-12-16

Similar Documents

Publication Publication Date Title
JPH09115523A (en) Nonaqueous electrolytic secondary battery
JPH10308207A (en) Non-aqueous electrolyte secondary battery
JPH04294059A (en) Negative electrode for secondary battery with non-aqueous electrolyte
JP2794889B2 (en) Non-aqueous electrolyte secondary battery
JP2751625B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JPH1186898A (en) Alkaline storage battery
JP3152307B2 (en) Lithium secondary battery
JP3019402B2 (en) Non-aqueous electrolyte secondary battery
JP3019356B2 (en) Non-aqueous electrolyte secondary battery
JP3404929B2 (en) Non-aqueous electrolyte battery
JPH0574490A (en) Nonaqueous electrolyte secondary battery
JPS60131776A (en) Nonaqueous electrolyte secondary battery
JPH0574488A (en) Nonaqueous electrolyte secondary battery
JP3405419B2 (en) Non-aqueous electrolyte secondary battery
JPH03297072A (en) Secondary battery with non-aqueous electrolytic solution
JPH04259764A (en) Lithium secondary battery
JPH04179069A (en) Secondary battery with non-aqueous electrolytic solution
JP3189168B2 (en) Non-aqueous secondary battery with overdischarge resistance
JP2701586B2 (en) Negative electrode for non-aqueous electrolyte secondary battery
JPH0574489A (en) Nonaqueous electrolyte secondary battery
JP4100175B2 (en) Negative electrode for lithium ion secondary battery
JP2961745B2 (en) Non-aqueous electrolyte secondary battery
JPH0441471B2 (en)
JP2002260650A (en) Battery
JPH0423380B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080626

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090626

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100626

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100626

Year of fee payment: 12