JP2753020B2 - Non-aqueous solvent secondary battery - Google Patents

Non-aqueous solvent secondary battery

Info

Publication number
JP2753020B2
JP2753020B2 JP1036476A JP3647689A JP2753020B2 JP 2753020 B2 JP2753020 B2 JP 2753020B2 JP 1036476 A JP1036476 A JP 1036476A JP 3647689 A JP3647689 A JP 3647689A JP 2753020 B2 JP2753020 B2 JP 2753020B2
Authority
JP
Japan
Prior art keywords
negative electrode
aqueous solvent
secondary battery
carbon material
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1036476A
Other languages
Japanese (ja)
Other versions
JPH02215043A (en
Inventor
隆久 大崎
純一 高林
修司 山田
則雄 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1036476A priority Critical patent/JP2753020B2/en
Publication of JPH02215043A publication Critical patent/JPH02215043A/en
Application granted granted Critical
Publication of JP2753020B2 publication Critical patent/JP2753020B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、非水溶媒二次電池に関し、特に負極を改良
した非水溶媒二次電池に係わる。
The present invention relates to a non-aqueous solvent secondary battery, and more particularly to a non-aqueous solvent secondary battery having an improved negative electrode.

(従来の技術) 近年、負極活物質としてリチウム、ナトリウム、アル
ミニウム等の軽金属を用いた非水溶媒電池は高エネルギ
ー密度電池として注目されており、正極活物質に二酸化
マンガン(MnO2)、フッ化炭素[(CF)n]、塩化チオ
ニル(SOCl2)等を用いた一次電池は既に電卓、時計の
電源やメモリのバックアップ電池として多用されてい
る。更に、近年、VTR、通信機器等の各種の電子機器の
小形、軽量化に伴い、それらの電源として高エネルギー
密度の二次電池の要求が高まり、軽金属を負極活物質と
する非水溶媒二次電池の研究が活発に行われている。
(Prior art) In recent years, non-aqueous solvent batteries using light metals such as lithium, sodium, and aluminum as the negative electrode active material have attracted attention as high energy density batteries, and manganese dioxide (MnO 2 ), fluorinated Primary batteries using carbon [(CF) n], thionyl chloride (SOCl 2 ), and the like have already been widely used as calculators, clock power supplies, and memory backup batteries. Furthermore, in recent years, with the miniaturization and weight reduction of various electronic devices such as VTRs and communication devices, demands for secondary batteries having a high energy density as a power source for these devices have increased, and non-aqueous solvent secondary batteries using a light metal as a negative electrode active material have been required. Battery research is being actively conducted.

非水溶媒二次電池は、負極にリチウム、ナトリウム、
アルミニウム等の軽金属を用い、電解液として炭酸プロ
ピレン(PC)、1,2−ジメトキシエタン(DME)、γ−ブ
チロラクトン(γ−BL)、テトラヒドロフラン(TH
F)、などの非水溶媒中にLiClO4、LiBF4、LiAsF6、LiPF
6等の電解質を溶解したものから構成され、正極活物質
としては主にTiS2、MoS2、V2O5、V6O13等リチウムなど
の軽金属との間でトポケミカル反応する化合物が研究さ
れている。
Non-aqueous solvent secondary batteries have lithium, sodium,
A light metal such as aluminum is used, and propylene carbonate (PC), 1,2-dimethoxyethane (DME), γ-butyrolactone (γ-BL), tetrahydrofuran (TH
F), LiClO the non-aqueous solvent, such as 4, LiBF 4, LiAsF 6, LiPF
As a positive electrode active material, compounds that undergo a topochemical reaction with light metals such as TiS 2 , MoS 2 , V 2 O 5 , and V 6 O 13 have been studied. ing.

しかしながら、上述した二次電池は現在未だ実用化さ
れていない。この主な理由は、充放電効率が低く、かつ
充放電回数(サイクル寿命)が短いためである。この原
因は、負極軽金属(例えばリチウム)と電解液との反応
によるリチウムの劣化によるところが大きいと考えられ
ている。即ち、放電時にリチウムイオンとして電解液中
に溶解したリチウムは充電時に析出する際に溶媒と反応
し、その表面が一部不活性化される。そのため、充放電
を繰返していくと、デンドライト状(樹枝状)のリチウ
ムが発生したり、小球状に析出したり、リチウムが集電
体より脱離するなどの現象が生じる。また、成長したデ
ンドライト状の金属リチウムがセパレータを貫通もしく
はセパレータの周辺部より回り込んで正極に接し短絡を
起こすようなことも度々生じる。
However, the above-mentioned secondary battery has not yet been put to practical use. The main reason for this is that the charge / discharge efficiency is low and the number of charge / discharge times (cycle life) is short. It is believed that this is largely due to the degradation of lithium due to the reaction between the negative electrode light metal (eg, lithium) and the electrolyte. That is, lithium dissolved in the electrolytic solution as lithium ions at the time of discharging reacts with the solvent at the time of deposition at the time of charging, and the surface thereof is partially inactivated. Therefore, when charge and discharge are repeated, phenomena such as generation of dendritic (dendritic) lithium, precipitation in small spheres, and elimination of lithium from the current collector occur. In addition, the dendrite-shaped metallic lithium that has grown penetrates through the separator or goes around from the periphery of the separator to come into contact with the positive electrode and cause a short circuit.

上述した問題を改良する試みとして、例えば溶媒の種
類を変える、電解液中にデンドライト防止の添加剤を加
える、或いは負極材料としてリチウム−アルミニウム合
金を用いる等の検討がなされているが、一長一短があっ
た。
As attempts to improve the above-mentioned problems, for example, changing the type of the solvent, adding an additive for preventing dendrite in the electrolytic solution, or using a lithium-aluminum alloy as the negative electrode material have been studied, but there are advantages and disadvantages. Was.

(発明が解決しようとする課題) 本発明は、上記従来の課題を解決するためになされた
もので、充放電サイクル寿命の長い非水溶媒二次電池を
提供しようとするものである。
(Problems to be Solved by the Invention) The present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention is to provide a non-aqueous solvent secondary battery having a long charge / discharge cycle life.

[発明の構成] (課題を解決するための手段) 本発明は、正極活物質からなる正極と、軽金属からな
る負極と、非水溶媒中に電解質を溶解した電解液とを備
えた非水溶媒電池において、前記負極の表面に有機物焼
結体からなる炭素材料の薄層を被覆したこと特徴とする
非水溶媒二次電池である。
[Constitution of the Invention] (Means for Solving the Problems) The present invention provides a nonaqueous solvent comprising a positive electrode made of a positive electrode active material, a negative electrode made of a light metal, and an electrolytic solution in which an electrolyte is dissolved in a nonaqueous solvent. A non-aqueous solvent secondary battery, wherein the surface of the negative electrode is coated with a thin layer of a carbon material made of an organic sintered body.

上記正極活物質としては、例えば非晶質五酸化バナジ
ウム、又は五酸化バナジウムにB2O3、P2O5、SiO2、Bi2O
3、TeO2、WO3、MoO2、NbO2、GeO2、Ag2O、CuO、PbO、Sb
2O3、SnO2、TiO2などの少なくとも1種を添加した非晶
質五酸化バナジウム化合物、マンガン酸化物、二硫化チ
タン、二硫化モリブデン、セレン化ニオブ等を挙げるこ
とができる。
As the positive electrode active material, for example, amorphous vanadium pentoxide, or vanadium pentoxide with B 2 O 3 , P 2 O 5 , SiO 2 , Bi 2 O
3, TeO 2, WO 3, MoO 2, NbO 2, GeO 2, Ag 2 O, CuO, PbO, Sb
Amorphous vanadium pentoxide compounds, manganese oxides, titanium disulfide, molybdenum disulfide, niobium selenide, and the like to which at least one of 2 O 3 , SnO 2 , and TiO 2 are added can be given.

上記負極を構成する軽金属としては、例えばリチウ
ム、ナトリウム、カリウム、カルシウムを挙げることが
でき、特にリチウムが好適である。
Examples of the light metal constituting the negative electrode include lithium, sodium, potassium, and calcium, and lithium is particularly preferable.

上記負極表面に被覆される薄層を構成する炭素材料
は、有機物焼結体を用いることが望ましい。かかる炭素
材料を得るための出発材料としては、例えばセルロース
樹脂、フェノール樹脂、ポリアクリロニトリル、ポリ
(α−ハロゲンアクリロニトリル)、ポリ塩化ビニル、
ポリアミド樹脂などの有機高分子系化合物、又はナフタ
レン、フェナントレン、アントラセン、トリフェニレ
ン、ピレン、ナフタレン、ペリレン、ペンタセンなどの
縮合多環炭化水素化合物及びその誘導体、或いはインド
ール、キノリン、カルバゾール、アクリジンなどの多環
複素環系化合物及びその誘導体等を挙げることができ
る。これらの出発材料を真空ないし不活性ガス(N2、Ar
等)の雰囲気下で500〜3000℃で焼成することによって
前記有機物焼成体からなる炭素材料を得ることができ
る。
As the carbon material constituting the thin layer coated on the negative electrode surface, an organic sintered body is desirably used. Starting materials for obtaining such a carbon material include, for example, cellulose resin, phenol resin, polyacrylonitrile, poly (α-halogen acrylonitrile), polyvinyl chloride,
Organic polymer compounds such as polyamide resins, or condensed polycyclic hydrocarbon compounds such as naphthalene, phenanthrene, anthracene, triphenylene, pyrene, naphthalene, perylene, and pentacene and derivatives thereof, or polycycles such as indole, quinoline, carbazole, and acridine Heterocyclic compounds and derivatives thereof can be mentioned. These starting materials are vacuum or inert gas (N 2 , Ar
And the like, and calcining at 500 to 3000 ° C. to obtain a carbon material comprising the organic calcined body.

上記有機物焼成体からなる炭素材料としては、黒鉛の
結晶質部分と非晶質部分を併せ持つ構造を有するものが
望ましい。また、黒鉛の結晶質部分と非晶質部分を併せ
持つ構造を有し、かつそれらの比率を示す水素/炭素の
原子比が0.15以下の有機物焼成体からなる炭素材料がよ
り望ましい。より好ましい前記水素/炭素の原子比は0.
10以下、更に好ましい前記原子比は0.07以下である。更
に、黒鉛の結晶質部分と非晶質部分を併せ持つ構造を有
し、かつそれらの比率を示す水素/炭素の原子比が0.15
以下である有機物焼結体からなる炭素材料の特性として
は、X線回折測定で2Θ=26゜付近の(002)面の面間
隔(d002)が3.37Å以上であると共にC軸方向の結晶子
の大きさ(Lc)が150Å以下の有機物焼成体からなる炭
素材料が望ましい。このような水素/炭素の原子比や結
晶質の特性指標が前記範囲を逸脱すると、その炭素材料
の薄層を表面に被覆された負極を組込んだ二次電池にお
いて負極側の充放電過電圧が大きくなり、しかも充放電
サイクル寿命も劣化するなどの不都合を生じる恐れがあ
る。
As the carbon material composed of the organic fired body, a carbon material having a structure having both a crystalline portion and an amorphous portion of graphite is desirable. Further, a carbon material having a structure having both a crystalline part and an amorphous part of graphite and comprising an organic fired body having a hydrogen / carbon atomic ratio of 0.15 or less indicating the ratio thereof is more preferable. A more preferred atomic ratio of hydrogen / carbon is 0.1.
The atomic ratio is preferably 10 or less, more preferably 0.07 or less. Further, it has a structure having both a crystalline part and an amorphous part of graphite, and the hydrogen / carbon atomic ratio indicating the ratio between them is 0.15.
The following characteristics of the carbon material made of an organic sintered body include, as a result of X-ray diffraction measurement, a spacing (d 002 ) of the (002) plane near 2Θ = 26 ゜ is 3.37Å or more and a crystal in the C-axis direction. It is desirable to use a carbon material made of an organic fired body having a size (Lc) of 150 ° or less. When the hydrogen / carbon atomic ratio or the crystalline characteristic index deviates from the above range, the charge / discharge overvoltage on the negative electrode side of the secondary battery incorporating the negative electrode whose surface is coated with a thin layer of the carbon material is increased. In addition, there is a possibility that inconveniences such as deterioration of the charge / discharge cycle life may occur.

上記薄層の厚さの上限は、電池容量との関係で通常、
500μmとすることが望ましい。
The upper limit of the thickness of the thin layer is usually related to the battery capacity,
Desirably, it is 500 μm.

上記負極表面に有機物焼成体からなる炭素材料の薄層
を被覆する方法としては、例えば塗布法、蒸着法、スパ
ッタ法等が採用し得るが、前記炭素材料を有機溶媒中に
懸濁し、負極表面に塗布した後、乾燥、有機溶媒の揮散
除去を行なって負極表面に炭素材料の薄層を被覆する方
法が簡便である。
As a method of coating a thin layer of a carbon material composed of an organic fired body on the negative electrode surface, for example, a coating method, a vapor deposition method, a sputtering method, or the like can be adopted, but the carbon material is suspended in an organic solvent, and the negative electrode surface is coated. After drying, a method of drying and volatilizing and removing the organic solvent to coat a thin layer of a carbon material on the negative electrode surface is simple.

(作 用) 本発明によれば、負極の表面に炭素材料(特に有機物
焼成体からなる炭素材料)の薄層を被覆した構造とする
ことによって、容量が大きく、かつ充放電サイクル寿命
の長い非水溶媒二次電池を得ることができる。こうした
効果が得られる原因は未だ明らかではないが、負極表面
に前記炭素材料の薄層を被覆することによって、該薄層
により充電時に負極の活物質(例えばリチウム)を該負
極表面に吸蔵し、放電時にリチウムを放出して負極上の
リチウムのデンドライト生成が抑制されるためであると
考えられる。
(Operation) According to the present invention, by forming a structure in which the surface of the negative electrode is coated with a thin layer of a carbon material (particularly, a carbon material made of a fired organic material), a non-electrode having a large capacity and a long charge-discharge cycle life is obtained. An aqueous solvent secondary battery can be obtained. Although the cause of obtaining such an effect is not yet clear, by coating the negative electrode surface with a thin layer of the carbon material, the thin layer occludes the negative electrode active material (for example, lithium) on the negative electrode surface during charging, This is considered to be because lithium is released at the time of discharge and the generation of lithium dendrites on the negative electrode is suppressed.

(実施例) 以下、本発明の実施例を第1図を参照して詳細に説明
する。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to FIG.

まず、市販のノボラック型フェノール樹脂を窒素ガス
気流中にて1800℃で熱処理を行ない炭化した。X線回折
の結果から、この炭素材料は(002)面の面間隔
(d002)が3.63Å、C軸の結晶子の大きさ(Lc)が14Å
であった。また、元素分析から求めた水素/炭素の原子
比は0.05で、黒鉛の結晶質部分と非晶質部分を併せ持つ
構造を有するものであった。つづいて、この炭素材料の
粉末を市販の脱水処理したトルエン中に入れ、充分に混
合撹拌して懸濁させた。この懸濁液の粘度は、約70セン
チポイズであった。次いで、前記懸濁液を帯状金属リチ
ウム箔の両面に塗布し、乾燥して厚さ10〜30μmの有機
物焼成体からなる炭素材料の薄層を形成した後、リード
を圧着し、幅41mm、長さ230mmの帯状の炭素材料被覆負
極を作製した。
First, a commercially available novolak-type phenol resin was heat-treated at 1800 ° C. in a nitrogen gas stream to be carbonized. According to the result of X-ray diffraction, this carbon material has a (002) plane spacing (d 002 ) of 3.63Å and a C-axis crystallite size (Lc) of 14Å.
Met. The atomic ratio of hydrogen / carbon determined by elemental analysis was 0.05, and the graphite had a structure having both a crystalline portion and an amorphous portion. Subsequently, this carbon material powder was put into commercially available toluene that had been subjected to a dehydration treatment, and was sufficiently mixed, stirred, and suspended. The viscosity of this suspension was about 70 centipoise. Next, the suspension was applied to both sides of a strip of lithium metal foil and dried to form a thin layer of a carbon material made of an organic fired body having a thickness of 10 to 30 μm. A 230 mm long strip of carbon material coated negative electrode was prepared.

また、非晶質五酸化バナジウム化合物粉末80重量%を
アセチレンブラック15重量%及びポリテトラフルオロエ
チレン粉末5重量%と共に混合、シート化し、エキスパ
ンドメタル集電体に圧着することにより幅40mm、長さ21
5mmの帯状正極を作製した。
Also, 80% by weight of an amorphous vanadium pentoxide compound powder were mixed with 15% by weight of acetylene black and 5% by weight of polytetrafluoroethylene powder, formed into a sheet, and pressed to an expanded metal current collector to obtain a sheet having a width of 40 mm and a length of 21%.
A 5 mm strip-shaped positive electrode was produced.

次いで、上記方法で作製した負極及び正極等を用いて
第1図に示す円筒形非水溶媒二次電池を組立てた。即
ち、第1図中の1は底部に絶縁体2が配置された負極端
子を兼ねる有底円筒状のステンレス容器である。この容
器1内には、電極群3が収納されている。この電極群3
は、前記方法により作製された炭素材料被覆負極4、セ
パレータ5及び前記方法で作製した正極6をこの順序で
積層した帯状物を該負極4が外側に位置するように渦巻
き状に巻回した構造になっている。前記セパレータ5
は、ポリプロピレン性多孔質フィルムから形成されてい
る。
Next, a cylindrical nonaqueous solvent secondary battery shown in FIG. 1 was assembled using the negative electrode, the positive electrode, and the like produced by the above method. That is, reference numeral 1 in FIG. 1 denotes a cylindrical stainless steel container having a bottom and also serving as a negative electrode terminal on which an insulator 2 is disposed. In this container 1, an electrode group 3 is housed. This electrode group 3
Has a structure in which a carbon material-coated negative electrode 4, a separator 5, and a positive electrode 6 prepared by the above-described method are stacked in this order, and a belt-like material is spirally wound so that the negative electrode 4 is positioned outside. It has become. The separator 5
Is formed from a polypropylene porous film.

前記容器1内には、1.5モル濃度の六フッ化砒酸リチ
ウム(LiAsF6)が溶解されたエチレンカーボネイト2−
メチルテトラヒドロフランの混合溶媒中に溶解された電
解液が収容されている。前記電極群3上には、中央部が
開口された絶縁紙7が載置されている。また、前記容器
1の上部開口部には、絶縁封口板8が該容器1へのかし
め加工等により液密に設けられており、かつ該絶縁封口
板8の中央には正極端子9が嵌合されている。この正極
端子9は、前記電極群3の正極6に正極リード10を介し
て接続されている。なお、電極群3の負極4は図示しな
い負極リードを介して負極端子である容器1に接続され
ている。
In the container 1, ethylene carbonate 2-ethylene carbonate in which 1.5 molar concentration of lithium hexafluoroarsenate (LiAsF 6 ) was dissolved was used.
An electrolytic solution dissolved in a mixed solvent of methyltetrahydrofuran is contained. On the electrode group 3, an insulating paper 7 having a central opening is placed. An insulating sealing plate 8 is provided in the upper opening of the container 1 in a liquid-tight manner by caulking the container 1 or the like, and a positive electrode terminal 9 is fitted into the center of the insulating sealing plate 8. Have been. The positive electrode terminal 9 is connected to the positive electrode 6 of the electrode group 3 via a positive electrode lead 10. In addition, the negative electrode 4 of the electrode group 3 is connected to the container 1 which is a negative electrode terminal via a negative electrode lead (not shown).

比較例 負極として炭素材料の薄層を被覆しない帯状金属リチ
ウム箔を用いた以外、実施例と同構成の円筒形非水溶媒
二次電池を組立てた。
Comparative Example A cylindrical nonaqueous solvent secondary battery having the same configuration as that of the example was assembled except that a strip-shaped metallic lithium foil not covering a thin layer of a carbon material was used as a negative electrode.

しかして、本実施例及び比較例の電池について充電電
流100mA、放電電流300mAで充放電を行ない、各電池の放
電容量とサイクル寿命を測定した。その結果、第2図に
示すように本実施例の二次電池では特性線A、比較例の
二次電池では特性線Bとなった。
The batteries of this example and the comparative example were charged and discharged at a charging current of 100 mA and a discharging current of 300 mA, and the discharge capacity and cycle life of each battery were measured. As a result, as shown in FIG. 2, a characteristic line A was obtained for the secondary battery of this example, and a characteristic line B was obtained for the secondary battery of the comparative example.

第2図から明らかなように、本実施例の非水溶媒二次
電池では比較例の二次電池に比べて初期の電池容量はほ
ぼ同様であるが、サイクル寿命は格段に向上されている
ことがわかる。また、本実施例の二次電池では比較例の
二次電池に比べて貯蔵においても優れていた。
As is clear from FIG. 2, the non-aqueous solvent secondary battery of this example has almost the same initial battery capacity as the comparative example, but the cycle life is significantly improved. I understand. Further, the secondary battery of this example was superior in storage as compared with the secondary battery of the comparative example.

[発明の効果] 以上詳述した如く、本発明によれば良好な充放電サイ
クル寿命を有すると共に貯蔵特性に優れかつ電池容量の
大きい非水溶媒二次電池を提供できる。
[Effects of the Invention] As described in detail above, according to the present invention, a non-aqueous solvent secondary battery having good charge / discharge cycle life, excellent storage characteristics, and a large battery capacity can be provided.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示す円筒形非水溶媒二次電
池の断面図、第2図は本実施例及び比較例の非水溶媒二
次電池の電池容量と充放電サイクルとの関係を示す特性
図である。 1……ステンレス容器、3……電極群、4……負極、5
……セパレータ、6……正極、8……封口板、9……正
極端子。
FIG. 1 is a cross-sectional view of a cylindrical non-aqueous solvent secondary battery showing one embodiment of the present invention, and FIG. 2 shows the relationship between the battery capacity and the charge / discharge cycle of the non-aqueous solvent secondary batteries of this embodiment and a comparative example. FIG. 4 is a characteristic diagram illustrating a relationship. 1 ... stainless steel container, 3 ... electrode group, 4 ... negative electrode, 5
… Separator, 6… positive electrode, 8… sealing plate, 9… positive electrode terminal.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高見 則雄 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝総合研究所内 (56)参考文献 特開 昭63−298963(JP,A) 特開 昭63−114056(JP,A) 特開 平3−167765(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Norio Takami 1 Toshiba-cho, Komukai, Koyuki-ku, Kawasaki City, Kanagawa Prefecture (56) References JP-A-63-298963 (JP, A) 63-114056 (JP, A) JP-A-3-167765 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】正極活物質からなる正極と、軽金属からな
る負極と、非水溶媒中に電解質を溶解した電解液とを備
えた非水溶媒電池において、前記負極の表面に有機物焼
結体からなる炭素材料の薄層を被覆したこと特徴とする
非水溶媒二次電池。
1. A non-aqueous solvent battery comprising a positive electrode made of a positive electrode active material, a negative electrode made of a light metal, and an electrolytic solution obtained by dissolving an electrolyte in a non-aqueous solvent. A non-aqueous solvent secondary battery coated with a thin layer of a carbon material.
JP1036476A 1989-02-16 1989-02-16 Non-aqueous solvent secondary battery Expired - Fee Related JP2753020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1036476A JP2753020B2 (en) 1989-02-16 1989-02-16 Non-aqueous solvent secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1036476A JP2753020B2 (en) 1989-02-16 1989-02-16 Non-aqueous solvent secondary battery

Publications (2)

Publication Number Publication Date
JPH02215043A JPH02215043A (en) 1990-08-28
JP2753020B2 true JP2753020B2 (en) 1998-05-18

Family

ID=12470869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1036476A Expired - Fee Related JP2753020B2 (en) 1989-02-16 1989-02-16 Non-aqueous solvent secondary battery

Country Status (1)

Country Link
JP (1) JP2753020B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2794889B2 (en) * 1990-03-30 1998-09-10 松下電器産業株式会社 Non-aqueous electrolyte secondary battery
JPH04248276A (en) * 1991-01-25 1992-09-03 Matsushita Electric Ind Co Ltd Lithium secondary battery
JP5071056B2 (en) * 1995-06-28 2012-11-14 宇部興産株式会社 Non-aqueous secondary battery
JP5551259B2 (en) 2010-09-29 2014-07-16 パナソニック株式会社 Lithium primary battery and manufacturing method thereof

Also Published As

Publication number Publication date
JPH02215043A (en) 1990-08-28

Similar Documents

Publication Publication Date Title
US6007945A (en) Negative electrode for a rechargeable lithium battery comprising a solid solution of titanium dioxide and tin dioxide
US5168019A (en) Nonaqueous electrolyte secondary battery
JPH04342966A (en) Secondary battery with non-aqueous solvent
JP3062304B2 (en) Non-aqueous solvent secondary battery
JPH08250108A (en) Manufacture of negative electrode for lithium secondary battery, and lithium secondary battery
JP2753020B2 (en) Non-aqueous solvent secondary battery
JP3720959B2 (en) Secondary battery electrode material
JP3135613B2 (en) Lithium secondary battery
JP3144833B2 (en) Non-aqueous solvent secondary battery
JPH05283107A (en) Laminated battery and its manufacture
JP2003031266A (en) Flat nonaqueous secondary battery
JPH04296471A (en) Non-aqueous electrolyte secondary battery
JP2928620B2 (en) Non-aqueous electrolyte secondary battery
JP2664710B2 (en) Non-aqueous solvent battery
JPH01109662A (en) Nonaqueous electrolytic secondary cell
JP3029715B2 (en) Non-aqueous electrolyte secondary battery
JPH0554913A (en) Nonaqueous electrolytic secondary battery
JP3278837B2 (en) Non-aqueous electrolyte secondary battery
JP2001110406A (en) Nonaqueous electrolyte secondary battery
JP3152695B2 (en) Non-aqueous electrolyte secondary battery
JP4147448B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JPH05182691A (en) Nonaqueous electrolyte secondary battery
JPS63298963A (en) Nonaqueous solvent secondary battery
JPH05225982A (en) Nonaqueous solvent secondary battery
JPH0541207A (en) Lithium secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees