JP2786578B2 - Method for producing can material for battery and can material for battery - Google Patents

Method for producing can material for battery and can material for battery

Info

Publication number
JP2786578B2
JP2786578B2 JP5134990A JP13499093A JP2786578B2 JP 2786578 B2 JP2786578 B2 JP 2786578B2 JP 5134990 A JP5134990 A JP 5134990A JP 13499093 A JP13499093 A JP 13499093A JP 2786578 B2 JP2786578 B2 JP 2786578B2
Authority
JP
Japan
Prior art keywords
battery
rolling
cold rolling
thickness
deformation degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5134990A
Other languages
Japanese (ja)
Other versions
JPH06344003A (en
Inventor
裕文 杉川
幸雄 道端
圭一 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Katayama Special Industries Ltd
Original Assignee
Katayama Special Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15141362&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2786578(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Katayama Special Industries Ltd filed Critical Katayama Special Industries Ltd
Priority to JP5134990A priority Critical patent/JP2786578B2/en
Priority to DE69404765T priority patent/DE69404765T2/en
Priority to US08/187,000 priority patent/US5576113A/en
Priority to EP94101200A priority patent/EP0629009B1/en
Priority to ES94101200T priority patent/ES2106376T3/en
Publication of JPH06344003A publication Critical patent/JPH06344003A/en
Priority to US08/373,438 priority patent/US5840441A/en
Priority to US08/423,721 priority patent/US5603782A/en
Publication of JP2786578B2 publication Critical patent/JP2786578B2/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Metal Rolling (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、DI(Drawing and I
roning)絞り加工で形成する電池用缶の材料を製造する
方法および該方法で製造された電池用缶材料に関するも
のである。
BACKGROUND OF THE INVENTION The present invention relates to DI (Drawing and I
roning) A method for producing a battery can material formed by drawing and a battery can material produced by the method.

【0002】[0002]

【従来の技術】近時、一端閉鎖面と、他端開口部を有す
る円筒形状の電池用缶を製造する方法として、図9に示
すようなDI絞り加工方法が近時開発されている。この
DI絞り加工方法はシート状のメッキ鋼板Sから基材M
を打ち抜く際に、底壁M−1と周壁M−2とを有する浅
底円筒形状のカップとして絞りながら打ち抜き、このカ
ップを次の一工程の深絞り加工で所要の深さと径を有す
る円筒形状に加工するものである。
2. Description of the Related Art Recently, as a method of manufacturing a cylindrical battery can having one end closed surface and the other end opening, a DI drawing method as shown in FIG. 9 has recently been developed. This DI drawing method uses a sheet-shaped plated steel sheet S to form a substrate M
Is punched while drawing as a shallow-bottom cylindrical cup having a bottom wall M-1 and a peripheral wall M-2, and the cup is formed into a cylindrical shape having a required depth and diameter in the next one step of deep drawing. It is to be processed.

【0003】上記DI絞り加工を用いる場合、カップを
深絞りする工程で、周壁のみを引き伸ばし加工するた
め、例えば、底壁の板厚0.4mmで、 周壁の板厚を0.
15mmまで絞ることが可能で、板厚に対するしごき率
(減少率)は従来の2倍強とすることが出来る。このよ
うに、周壁を薄肉とすると中空部の容積が大となり、充
填剤が増加して電池特性を向上させることが出来る。ま
た、加工工程が缶形成材料となるシート鋼板からカップ
を打ち抜く一工程のカッピング工程と、絞り加工するD
I工程の一工程との合計二工程のみで良いため、加工工
程の大幅な減少、それに伴う製造コストの低減を図るこ
とが出来る。
When the above-mentioned DI drawing is used, only the peripheral wall is stretched in the step of deep drawing the cup. For example, when the thickness of the bottom wall is 0.4 mm and the thickness of the peripheral wall is 0.4 mm.
It is possible to squeeze down to 15 mm, and the ironing rate (reduction rate) with respect to the plate thickness can be more than twice the conventional value. As described above, when the peripheral wall is made thin, the volume of the hollow portion becomes large, and the amount of the filler is increased, so that the battery characteristics can be improved. In addition, a processing step includes a cupping step of punching a cup from a sheet steel sheet as a can forming material, and a D step of drawing.
Since only two steps, one step of the I step, are required, the number of processing steps can be significantly reduced and the manufacturing cost can be reduced accordingly.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記D
I絞り加工方法を用いる場合、カッピング工程およびD
I工程において、缶形成材の縦方向、横方向および斜め
方向の伸び率が一定でない場合および材料の板厚が一定
でない場合には、図10に示すように、円筒部開口端に
5mm程度の大きな高低差が生じる所謂イヤリング(耳
高低差)が発生しやすい。このイヤリングはカッピング
工程で発生し、DI深絞り工程でさらに助長される。
However, the above D
When the I drawing method is used, the cupping step and D
In the step I, when the elongation percentages of the can-forming material in the longitudinal, lateral and oblique directions are not constant and when the thickness of the material is not constant, as shown in FIG. A so-called earring (ear height difference) in which a large difference in height is likely to occur. This earring occurs during the cupping process and is further promoted during the DI deep drawing process.

【0005】図11に示す鋼板に対して圧延方向(縦方
向X)に一様な伸び限度以下のひずみを与えた時、縦方
向Xの変形前後の板幅をWx0,Wx、板厚をtx0,txとす
ると、上記圧延方向Xの力に対する変形の異方性(ラン
クホード値rx)は下記の式(1)により表される。
When a strain equal to or less than the uniform elongation limit is applied to the steel sheet shown in FIG. 11 in the rolling direction (longitudinal direction X), the sheet width before and after deformation in the longitudinal direction X is W x0 , W x , and the sheet thickness. Are defined as t x0 and t x , the anisotropy of deformation (rankhorse value r x ) with respect to the force in the rolling direction X is represented by the following equation (1).

【0006】 rx=ln(Wx/Wx0)/ln(tx/txo)…(1)R x = ln (W x / W x0 ) / ln (t x / t xo ) (1)

【0007】横方向Yの力や縦方向Xと45度の角度を
なす斜め方向Zの力についてのランクホード値ry,rz
も上記式(1)と同様に表され、縦方向X、横方向Y及
び斜め方向Zの間での異方性(面内異方性△r)は下記
の式(2)で表される。 △r=(rx+ry)/2−rz…(2)
Rankhorde values r y , r z for a force in the horizontal direction Y and a force in the oblique direction Z forming an angle of 45 degrees with the vertical direction X.
Is also expressed in the same manner as the above formula (1), and the anisotropy (in-plane anisotropy Δr) between the vertical direction X, the horizontal direction Y and the oblique direction Z is expressed by the following formula (2). . △ r = (r x + r y) / 2-r z ... (2)

【0008】本出願人の実験より、上記ランクホード値
rと面内異方性△rによりイヤリング発生率が異なるこ
とが判明している。即ち、上記各ランクホード値rは所
要値以上でなければイヤリングが発生しやすく、かつ、
上記△rは(+)でも(−)でも、その絶対値が大きく
なればイヤリング発生率が高くなり、円筒部開口端に9
0度間隔をあけて突出した山部が発生し所謂4つ耳とな
る。絶対値が(+)側になるとX方向に対して0度と9
0度に4つ耳が発生し、絶対値が(−)側になるとX方
向に対して45度に4つ耳が発生し、絶対値が0に近づ
く程、6つ耳となりイヤリングの発生は押さえられてい
る。
[0008] From an experiment conducted by the present applicant, it has been found that the earring occurrence rate differs depending on the above-mentioned rank horde value r and in-plane anisotropy Δr. That is, if the above-mentioned rank horde value r is not more than the required value, earring is likely to occur, and
Regardless of whether the above Δr is (+) or (−), the earring occurrence rate increases as the absolute value increases, and 9
Crests projecting at intervals of 0 degrees are generated, so-called four ears. When the absolute value is on the (+) side, 0 degree and 9 with respect to the X direction
Four ears are generated at 0 degrees, and when the absolute value is on the (-) side, four ears are generated at 45 degrees with respect to the X direction. As the absolute value approaches 0, six ears are generated and earrings are generated. Being held down.

【0009】上記イヤリングが発生した際、図10に示
すように、イヤリングの最高位置がA点で、最低位置が
B点であり、必要な電池用缶とするための位置がC点で
ある場合、最低位置のB点でカットしなければならない
が、B点はC点より下方で電池用缶の長さとしては不足
することになる。上記した所要長さより短い部分が生じ
ないようにするため、円筒部の長さが長くなるように絞
り、最低位置のB点をC点より上げるようにすると、今
度はC点と最高位置のA点との差が大きくなり、材料が
無駄になる欠点がある。
When the above-mentioned earring occurs, as shown in FIG. 10, a case where the highest position of the earring is point A, the lowest position is point B, and the position for obtaining a necessary battery can is point C. The point B must be cut at the lowest position. However, the point B is lower than the point C, and the length of the battery can is insufficient. In order to prevent a portion shorter than the required length from being generated, the cylindrical portion is squeezed so as to have a longer length, and the lowest point B is raised above the point C. There is a disadvantage that the difference from the point becomes large and the material is wasted.

【0010】上記した問題はイヤリングの発生を防止で
きれば解消できるが、 イヤリング発生防止のためには、
缶形成材料の長さ方向(圧延方向)である縦方向、幅方
向の横方向および斜め方向の各ランクホード値rを一定
以上で、これらランクホード値の差である面内異方性△
rを0に近づけることが必要であるが、極めて困難であ
った。
[0010] The above problem can be solved by preventing the occurrence of earrings.
In each of the longitudinal direction, the transverse direction and the oblique direction, which are the longitudinal direction (rolling direction) of the can-forming material, the rankhord value r is equal to or more than a certain value, and the in-plane anisotropy 差
It is necessary to make r close to 0, but it was extremely difficult.

【0011】また、電池用缶の原材料となる鋼板は、圧
延時に、幅方向の中央部の板厚が大となり、幅方向の両
側、即ちロールエッジ側で板厚が小となり、幅方向全体
で均一な板厚とならない事は周知のことである。このよ
うに、板厚が不均一であると、特に、幅方向両端部分か
ら打ち抜かれた材料よりDI深絞りを行うと、伸び率が
不均一となり、上記イヤリングの発生率が高くなる問題
があった。
[0011] Further, the steel sheet as a raw material of the battery can has a large thickness at the center portion in the width direction during rolling, and has a small thickness on both sides in the width direction, that is, on the roll edge side, and has an overall thickness in the width direction. It is well known that the thickness is not uniform. As described above, when the plate thickness is not uniform, particularly when DI deep drawing is performed from a material punched from both ends in the width direction, there is a problem that the elongation rate becomes non-uniform and the occurrence rate of the above-mentioned earring increases. Was.

【0012】本発明は上記した問題に鑑みてなされたも
ので、電池用缶の材料となる鋼板の縦方向、横方向およ
び斜め方向のランクホード値rを所要以上として伸びを
良好にすると共に、ランクホード値の差△rを0に近づ
けて、DI絞り加工時に、 開口部端面でのイヤリング発
生が発生しないようにすることを目的としている。さら
に、圧延された鋼板の板厚を幅方向に均一とすることに
より、イヤリングの発生を押さえることを目的としてい
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and provides a steel plate used as a material for a battery can with a longitudinal, lateral and diagonal rank horde value r which is higher than required to improve elongation and improve rank hood. The purpose is to make the value difference Δr close to 0 so as to prevent occurrence of earring at the end face of the opening during DI drawing. Further, the present invention aims to suppress occurrence of earring by making the thickness of the rolled steel sheet uniform in the width direction.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するた
め、本発明者は、種々実験した結果、スラブを熱間圧延
した後の冷間圧延時の冷延率を鋼種に応じて適宜に設定
することにより、上記△rを0に近似させた値とするこ
とが出来ることを見い出した。
In order to achieve the above object, the present inventor has conducted various experiments and found that the cold rolling ratio at the time of cold rolling after hot rolling of a slab is appropriately set according to the type of steel. By doing so, it has been found that the above Δr can be made a value close to 0.

【0014】すなわち、本発明は、DI(Drawing and
Ironing)絞り加工で一端開口の円筒形状の電池用缶と
する材料を製造する方法として、鋳造されたスラブを熱
間圧延した後、冷間圧延し、該冷間圧延時に鋼種に合わ
せて80〜90%の冷延率で圧延して、圧延方向の縦方
向、該縦方向と直交する横方向及び斜め方向の伸び率を
略一定とした後、該冷延鋼板の表裏両面にメッキを施し
ていることを特徴とする電池用缶材料の製造方法を提供
するものである。
That is, the present invention relates to DI (Drawing and
(Ironing) As a method of producing a material for a cylindrical battery can having one end opening by drawing, a cast slab is hot-rolled and then cold-rolled. After rolling at a cold rolling rate of 90% to make the elongation in the longitudinal direction in the rolling direction, the transverse direction and the oblique direction perpendicular to the longitudinal direction substantially constant, plating is performed on both front and back surfaces of the cold-rolled steel sheet. And a method for producing a battery can material.

【0015】上記熱間圧延した後、幅方向全体にわたっ
て金属組織が等軸粒となっている場合は、83〜88%
の圧延率で冷間圧延を行うことが好ましい。しかしなが
ら、上記熱間圧延での巻取時に、中央部より両側部がよ
り早く冷却されることにより、窒化アルミが析出されず
に固溶するため、粒組織が延伸粒化しやすく、その結
果、幅方向両側の金属組織が延伸粒で、幅方向中央部が
等軸粒となりやすい。その場合には、上記圧延率よりも
若干圧延率を高めて、84〜90%の圧延率で冷間圧延
を行うことが好ましい。あるいは、熱間圧延時に、幅方
向の両側を加熱手段で加熱して、幅方向全体にわたって
金属組織を等軸粒とし、上記した83〜88%で圧延し
ても良い。
If the metal structure is equiaxed throughout the width after the hot rolling, 83 to 88%
It is preferable to perform cold rolling at a rolling ratio of. However, at the time of winding in the above hot rolling, since both sides are cooled faster than the center, aluminum nitride is dissolved without being precipitated, so that the grain structure is easily formed into elongated grains. The metal structures on both sides in the direction are elongated grains, and the central part in the width direction tends to be equiaxed grains. In this case, it is preferable to slightly increase the rolling ratio from the above-mentioned rolling ratio and perform the cold rolling at a rolling ratio of 84 to 90%. Alternatively, at the time of hot rolling, both sides in the width direction may be heated by heating means to make the metal structure into equiaxed grains over the entire width direction, and the above-mentioned rolling may be performed at 83 to 88%.

【0016】また、圧延された鋼板の板厚を幅方向で均
一とするため、冷間圧延時に鋼板と接する上下ワークロ
ールを軸方向にずらせて、或いは上下ワークロールの軸
線を交差させることにより、上下ワークロールをシフト
させて、圧延される鋼板の板厚を幅方向に均一としてい
る。
In order to make the thickness of the rolled steel sheet uniform in the width direction, the upper and lower work rolls in contact with the steel sheet are shifted in the axial direction during cold rolling, or the axes of the upper and lower work rolls are crossed. The upper and lower work rolls are shifted to make the thickness of the rolled steel sheet uniform in the width direction.

【0017】上記冷間圧延後は、鋼種に合わせて所要時
間および所要温度で焼鈍を行い、該焼鈍後に鋼種に合わ
せて所要の圧延率で調質圧延を行っている。上記メッキ
工程は、鋼種に合わせて、上記焼鈍・調質圧延の前工程
あるいは後工程で行っている。あるいは、メッキ工程の
前後に焼鈍・調質圧延を2度行っている。尚、上記メッ
キとして、ニッケルメッキを施している。
After the above cold rolling, annealing is performed for a required time and at a required temperature according to the type of steel, and after the annealing, temper rolling is performed at a required rolling reduction according to the type of steel. The plating step is performed before or after the annealing and temper rolling according to the type of steel. Alternatively, annealing and temper rolling are performed twice before and after the plating step. Note that nickel plating is applied as the plating.

【0018】さらに、本発明は、上記製造方法で製造さ
れた電池用缶材料を提供するものである。即ち、鋳造さ
れたスラブを熱間圧延した後に圧延率80〜90%で冷
間圧延して、圧延方向の縦方向、該縦方向と直交する横
方向及び斜め方向の伸び率を略一定としていることを特
徴とする電池用缶材料を提供するものである。上記した
電池用缶材料は、縦方向の幅変形度/縦方向の板厚変形
度、横方向の幅変形度/横方向の板厚変形度および斜め
方向の幅変形度/斜め方向の板厚変形度である各ランク
ホード値rが平均1.2以上で、かつ、これらランクホ
ード値の差である面内異方性△rは±0.15以下とな
っている。
Further, the present invention provides a battery can material manufactured by the above manufacturing method. That is, after the cast slab is hot-rolled, it is cold-rolled at a rolling ratio of 80 to 90%, and the elongation in the longitudinal direction of the rolling direction, the lateral direction orthogonal to the longitudinal direction, and the oblique direction are made substantially constant. It is intended to provide a battery can material characterized by the above. The above-described battery can material has a width deformation degree in a vertical direction / a thickness deformation degree in a vertical direction, a width deformation degree in a horizontal direction / a thickness deformation degree in a horizontal direction, and a width deformation degree in an oblique direction / thickness in an oblique direction. The average value of each rank-hord value r as the degree of deformation is 1.2 or more, and the in-plane anisotropy Δr, which is the difference between these rank-hord values, is ± 0.15 or less.

【0019】[0019]

【作用】上記製造方法で製造された電池用缶を形成する
材料は、縦方向、横方向および斜め方向の各ランクホー
ド値rが1.2以上となり、面内異方性△rが±0.15
以下となっており、さらに、板厚を一定としているた
め、DI加工で電池用缶を加工する時にイヤリングの発
生を低減し、電池用缶となる円筒部の開口端の高さを略
均一にする事が出来る。
The material for forming the battery can manufactured by the above manufacturing method has a rankhord value r of 1.2 or more in the longitudinal, lateral and oblique directions, and an in-plane anisotropy Δr of ± 0.1. Fifteen
In addition, since the plate thickness is constant, the occurrence of earrings is reduced when the battery can is processed by DI processing, and the height of the open end of the cylindrical portion serving as the battery can is made substantially uniform. You can do it.

【0020】[0020]

【実施例】以下、本発明を図面に示す実施例により詳細
に説明する。図1および図2は本発明の製造方法により
製造した電池用缶材料により形成した電池用缶1を示
し、底壁2および周壁3を備えた上端開口の深底円筒形
状である。この缶1の底壁2にプラス側接点2aを形成
しており、底壁2と周壁3に囲繞された中空部に充填剤
(図示せず)を充填した後、 上端開口にマイナス側接点
を形成した蓋(図示せず)を被せて固着し、 電池を組み
立てている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings. FIGS. 1 and 2 show a battery can 1 made of a battery can material manufactured by the manufacturing method of the present invention, and has a deep-bottom cylindrical shape having an upper end opening provided with a bottom wall 2 and a peripheral wall 3. A positive contact 2a is formed on the bottom wall 2 of the can 1, and after filling the hollow portion surrounded by the bottom wall 2 and the peripheral wall 3 with a filler (not shown), a negative contact is inserted into the upper end opening. The battery is assembled by covering and fixing the lid (not shown) formed.

【0021】上記電池用缶材料はニッケルメッキ鋼板で
あって、図3に示す順序で製造している。
The battery can material is a nickel-plated steel plate, which is manufactured in the order shown in FIG.

【0022】まず、第1ステップ#1として、鋳造され
たスラブを熱間圧延する。この熱間圧延では、図4に示
すように、厚さ250mm、912℃のスラブ4をロー
ラ5により圧延率98.68%で圧延して厚さ3.3m
m、699℃の鋼板6としてコイル状に巻き取る。上記
圧延用のローラ5の下流側では、圧延された鋼板の幅方
向の両側に電熱ヒータからなる加熱手段7A,7Bを配
置し、この加熱手段7A,7Bにより鋼板の幅方向の両
側を700℃に加熱する。上記加熱により、鋼板6の幅
方向の両側及び中央部分の金属組織を、後工程の焼鈍で
図5(A)に示すような等軸粒となるようにしている。
First, as a first step # 1, the cast slab is hot-rolled. In this hot rolling, as shown in FIG. 4, a slab 4 having a thickness of 250 mm and a temperature of 912 ° C. is rolled by a roller 5 at a rolling reduction of 98.68% to a thickness of 3.3 m.
The steel sheet 6 having a m of 699 ° C. is wound into a coil. On the downstream side of the rolling roller 5, heating means 7A and 7B composed of electric heaters are arranged on both sides in the width direction of the rolled steel sheet. Heat to By the above-described heating, the metal structures on both sides and the central portion in the width direction of the steel sheet 6 are made into equiaxed grains as shown in FIG.

【0023】次に、第2ステップ#2として、上記熱間
圧延した鋼板6を常温下で冷間圧延する。この冷間圧延
では、図6に示すように、鋼板6と当接する上下ワーク
ロール8A,8Bと、このワークロール8A,8Bを鋼板
6の板厚方向に押圧するバックアップロール9A,9B
とを鋼板6の上下両側に配置しており、この冷間圧延で
鋼板6を後述する所望の冷延率で圧延している。
Next, as a second step # 2, the hot-rolled steel sheet 6 is cold-rolled at room temperature. In this cold rolling, as shown in FIG. 6, upper and lower work rolls 8A and 8B that come into contact with the steel plate 6, and backup rolls 9A and 9B that press the work rolls 8A and 8B in the thickness direction of the steel plate 6.
Are disposed on both upper and lower sides of the steel plate 6, and the steel plate 6 is rolled at a desired cold rolling reduction described later by the cold rolling.

【0024】上記冷間圧延時には、鋼板6の板厚を幅方
向において均一となるように、上下両側のワークロール
8A,8Bは軸線方向を所定の角度で交差させてシフト
させている。上記したワークロールで圧延することによ
り、冷間圧延された鋼板6の幅方向両側での板厚の減少
(エッジドロップ)を抑制し、幅方向中央部分の板厚と
幅方向両側部分の板厚がほぼ均一で、板厚偏差の少ない
冷延鋼板となる。具体的には、ワークロールをシフトさ
せない場合は、幅方向両側の板厚減少率が約4%であっ
たが、上記のようにワークロールをシフトさせることに
より、板厚減少率を0.5%と急減させる事が出来る。
During the cold rolling, the upper and lower work rolls 8A and 8B are shifted at a predetermined angle in the axial direction so that the thickness of the steel plate 6 becomes uniform in the width direction. Rolling by the above-mentioned work roll suppresses a reduction in thickness (edge drop) on both sides in the width direction of the cold-rolled steel sheet 6, and reduces the thickness in the center part in the width direction and the thickness in both sides in the width direction. Is substantially uniform and a cold-rolled steel sheet having a small thickness deviation is obtained. Specifically, when the work roll was not shifted, the sheet thickness reduction rate on both sides in the width direction was about 4%. However, by shifting the work roll as described above, the sheet thickness reduction rate was reduced to 0.5%. %.

【0025】本発明者は種々の実験より、上記冷間圧延
における冷延率が鋼板の面内異方性△rと密接に関連す
ることを見い出した。すなわち、冷間圧延率と面内異方
性△rとの関係は実験結果より図7に示すようになっ
た。イヤリングの発生を防止するためには、面内異方性
△rの絶対値が0.15以下であることが好ましいこと
が、本発明の実験結果より判明している。上記図7か
ら、等軸粒の場合に△rの絶対値がこの範囲となるの
は、冷間圧延率が83〜88%の間である。本実施例で
は、上記したように熱間圧延時に鋼板の両端部を加熱し
て鋼板の幅方向全体にわたって等軸粒としているため、
冷間圧延率は上記83〜88%の範囲に設定している。
The present inventor has found from various experiments that the cold rolling ratio in the above-mentioned cold rolling is closely related to the in-plane anisotropy Δr of the steel sheet. That is, the relationship between the cold rolling reduction and the in-plane anisotropy Δr was as shown in FIG. 7 from the experimental results. From the experimental results of the present invention, it has been found that the absolute value of the in-plane anisotropy Δr is preferably 0.15 or less in order to prevent the occurrence of earring. According to FIG. 7, the absolute value of Δr falls within this range in the case of equiaxed grains when the cold rolling reduction is between 83% and 88%. In this embodiment, since both ends of the steel sheet are heated at the time of hot rolling as described above to form equiaxed grains throughout the width direction of the steel sheet,
The cold rolling rate is set in the range of 83 to 88%.

【0026】上記したように、第2ステップ#1の入れ
缶圧延率により幅方向の板厚がほぼ均一であって、か
つ、圧延方向の縦方向、横方向及び斜め方向のランクホ
ード値rが1.2以上で伸びがよく、かつ、これらラン
クホード値rの差である面内異方性△rが±0.15以
下の冷延鋼板が得られる。
As described above, the plate thickness in the width direction is substantially uniform according to the rolling rate of the can in the second step # 1, and the rankhord value r in the longitudinal, transverse and oblique directions in the rolling direction is 1 A cold-rolled steel sheet having good elongation at 0.2 or more and an in-plane anisotropy Δr, which is a difference between these rank-hord values r, of ± 0.15 or less can be obtained.

【0027】図5(B)に示す延伸粒の場合は、上記図
7に示すように、面内異方性△rの絶対値が0.15以
下におさまるのは、86〜90%の範囲であった。上記
第1ステップ#1の熱間圧延で鋼板6の両端部を加熱手
段7により加熱されない場合には、鋼板6の両側がコイ
ルの巻き取り時に急速に冷やされて、窒化アルミが析出
されず固溶するため、両側の金属組織が延伸粒化する一
方、中央部分が等軸粒となる。よって、金属組織全体が
等軸粒である場合より、第2ステップ#2の冷間圧延率
を84〜90%の範囲に設定し、軸方向両側及び中央部
の面内異方性△rを上記±0.15以下となるように設
定する。
In the case of the stretched grains shown in FIG. 5B, as shown in FIG. 7, the absolute value of the in-plane anisotropy Δr falls below 0.15 in the range of 86 to 90%. Met. If both ends of the steel sheet 6 are not heated by the heating means 7 in the hot rolling in the first step # 1, both sides of the steel sheet 6 are rapidly cooled when the coil is wound, and aluminum nitride is not precipitated and solidified. Because of the dissolution, the metal structures on both sides are stretched and granulated, while the central portion is equiaxed. Therefore, the cold rolling reduction in the second step # 2 is set in the range of 84 to 90%, and the in-plane anisotropy Δr of both sides in the axial direction and the central part is set, as compared with the case where the entire metal structure is equiaxed grains. It is set so as to be ± 0.15 or less.

【0028】なお、冷間圧延率の設定は上記範囲に限定
されず、鋼種に合わせて80〜90%の範囲で設定して
面内異方性△rを±0.15以下の値となるようにすれ
ばよい。
The setting of the cold rolling reduction is not limited to the above range, and the in-plane anisotropy Δr is set to a value of ± 0.15 or less by setting the range of 80 to 90% according to the type of steel. What should I do?

【0029】次に、第3ステップ#3として、上記冷間
圧延した鋼板の金属組織を図5(A)に示す等軸粒に調
整するために連続焼鈍を行う。この連続焼鈍は、ガス雰
囲気中で、600℃〜900℃で0.5分〜2.0分間行
う。次の第4ステップ#4では、焼鈍後の鋼板を圧延率
1.5%で調質圧延を行う。なお、連続焼鈍の時間、温
度や調質圧延の圧延率は鋼種に合わせて適宜設定する。
Next, as a third step # 3, continuous annealing is performed to adjust the metal structure of the cold-rolled steel sheet to equiaxed grains shown in FIG. 5 (A). This continuous annealing is performed in a gas atmosphere at 600 to 900 ° C. for 0.5 to 2.0 minutes. In the next fourth step # 4, temper rolling is performed on the annealed steel sheet at a rolling reduction of 1.5%. The time and temperature of continuous annealing and the reduction ratio of temper rolling are appropriately set according to the type of steel.

【0030】次に、第5ステップ#5として、表裏両面
に2μm〜5μmの厚さで軟質ニッケルメッキ層を電気
メッキで施す。その際、電池用缶として加工した時に外
面側となる面には軟質ニッケルメッキを2μm〜5μ
m、内面側となる面に軟質ニッケルメッキを0.5μm
〜5μmで施す。あるいは、外面側は軟質ニッケルメッ
キとするが、内面側は硬質ニッケルメッキとしても良
い。
Next, as a fifth step # 5, a soft nickel plating layer having a thickness of 2 μm to 5 μm is applied to both surfaces by electroplating. At this time, soft nickel plating is applied to the surface that becomes the outer surface side when processed as a battery can to 2 μm to 5 μm.
m, soft nickel plating on the inner surface 0.5 μm
で 5 μm. Alternatively, the outer surface side may be soft nickel plating, but the inner surface side may be hard nickel plating.

【0031】次に、第6ステップ#6で連続焼鈍を行
う。この連続焼鈍により、ニッケルメッキ層と鋼板との
間にFe−Ni拡散層を形成する共に、ニッケルメッキ
層の金属組織全体を針状金属組織より延性に富む粒状金
属組織へと変態化させる。この連続焼鈍は600℃〜7
50℃で、0.5分〜2分の範囲で、鋼種に合わせて設
定すればよいが、ニッケルメッキ層の厚さが薄い程温度
を低くすると共に、時間を短くする一方、厚さが厚くな
る程、温度を高くすると共に、時間を長くしている。最
後に、第7ステップ#7で、上記ニッケルメッキ層の組
織を整えるために、調質圧延を圧下率0.5〜2.0%で
行う。
Next, in a sixth step # 6, continuous annealing is performed. By this continuous annealing, an Fe—Ni diffusion layer is formed between the nickel plating layer and the steel sheet, and the entire metal structure of the nickel plating layer is transformed into a granular metal structure that is more ductile than a needle-like metal structure. This continuous annealing is performed at 600 ° C. to 7
The temperature may be set at 50 ° C. in the range of 0.5 to 2 minutes according to the steel type. The thinner the nickel plating layer, the lower the temperature and the shorter the time. Indeed, the temperature is raised and the time is lengthened. Finally, in a seventh step # 7, temper rolling is performed at a rolling reduction of 0.5 to 2.0% to adjust the structure of the nickel plating layer.

【0032】上記第1ステップから第7ステップで電池
用缶の形成材料10が製造され、該電池用缶の形成材料
は前記図2の断面図に示すように、鋼板からなる基板1
1の両側にFe−Ni拡散層12A,12B、その表面
に粒状金属組織を有する表面ニッケルメッキ層13A,
13Bを有する。上記ニッケルメッキ鋼板からなる缶形
成材料10は、前記図9に示すDI絞り方法により図1
および図2に示す形状の電池用缶1として成形加工して
いる。
In the first to seventh steps, a material 10 for forming a battery can is manufactured. The material for forming the battery can is, as shown in the sectional view of FIG.
1 are Fe-Ni diffusion layers 12A and 12B on both sides, and a surface nickel plating layer 13A having a granular metal structure on the surface thereof.
13B. The can-forming material 10 made of the nickel-plated steel sheet is obtained by the DI drawing method shown in FIG.
And a battery can 1 having the shape shown in FIG.

【0033】上記DI絞り加工時において重要なこと
は、材料10の製造時において、冷間圧延時に鋼種に応
じて80〜90%の冷延率で圧延することにより、その
後の焼鈍において金属組織を主として等軸粒とし、上記
縦方向、横方向および斜め方向のランクホード値rを平
均1.2以上で、これらランクホード値rの差である面
内異方性△rを0.15以下としている点である。さら
に、冷間圧延時にワークロールをシフトさせて板厚の幅
方向両側の減少率を低減し、板厚を幅方向全体にわたっ
て略一定厚としている点である。
What is important in the above-mentioned DI drawing is that, when the material 10 is manufactured, the metal structure is rolled at a cold rolling reduction of 80 to 90% in accordance with the type of steel at the time of cold rolling, so that the metal structure is formed in the subsequent annealing. Mainly equiaxed grains, the average of the above-mentioned rank-hord values r in the longitudinal, lateral and oblique directions is 1.2 or more, and the in-plane anisotropy Δr, which is the difference between these rank-hord values r, is 0.15 or less. It is. Further, the work roll is shifted during the cold rolling to reduce the reduction rate of the sheet thickness on both sides in the width direction, and the sheet thickness is made substantially constant over the entire width direction.

【0034】本発明は上記実施例に限定されず、図8に
示す工程で製造してもよい。即ち、図8に示すように、
ステップ♯21の冷間圧延後に、ステップ♯14のメッ
キ工程を行い、その後、ステップ♯15の連続焼鈍工程
を行い、最後のステップ♯16で調質圧延工程を行って
いる。尚、上記各工程において、図3に示す実施例の対
応する工程と略同一条件で行っている。
The present invention is not limited to the above embodiment, but may be manufactured by the steps shown in FIG. That is, as shown in FIG.
After the cold rolling in step # 21, the plating step in step # 14 is performed, then the continuous annealing step in step # 15 is performed, and the temper rolling step is performed in the last step # 16. Note that, in each of the above steps, the steps are performed under substantially the same conditions as the corresponding steps of the embodiment shown in FIG.

【0035】[0035]

【発明の効果】以上の説明から明らかなように、本発明
では、鋼種に合わせて冷間圧延率80〜90%に設定す
ることにより△rを0に近い値、すなわち0.15以下
としていると共に、冷間圧延のロールをシフトすること
により鋼板の幅方向両側部と幅方向両端部で板厚の差を
小さく抑えているため、DI絞り加工を施して電池用缶
を形成する際のイヤリングの発生を抑えることができる
と共に、イヤリングの高低差異を低減することができ、
材料の無駄をなくすことができる。
As is apparent from the above description, in the present invention, Δr is set to a value close to 0, that is, 0.15 or less by setting the cold rolling reduction to 80 to 90% in accordance with the type of steel. At the same time, by shifting the rolls of the cold rolling, the difference in thickness between the both sides in the width direction and the both ends in the width direction of the steel sheet is suppressed to be small, so that the earring when forming the battery can by performing DI drawing is performed. Can be suppressed, and the difference in height of the earrings can be reduced.
Material waste can be eliminated.

【0036】例えば、従来の電池用缶材料では、イヤリ
ング高低差が5mm程度であり、この分だけ缶をカット
する必要があったため缶の高さが52mmとなるのに対
して、本発明に係る同寸法の缶材料から電池用缶形成す
ると、イヤリング高低差を2mmに低減、高さ55mm
の缶を得ることができ、5.45%高さの高い缶を得る
ことができる。
For example, in the conventional battery can material, the height difference of the earring is about 5 mm, and it is necessary to cut the can accordingly. When a battery can is formed from the same size can material, the earring height difference is reduced to 2 mm, and the height is 55 mm
And a 5.45% high can can be obtained.

【0037】熱間圧延時に圧延されたスラグの幅方向両
端部を加熱手段で加熱するため、冷間圧延、調質圧延を
経て形成された鋼板の金属組織は、幅方向全体にわたっ
て等軸粒とすることができる等の種々の利点がある。
Since the both ends in the width direction of the slag rolled during the hot rolling are heated by the heating means, the metallographic structure of the steel sheet formed through the cold rolling and the temper rolling is equal to equiaxed grains throughout the width direction. There are various advantages such as being able to do so.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係わる電池用缶の正面図である。FIG. 1 is a front view of a battery can according to the present invention.

【図2】 図1の一部拡大断面図である。FIG. 2 is a partially enlarged sectional view of FIG.

【図3】 本発明の製造方法を示すフローチャート。FIG. 3 is a flowchart showing a manufacturing method of the present invention.

【図4】 (A)(B)は熱間圧延を示す概略図であ
る。
FIGS. 4A and 4B are schematic diagrams showing hot rolling.

【図5】 (A)は等軸粒を示す概略図、(B)は延伸
粒を示す概略図である。
FIG. 5A is a schematic view showing equiaxed grains, and FIG. 5B is a schematic view showing stretched grains.

【図6】 冷間圧延を示す概略図である。FIG. 6 is a schematic diagram showing cold rolling.

【図7】 冷間圧延率と面内偏差△rの関係を示す概略
図である。
FIG. 7 is a schematic diagram showing a relationship between a cold rolling reduction and an in-plane deviation Δr.

【図8】 本発明の他の製造方法を示すフローチャート
である。
FIG. 8 is a flowchart showing another manufacturing method of the present invention.

【図9】 DI絞り加工を説明するための概略図であ
る。
FIG. 9 is a schematic diagram for explaining DI drawing.

【図10】 イヤリングを説明するための概略図であ
る。
FIG. 10 is a schematic diagram for explaining earrings.

【図11】 鋼板の方向を説明するための概略図であ
る。
FIG. 11 is a schematic diagram for explaining a direction of a steel plate.

【符号の説明】[Explanation of symbols]

1 電池用缶 2 底壁 3 周壁 11 基板 DESCRIPTION OF SYMBOLS 1 Battery can 2 Bottom wall 3 Perimeter wall 11 Substrate

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01M 2/02 H01M 2/02 C (56)参考文献 特開 平5−21044(JP,A) 特開 平3−22345(JP,A) 特開 昭56−95404(JP,A) 松藤和雄、ほか1名,”リムド鋼板の 深絞り性に及ぼすC量の影響”,鉄と 鋼,日本鉄鋼協会,第56年(1970)VO L.1,P.28−43 日本鉄鋼協会編,第3版鉄鋼便覧VO L.III(1),丸善株式会社,昭和 55年5月15日,P.636−638 (58)調査した分野(Int.Cl.6,DB名) B21B 1/22 C21D 8/04,9/48 C25D 5/26,5/36 H01M 2/02────────────────────────────────────────────────── (5) Continuation of the front page (51) Int.Cl. 6 identification symbol FI H01M2 / 02 H01M2 / 02C (56) References JP-A-5-21044 (JP, A) JP-A-3-22345 ( JP, A) JP-A-56-95404 (JP, A) Kazuo Matsuto, et al., "Influence of C content on deep drawability of rimmed steel sheet", Iron and Steel, Iron and Steel Institute of Japan, 56th (1970) ) VOL. 1, P. 28-43 The Iron and Steel Institute of Japan, 3rd Edition Iron and Steel Handbook VOL. III (1), Maruzen Co., Ltd., May 15, 1980, p. 636−638 (58) Field surveyed (Int.Cl. 6 , DB name) B21B 1/22 C21D 8 / 04,9 / 48 C25D 5 / 26,5 / 36 H01M 2/02

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 絞り加工により、一端開口の円筒形状
で、周壁が底壁よりも薄い電池缶を形成する電池缶形成
材料を製造する方法であって、 鋳造されたスラブを熱間圧延した後、冷間圧延し、該冷
間圧延時に鋼種に合わせて80〜90%の冷延率で圧延
して、その後、焼鈍して鋼板の幅方向および長さ方向の
全面にわたり、鋼板の縦方向の幅変形度/縦方向の板厚
変形度、横方向の幅変形度/横方向の板厚変形度、およ
び斜め方向の幅変形度/斜め方向の板厚変形度である各
ランクホード値rを1.2以上とし、かつ、これらラン
クホード値rの差である面内異方性△rを±0.15以
下に設定し、 その後、上記鋼板の表裏両面にメッキを施していること
を特徴とする電池缶材料の製造方法。
1. A method for producing a battery can forming material for forming a battery can having a cylindrical shape with one end opening and a peripheral wall thinner than a bottom wall by drawing, and after hot rolling a cast slab. Cold rolling, cold rolling at a cold rolling reduction of 80 to 90% according to the type of steel at the time of the cold rolling, and then annealing to cover the entire width and length directions of the steel sheet, Each rank-hord value r, which is the width deformation degree / vertical thickness deformation degree, the horizontal width deformation degree / lateral thickness deformation degree, and the diagonal width deformation degree / diagonal thickness deformation degree, is 1 .2 or more, and the in-plane anisotropy Δr, which is the difference between these rank-hord values r, is set to ± 0.15 or less, and thereafter, the front and back surfaces of the steel plate are plated. Manufacturing method of battery can material.
【請求項2】 上記メッキとしてニッケルメッキを施し
ている請求項1に記載の電池缶材料の製造方法。
2. The method for producing a battery can material according to claim 1, wherein nickel plating is applied as said plating.
【請求項3】 請求項1または請求項2に記載の方法で
製造された電池缶形成材料。
3. A battery can forming material produced by the method according to claim 1.
【請求項4】 請求項3に記載の形成材料を用い、絞り
加工により、一端開口の円筒形状で、周壁が底壁よりも
薄い形状としている電池缶。
4. A battery can having a cylindrical shape with one end opened and a peripheral wall thinner than a bottom wall by drawing using the forming material according to claim 3.
JP5134990A 1993-06-04 1993-06-04 Method for producing can material for battery and can material for battery Expired - Lifetime JP2786578B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP5134990A JP2786578B2 (en) 1993-06-04 1993-06-04 Method for producing can material for battery and can material for battery
ES94101200T ES2106376T3 (en) 1993-06-04 1994-01-27 BATTERY GLASS; SHEET TO FORM A BATTERY GLASS AND METHOD TO MAKE SUCH SHEET.
US08/187,000 US5576113A (en) 1993-06-04 1994-01-27 Battery can, sheet for forming battery can, and method for manufacturing sheet
EP94101200A EP0629009B1 (en) 1993-06-04 1994-01-27 Battery can, sheet for forming battery can, and method for manufacturing sheet
DE69404765T DE69404765T2 (en) 1993-06-04 1994-01-27 Battery container, sheet metal for shaping the battery container and method for the production of the sheet metal
US08/373,438 US5840441A (en) 1993-06-04 1995-01-17 Battery can, sheet for forming battery can, and method for manufacturing sheet
US08/423,721 US5603782A (en) 1993-06-04 1995-04-18 Battery can, sheet for forming battery can, and method for manufacturing sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5134990A JP2786578B2 (en) 1993-06-04 1993-06-04 Method for producing can material for battery and can material for battery

Publications (2)

Publication Number Publication Date
JPH06344003A JPH06344003A (en) 1994-12-20
JP2786578B2 true JP2786578B2 (en) 1998-08-13

Family

ID=15141362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5134990A Expired - Lifetime JP2786578B2 (en) 1993-06-04 1993-06-04 Method for producing can material for battery and can material for battery

Country Status (1)

Country Link
JP (1) JP2786578B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2971366B2 (en) * 1995-06-01 1999-11-02 東洋鋼鈑株式会社 Nickel-plated steel sheet subjected to adhesion prevention treatment during annealing and its manufacturing method
WO1997029217A1 (en) * 1996-02-08 1997-08-14 Nkk Corporation Steel sheet for two-piece battery can excellent in moldability, secondary work embrittlement resistance, and corrosion resistance

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
日本鉄鋼協会編,第3版鉄鋼便覧VOL.III(1),丸善株式会社,昭和55年5月15日,P.636−638
松藤和雄、ほか1名,"リムド鋼板の深絞り性に及ぼすC量の影響",鉄と鋼,日本鉄鋼協会,第56年(1970)VOL.1,P.28−43

Also Published As

Publication number Publication date
JPH06344003A (en) 1994-12-20

Similar Documents

Publication Publication Date Title
EP0629009B1 (en) Battery can, sheet for forming battery can, and method for manufacturing sheet
US3897280A (en) Method for manufacturing a steel sheet and product obtained thereby
JP2785902B2 (en) Material for forming battery can and battery can using the material
EP1020247B1 (en) Clad material and method of manufacturing the material
JP2786578B2 (en) Method for producing can material for battery and can material for battery
JPH0215609B2 (en)
JP2810257B2 (en) Battery can and can forming material
JPH09306438A (en) Battery can forming material, manufacture of this material and battery can formed by using this battery can forming material
US20040050464A1 (en) Method for producing a cold rolled strip that is cold formed with low degrees of deformation
JPH10212595A (en) Manufacture of battery can forming material and battery can made of the same forming material
JP3900640B2 (en) Steel plate for two-piece battery can excellent in sealing performance of sealing part and manufacturing method thereof
JPH0347604A (en) Production of alpha type titanium alloy sheet
US5637161A (en) Method of producing an alloy sheet for a shadow mask
JP3587993B2 (en) Manufacturing method of aluminum alloy sheet for deep drawing
JPH0263650A (en) Production of austenitic stainless strip
JPH0668124B2 (en) Manufacturing method of hot-rolled steel strip with excellent cold rolling property
JP3900639B2 (en) Steel plate for two-piece battery can formed by deep drawing and method for manufacturing the same
JP3046663B2 (en) Method for producing hot-rolled steel sheet with excellent deep drawability using thin slab
JP3292033B2 (en) Manufacturing method of steel sheet for battery outer cylinder with excellent material uniformity and corrosion resistance
JPS5941803B2 (en) Cold rolling method for thin steel strip for drawing
JP2757735B2 (en) Austenitic stainless steel sheet or steel strip manufacturing method
JP3079897B2 (en) Fe-Ni-based alloy thin plate and Fe-Ni-Co-based alloy thin plate for color picture tube excellent in press formability and method for producing the same
JPS62185832A (en) Manufacture of cold rolled steel strip or sheet of austenitic stainless steel
JP3406726B2 (en) How to adjust the surface gloss of pure titanium sheet
JPS62185833A (en) Manufacture of cold rolled steel strip or steel sheet of austenitic stainless steel

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980519