JP2794111B2 - Diamond coated cutting tool - Google Patents

Diamond coated cutting tool

Info

Publication number
JP2794111B2
JP2794111B2 JP62143677A JP14367787A JP2794111B2 JP 2794111 B2 JP2794111 B2 JP 2794111B2 JP 62143677 A JP62143677 A JP 62143677A JP 14367787 A JP14367787 A JP 14367787A JP 2794111 B2 JP2794111 B2 JP 2794111B2
Authority
JP
Japan
Prior art keywords
diamond
base material
film
cutting tool
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62143677A
Other languages
Japanese (ja)
Other versions
JPS63306805A (en
Inventor
慎一 郡山
春美 林
雅英 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP62143677A priority Critical patent/JP2794111B2/en
Publication of JPS63306805A publication Critical patent/JPS63306805A/en
Application granted granted Critical
Publication of JP2794111B2 publication Critical patent/JP2794111B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はダイヤモンド被覆切削工具に関し、より詳細
には、精密加工用、または仕上げ加工用として用いられ
る切削工具に関する。 〔従来技術〕 従来から、切削工具としては超硬合金、Al2O3等のセ
ラミックスから成る切削工具の他、これらセラミックス
を母材としてこの表面に耐摩耗性に優れたAlあるいはTi
の炭化物、窒化物、酸化物等を気相成長法によって被覆
形成した切削工具が使用されている。 最近に至っては、さらに耐摩耗性を有する材料として
ダイヤモンドが注目され、超高温高圧下にて製造される
焼結体ダイヤモンドを刃先に設けたものや、PVDやCVD法
などの気圧成長法によって刃先にダイヤモンド膜を被覆
形成したもの等が検討されている。これらのうち、焼結
ダイヤモンドを用いる系では焼結ダイヤモンド自体の製
造に際し、大規模な装置を必要であるため高価であり、
しかもバインダー(触媒)を添加する必要があるため、
単結晶ダイヤモンドに比較して特性が低い等の欠点を有
する。これに対し、気相成長法によるダイヤモンド膜の
被覆技術では、単結晶ダイヤモンドに近い多結晶質ダイ
ヤモンドを大量且つ安価に合成することができる点か
ら、特に有望視されている。 〔発明が解決しようとする問題点〕 しかし乍ら、上記のようなダイヤモンド被覆切削工具
における問題点として膜剥離が挙げられる。 この膜剥離の原因としては工具母材と、ダイヤモンド
膜との熱膨張の違いによるものあるいはダイヤモンド膜
が化学的に安定であるため、工具母材との反応性が低い
ことに起因する。 このような問題に対して従来から各種の検討が行われ
ている。1つには工具母材の熱膨張係数をダイヤモンド
膜のそれとほぼ同じになるように調整することが行われ
ている。しかしこれのみでは膜剥離を防止するには不十
分であるため、工具母材とダイヤモンド膜間に接着層を
介在させることも行われている。しかし、接着層の形成
は量産性においては不適であり、しかも層厚等を厳密に
制御する必要性があるために、量産化が難しく、剥離防
止効果においても今だ不十分である。 〔発明の目的〕 本発明は上記問題点を解決することを主たる目的とす
るものであり、具体的には、ダイヤモンド膜の剥離を防
止し、工具の長寿命化が図られるとともに量産性に優れ
た安価なダイヤモンド被覆切削工具を提供するにある。
さらに他の目的は超精密加工用、仕上げ加工に優れた切
削性能を有するダイヤモンド被覆切削工具を提供するに
ある。 〔問題点を解決するための手段〕 本発明者等は上記問題点に対し研究を重ねた結果、工
具母材として、ダイヤモンドとは全く異質な材料からな
るセラミックスから成る工具母材中にFeを金属換算で2
乃至20重量%の割合で含有させたものを用い、この母材
表面にダイヤモンド膜を被覆することによってダイヤモ
ンド膜と母材との密着性を向上させ膜剥離を防止し、切
削工具の寿命を向上させ得ることを知見した。 本発明において用いられる工具母材としては、ダイヤ
モンドとは全く異質な超硬質合金、ジルコニア、窒化珪
素、炭化珪素等を主成分とするセラミック焼結体が用い
られダイヤモンド膜生成時の熱膨張差による膜のハクリ
を防止するため、用いる工具母材の室温から800℃にお
ける熱膨張係数が2.8×10-6乃至6.0×10-6/℃のものを
使用することが好ましい。 また、生成されたダイヤモンド膜と基体との熱膨張差
が2.0×10-6/℃以下であることが望ましい。 このような点から考慮すれば工具母材としてはそれ自
体の熱膨張係数が上記の範囲に近い窒化珪素質焼結体を
用いることが最も好ましい。 本発明における重要な特徴は、工具母材中にFeが金属
換算して2乃至20重量%の割合で配合されていることに
ある。工具母材中にFeを配合することによってダイヤモ
ンド膜の工具母材との密着性が顕著に向上するものであ
る。この理由について定かではないが、工具母材表面の
Feに対してダイヤモンドを構成する炭素が固溶し、工具
母材とダイヤモンド膜との界面にいわゆる固溶層が形成
され、それが密着性を向上させるためと考えられる。 なお、Feの量が2重量%を下回ると、Feの添加効果が
なく、20重量%を越えると母材自体の焼成が困難となり
強度に優れた母材を製造することができない。 工具母材の製造に際しては、窒化珪素質焼結体を例に
とれば、窒化珪素粉末に公知の焼結助剤と共にFe成分と
して前述した範囲になるように、Fe金属粉末や、Feを含
む化合物、例えばFe2O3,Fe2(Co)3,FeSの形で添加し、
また、必要により熱膨張係数の調整用としてTiN,TiC,Zr
N,SiC,ZrO2,Al2O3等を添加し、混合、成形を経て周知
の焼成方法、例えば窒素雰囲気中で常圧雰囲気中で常圧
焼成、ホットプレス焼成、ガス圧力焼成、熱間静水圧焼
成等により焼成する。焼結体としては理論密度90%の高
密度体であり、物性的には靭性(K1C)が5以上のもの
が望ましい。なお、得られた焼結体の被覆面は表面粗さ
(Rmax)が1μm以下になるように研磨することが望ま
しい。 ダイヤモンド膜の生成に当たっては公知の方法が採用
できる。例えばイオンプレーティング等のPVD法の他、
マイクロプラズマCDV法、高周波加熱プラズマCVD法、EC
RプラズマCVD法、電子衝撃CVD法等のCVD法が適用され
る。具体的にマイクロ波プラズマCVD法について詳述す
ると、前述した工具母材を反応槽内に設置し、工具母材
の温度を600〜1200℃に設定しダイヤモンド生成用ガス
を5〜100Torrのガス圧で導入し、マイクロ波(2.45GH
z)によりプラズマを発生させ、ダイヤモンドを析出さ
せる。ダイヤモンド生成用ガスとしては水素とメタン、
エタン、プロパン等の炭化水素の組合わせの他、特願昭
59−278645号に提案されているように酸素を単独あるい
は化合物の形で含有させることにより、膜生成速度を高
く、純度の良いダイヤモンド膜を生成することができ
る。 工具母材上に生成されるダイヤモンド膜の膜厚は1〜
200μm、特に10乃至40μmに設定することが望まし
い。さらにダイヤモンド膜表面は微小な凸凹が形成され
ているため切削時の被覆材の溶着を防ぐとともに、切削
時の衝撃を緩和させるために、切削部の表面粗さを(R
a)0.5s以下に研磨するとともに精密加工、仕上げ加工
用として刃先を鋭利に加工研磨する必要がある。 以下、本発明を次の例で説明する。 〔実施例〕 工具母材としてSi3N488重量%、Y2O3重量%、Al2O3
重量%、WC2重量%の原料組成に対し、Fe金属換算で0.2
〜30重量%となる量のFe2O3を添加し、TPG332のチップ
形状に成形後ガス圧力焼成して密度90%以上、靭性(K
1C)5以上、熱膨張係数が2.8×10-6乃至5.0×10-6/℃
の焼結体を得た。 得られた焼結体の被覆面を1μm以下に研磨後、マイ
クロ波プラズマCVD法により下記コーティング条件でダ
イヤモンド膜を形成した。 基板温度 900℃ ガス CH4:1.5cc/min,H2:100cc/min マイクロ波出力 250W 所定の厚さにまでダイヤモンドを生成した後、ダイヤ
モンド膜面を市販の研磨盤(#3000ダイヤ砥石使用)で
所定の表面粗さに研磨した。また、刃先はシャープエッ
ジに加工した。 次に得られた各チップを用いて下記条件で切削試験を
行った。 被削材 Al−8%Si合金 切削速度V 500m/min 切込み 0.2mm 送り 0.1mm/rev 切削時間 30分間 さらに切削試験後のチップの先端摩耗幅と被削材の表
面粗さを測定し、評価を行った。 第1表から明らかなように、工具母材中のFeの量が2
重量%を下回る場合(No.1)、母材とダイヤモンド膜と
の密着性が弱く、膜研磨時の衝撃程度で剥離を生じた。
またFeの量が20重量%を上回る(No.8)と母材の焼成が
十分でなく、強度も弱いため研磨時に剥離を起した。 本発明の試料はいずれも密着性に優れたものであった
が、ダイヤモンド膜厚がNo.2のように3μm程度では被
膜の緻密性が小さく、膜自体の表面粗さが粗いために摩
耗が大きくなる傾向にあり、また膜厚が30μmを越えて
も摩耗は大きくなる傾向にある。 さらに膜の表面粗さ(Ra)が0.7s程に大きいと被削材
の密着により摩耗量が大きく、被削面が荒れた状態とな
る。よって望ましくは膜厚を3乃至30μm、表面粗さ
(Ra)を0.5s以下に設定することが望ましい。 〔発明の効果〕 以上、詳述した通り、本発明のダイヤモンド被覆切削
工具は用いる工具母材中にFe成分を所定の割合で含有さ
せることにより、ダイヤモンド膜と工具母材との密着性
を向上させることができる。それにより膜研磨や切削時
の膜の剥離を防止し、工具の長寿命化を図ることができ
る。また、工具母材へのFeの添加のみで達成することが
できる点から、量産性が容易であり、安価なダイヤモン
ド被覆切削工具を提供することができる。 尚、本発明のダイヤモンド被覆切削工具は超精密加工
用、仕上げ加工用として特に有用である。
Description: TECHNICAL FIELD The present invention relates to a diamond-coated cutting tool, and more particularly, to a cutting tool used for precision machining or finishing. [Prior art] Conventionally, cutting tools made of ceramics such as cemented carbide and Al 2 O 3 have been used as cutting tools.
A cutting tool is used in which a carbide, nitride, oxide, or the like is coated by a vapor phase growth method. Recently, diamond has attracted attention as a more wear-resistant material.Sintered diamond manufactured under ultra-high temperature and pressure is provided on the cutting edge, or the diamond is grown by a pressure growth method such as PVD or CVD. And the like in which a diamond film is formed by coating. Among these, a system using sintered diamond is expensive because a large-scale apparatus is required in producing the sintered diamond itself,
Moreover, since it is necessary to add a binder (catalyst),
It has disadvantages such as lower characteristics than single crystal diamond. On the other hand, the technique of coating a diamond film by a vapor phase growth method is particularly promising because polycrystalline diamond close to single crystal diamond can be synthesized in large quantities at low cost. [Problems to be Solved by the Invention] However, a problem with the diamond-coated cutting tool as described above is film peeling. This film peeling is caused by a difference in thermal expansion between the tool base material and the diamond film, or due to low reactivity with the tool base material because the diamond film is chemically stable. Various studies have been made on such a problem. One is to adjust the coefficient of thermal expansion of the tool base material to be approximately the same as that of the diamond film. However, this is not enough to prevent film peeling, so that an adhesive layer is interposed between the tool base material and the diamond film. However, the formation of the adhesive layer is not suitable for mass production, and it is necessary to strictly control the layer thickness and the like, so that mass production is difficult and the effect of preventing peeling is still insufficient. [Objects of the Invention] The present invention has a main object of solving the above problems, and specifically, prevents the diamond film from peeling, extends the life of the tool, and is excellent in mass productivity. To provide an inexpensive diamond-coated cutting tool.
Still another object is to provide a diamond-coated cutting tool having excellent cutting performance for ultraprecision machining and finishing. [Means for Solving the Problems] The present inventors have conducted studies on the above problems, and as a result, as a tool base material, Fe was contained in a tool base material made of ceramics made of a material completely different from diamond. 2 in metal conversion
By coating the surface of the base material with a diamond film, the adhesion between the diamond film and the base material is improved, the film separation is prevented, and the life of the cutting tool is improved. It was found that it could be done. As the tool base material used in the present invention, a ceramic sintered body mainly composed of an ultra-hard alloy completely different from diamond, zirconia, silicon nitride, silicon carbide, etc. is used, and the thermal expansion difference at the time of diamond film formation is used. In order to prevent peeling of the film, it is preferable to use a tool base material having a coefficient of thermal expansion from room temperature to 800 ° C. of 2.8 × 10 −6 to 6.0 × 10 −6 / ° C. It is also desirable that the difference in thermal expansion between the generated diamond film and the substrate is 2.0 × 10 −6 / ° C. or less. From such a point of view, it is most preferable to use a silicon nitride sintered body whose thermal expansion coefficient is close to the above range as the tool base material. An important feature of the present invention is that Fe is incorporated in the tool base material at a ratio of 2 to 20% by weight in terms of metal. By mixing Fe in the tool base material, the adhesion of the diamond film to the tool base material is significantly improved. The reason for this is not clear, but
It is considered that carbon forming diamond forms a solid solution with Fe and a so-called solid solution layer is formed at the interface between the tool base material and the diamond film, thereby improving the adhesion. If the amount of Fe is less than 2% by weight, there is no effect of adding Fe. If the amount exceeds 20% by weight, it is difficult to sinter the base material itself, so that a base material having excellent strength cannot be produced. At the time of manufacturing the tool base material, taking a silicon nitride-based sintered body as an example, an Fe metal powder or Fe is included so that the silicon nitride powder falls within the range described above as an Fe component together with a known sintering aid. Added in the form of compounds such as Fe 2 O 3 , Fe 2 (Co) 3 , FeS,
If necessary, TiN, TiC, Zr
N, SiC, ZrO 2 , Al 2 O 3, etc. are added, mixed and molded, and then a known sintering method, such as normal pressure sintering in a nitrogen atmosphere at normal pressure, hot press sintering, gas pressure sintering, hot Baking is performed by isostatic baking or the like. It is desirable that the sintered body is a high-density body having a theoretical density of 90% and has physical properties of toughness (K 1C ) of 5 or more. The coated surface of the obtained sintered body is desirably polished so that the surface roughness (Rmax) is 1 μm or less. Known methods can be used for forming the diamond film. For example, besides the PVD method such as ion plating,
Micro plasma CDV method, high frequency heating plasma CVD method, EC
A CVD method such as an R plasma CVD method and an electron impact CVD method is applied. Specifically, the microwave plasma CVD method is described in detail. The tool base material described above is set in a reaction tank, the temperature of the tool base material is set at 600 to 1200 ° C., and the gas for diamond generation is set at a gas pressure of 5 to 100 Torr. Introduced by microwave (2.45GH
Plasma is generated by z) to deposit diamond. Hydrogen and methane as diamond generation gases,
In addition to hydrocarbon combinations such as ethane and propane,
By containing oxygen alone or in the form of a compound as proposed in JP-A-59-278645, a diamond film with a high film formation rate and high purity can be formed. The thickness of the diamond film formed on the tool base material is 1 to
It is desirable to set it to 200 μm, especially 10 to 40 μm. In addition, the diamond film surface has minute irregularities to prevent welding of the coating material during cutting, and to reduce the impact during cutting, the surface roughness of the cut part must be reduced (R
a) It is necessary to grind the edge to 0.5s or less and to sharpen and polish the cutting edge for precision machining and finishing. Hereinafter, the present invention will be described with reference to the following examples. [Example] As a tool base material, Si 3 N 4 88% by weight, Y 2 O 3 % by weight, Al 2 O 3 6
Wt% and WC2 wt% composition in terms of Fe metal
After adding Fe 2 O 3 in an amount of up to 30% by weight, forming it into a TPG332 chip shape, and firing it under gas pressure, the density is 90% or more and the toughness (K
1C ) 5 or more, coefficient of thermal expansion 2.8 × 10 -6 to 5.0 × 10 -6 / ℃
Was obtained. After the coated surface of the obtained sintered body was polished to 1 μm or less, a diamond film was formed by microwave plasma CVD under the following coating conditions. A substrate temperature of 900 ° C. Gas CH 4: 1.5cc / min, H 2: after generating the diamond up to 100 cc / min microwave power 250W predetermined thickness, the diamond film surface commercial grinder (# 3000 diamond grinding wheel used) To a predetermined surface roughness. The edge was machined into a sharp edge. Next, a cutting test was performed using the obtained chips under the following conditions. Work material Al-8% Si alloy Cutting speed V 500m / min Depth of cut 0.2mm Feed 0.1mm / rev Cutting time 30 minutes In addition, measure the tip wear width and surface roughness of the work material after cutting test and evaluate Was done. As is clear from Table 1, the amount of Fe in the tool base metal is 2
When the content was less than the weight% (No. 1), the adhesion between the base material and the diamond film was weak, and peeling occurred at the degree of impact during film polishing.
On the other hand, when the amount of Fe exceeds 20% by weight (No. 8), the base material was not sufficiently fired and the strength was weak, so that peeling occurred during polishing. All of the samples of the present invention were excellent in adhesion, but when the diamond film thickness was about 3 μm, as in No. 2, the denseness of the film was small and the surface roughness of the film itself was rough, so that abrasion occurred. The wear tends to increase even if the film thickness exceeds 30 μm. Further, when the surface roughness (Ra) of the film is as large as about 0.7 s, the amount of wear is large due to the close contact of the work material, and the work surface becomes rough. Therefore, it is desirable to set the film thickness to 3 to 30 μm and the surface roughness (Ra) to 0.5 s or less. [Effects of the Invention] As described above in detail, the diamond-coated cutting tool of the present invention improves the adhesion between the diamond film and the tool base material by including the Fe component in the tool base material in a predetermined ratio. Can be done. As a result, film peeling during film polishing or cutting can be prevented, and tool life can be extended. In addition, since it can be achieved only by adding Fe to the tool base material, mass production is easy and an inexpensive diamond-coated cutting tool can be provided. The diamond-coated cutting tool of the present invention is particularly useful for ultra-precision machining and finishing.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−90884(JP,A) 特開 昭62−107067(JP,A) 特開 昭61−291493(JP,A) 特開 昭60−122785(JP,A) 特公 昭60−59086(JP,B2) (58)調査した分野(Int.Cl.6,DB名) B23B 27/14 C04B 41/87──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-60-90884 (JP, A) JP-A-62-107067 (JP, A) JP-A-61-291493 (JP, A) JP-A-60-9084 122785 (JP, A) JP 60-59086 (JP, B2) (58) Fields investigated (Int. Cl. 6 , DB name) B23B 27/14 C04B 41/87

Claims (1)

(57)【特許請求の範囲】 1.セラミックスから成る工具母材(但し、ダイヤモン
ド基焼結合金を除く)表面にダイヤモンド膜を被覆形成
したダイヤモンド被覆切削工具において、前記セラミッ
クス中に金属換算で2乃至20重量%の割合でFeを含有し
たことを特徴とするダイヤモンド被覆切削工具。
(57) [Claims] In a diamond-coated cutting tool in which a diamond film is coated on the surface of a tool base material (excluding a diamond-based sintered alloy) made of ceramics, Fe is contained in the ceramics at a ratio of 2 to 20% by weight in terms of metal. A diamond-coated cutting tool, characterized in that:
JP62143677A 1987-06-09 1987-06-09 Diamond coated cutting tool Expired - Lifetime JP2794111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62143677A JP2794111B2 (en) 1987-06-09 1987-06-09 Diamond coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62143677A JP2794111B2 (en) 1987-06-09 1987-06-09 Diamond coated cutting tool

Publications (2)

Publication Number Publication Date
JPS63306805A JPS63306805A (en) 1988-12-14
JP2794111B2 true JP2794111B2 (en) 1998-09-03

Family

ID=15344370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62143677A Expired - Lifetime JP2794111B2 (en) 1987-06-09 1987-06-09 Diamond coated cutting tool

Country Status (1)

Country Link
JP (1) JP2794111B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5334453A (en) * 1989-12-28 1994-08-02 Ngk Spark Plug Company Limited Diamond-coated bodies and process for preparation thereof
US5137398A (en) * 1990-04-27 1992-08-11 Sumitomo Electric Industries, Ltd. Drill bit having a diamond-coated sintered body
US5022801A (en) * 1990-07-18 1991-06-11 The General Electric Company CVD diamond coated twist drills
JP2924989B2 (en) * 1992-01-28 1999-07-26 日本特殊陶業株式会社 Diamond film-coated silicon nitride base member and method of manufacturing the same
CN113714525A (en) * 2020-05-26 2021-11-30 中国科学院金属研究所 Diamond coating cutter device for metal surface nanocrystallization and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6059086A (en) * 1983-09-13 1985-04-05 Kanegafuchi Chem Ind Co Ltd Electrolyzing method
JPS6090884A (en) * 1983-10-21 1985-05-22 三菱マテリアル株式会社 Cutting tool and surface-coated diamond-base sintering material for antifriction tool
JP2558448B2 (en) * 1985-10-31 1996-11-27 京セラ株式会社 Diamond coated cutting tools

Also Published As

Publication number Publication date
JPS63306805A (en) 1988-12-14

Similar Documents

Publication Publication Date Title
EP0223585A2 (en) A hard sintered compact for a tool
JPS58211862A (en) Composite silicon nitride cutting tool also executing coating
JPS6353269A (en) Cutting tool tip made of diamond coated tungsten carbide-base sintered hard alloy
JP2794111B2 (en) Diamond coated cutting tool
JP2000044348A (en) High-hardness sintered compact for cutting working of cast iron
JPS63100182A (en) Cutting tool tip made of diamond-coated tungsten carbide-based sintered hard alloy
JPH0623436B2 (en) Composite hard film coated tool
EP0095131B1 (en) Coated silicon nitride cutting tools
JPH0724606A (en) Surface compound cubic boron nitride group extra-high pressure sintered material made cutting tool with excellent chipping resistance
JPS6155591B2 (en)
JP2558448B2 (en) Diamond coated cutting tools
JPS6312940B2 (en)
JP2797612B2 (en) Artificial diamond coated hard sintering tool member with high adhesion strength
JP3468221B2 (en) Surface coated cemented carbide cutting tool
JP2803379B2 (en) Manufacturing method of gas-phase synthetic diamond coated cutting tool
JPH10226575A (en) High-pressure form of boron nitride sintered compact for cutting tool
JP2844934B2 (en) Manufacturing method of gas-phase synthetic diamond coated cutting tool
JP3053652B2 (en) Diamond-containing sintered material
JPH0517231A (en) Composite sintered body, cutting tool and diamond coated member using same
JP2970016B2 (en) Hard layer coated cemented carbide cutting tool
KR930010199B1 (en) Diamond coated sintered body
JPH05125542A (en) Manufacture of thin diamond film tool
JPS6345372A (en) Cutting tool tip made of diamond-coated tungsten carbide-base sintered hard alloy
JPH01225774A (en) High-hardness polycrystalline diamond tool
JPH0557508A (en) Vapor-phase synthetic diamond coated cutting tool

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term