JPH10212595A - Manufacture of battery can forming material and battery can made of the same forming material - Google Patents

Manufacture of battery can forming material and battery can made of the same forming material

Info

Publication number
JPH10212595A
JPH10212595A JP10055547A JP5554798A JPH10212595A JP H10212595 A JPH10212595 A JP H10212595A JP 10055547 A JP10055547 A JP 10055547A JP 5554798 A JP5554798 A JP 5554798A JP H10212595 A JPH10212595 A JP H10212595A
Authority
JP
Japan
Prior art keywords
nickel
steel sheet
battery
annealing
plated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10055547A
Other languages
Japanese (ja)
Inventor
Hirofumi Sugikawa
裕文 杉川
Yukio Michihashi
幸雄 道端
Keiichi Hayashi
圭一 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Katayama Special Industries Ltd
Original Assignee
Katayama Special Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Katayama Special Industries Ltd filed Critical Katayama Special Industries Ltd
Priority to JP10055547A priority Critical patent/JPH10212595A/en
Publication of JPH10212595A publication Critical patent/JPH10212595A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve drawability and corrosion resistivity by solving a problem which used to happen in the case of manufacturing a battery can by the drawing process. SOLUTION: Nickel plating is executed on both front and back faces of a cold rolled steel sheet, followed by annealing to transform a nickel plated layer from an acicular structure to a granular structure, and simultaneously, to form Fe-Ni diffusion layers 12A, 12B between the cold rolled steel sheet and the nickel plated layer 13, to set the difference Δr between the Lank ford values rx , ry , rz in the vertical direction, horizontal direction and oblique direction of this formed nickel plated steel sheet to <=±0.15 and to set the average value of (rx , ry , rz ) to <=1.2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、DI(Drawing and I
roning)絞り加工する電池用缶の形成材料、該形成材料
で形成された電池用缶、及び該電池用缶の缶材料の製造
方法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to DI (Drawing and I
The present invention relates to a material for forming a battery can to be drawn, a battery can formed from the material, and a method for producing a can material for the battery can.

【0002】[0002]

【従来の技術】近時、一端閉鎖面と、他端開口部を有す
る円筒形状の電池用缶を製造する方法として、図5に示
すような、DI絞り加工方法が近時開発されている。こ
のDI絞り加工方法はシート鋼板Sから基材Mを打ち抜
く際に、底壁M−1と周壁M−2とを有する浅底円筒形
状のカップとして絞りながら打ち抜き、このカップを次
の一工程の深絞り加工で所要の深さと径を有する円筒形
状に加工するものである。
2. Description of the Related Art Recently, as a method for manufacturing a cylindrical battery can having one end closed surface and the other end opening, a DI drawing method as shown in FIG. 5 has recently been developed. In the DI drawing method, when the base material M is punched from the sheet steel sheet S, the punching is performed while drawing as a shallow cylindrical cup having a bottom wall M-1 and a peripheral wall M-2. This is a process of forming into a cylindrical shape having a required depth and diameter by deep drawing.

【0003】上記DI絞り加工を用いる場合、カップを
深絞りする工程で、周壁のみを引き伸ばし加工するた
め、例えば、底壁の板厚0.4mmで、 周壁の板厚を0.
15mmまで絞ることが可能で、板厚に対するしごき率
(減少率)は従来の2倍強とすることが出来る。このよう
に、周壁を薄肉とすると中空部の容積が大となり、充填
剤が増加して電池特性を向上させることが出来る。ま
た、加工工程が缶形成材料となるシート鋼板からカップ
を打ち抜く一工程のカッピング工程と、絞り加工するD
I工程の一工程との合計二工程のみで良いため、加工工
程の大幅な減少、それに伴う製造コストの低減を図るこ
とが出来る。
When the above-mentioned DI drawing is used, only the peripheral wall is stretched in the step of deep drawing the cup. For example, when the thickness of the bottom wall is 0.4 mm and the thickness of the peripheral wall is 0.4 mm.
It can be squeezed down to 15mm, and the ironing ratio to the plate thickness
The (decrease rate) can be slightly more than twice the conventional value. As described above, when the peripheral wall is made thin, the volume of the hollow portion becomes large, and the amount of the filler is increased, so that the battery characteristics can be improved. In addition, a processing step includes a cupping step of punching a cup from a sheet steel sheet as a can forming material, and a D step of drawing.
Since only two steps, one step of the I step, are required, the number of processing steps can be significantly reduced and the manufacturing cost can be reduced accordingly.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記D
I絞り加工方法を用いる場合、カッピング工程及びDI
工程において、缶形成材の縦方向、横方向及び斜め方向
の伸び率が一定でない場合、及び板厚が均一でない場合
には、図6に示すように、円筒部開口端に5mm程度の
大きな高低差が生じる所謂イヤリング(耳高低差)が発
生しやすい。このイヤリングはカッピング工程で発生
し、DI工程でさらに助長される。
However, the above D
When using the I drawing method, the cupping process and DI
In the process, when the elongation percentage of the can forming material in the vertical, horizontal and oblique directions is not constant, and when the plate thickness is not uniform, as shown in FIG. A so-called earring (ear height difference) that causes a difference easily occurs. This earring occurs during the cupping process and is further promoted during the DI process.

【0005】具体的には、図7に示す鋼板において、圧
延方向(縦方向X)に一様な伸び限度以下のひずみを与
えた時、板幅をWx0,Wx、板厚をtx0,txとすると、上
記圧延方向Xの力に対する変形の異方性(ランクホード
値rx)は下記の式(1)により表される。
Specifically, in the steel sheet shown in FIG. 7, when a strain equal to or less than the elongation limit is applied uniformly in the rolling direction (longitudinal direction X), the sheet width is set to W x0 , W x , and the sheet thickness is set to t x0. , t x , the anisotropy of deformation (rankhorse value rx) with respect to the force in the rolling direction X is represented by the following equation (1).

【0006】 rx=ln(Wx/Wx0)/ln(tx/txo)…(1)R x = ln (W x / W x0 ) / ln (t x / t xo ) (1)

【0007】横方向Yの力や縦方向Xと45度の角度を
なす斜め方向Zの力についてのランクホード値ry,rz
も上記式(1)と同様に表され、縦方向X、横方向Y及
び斜め方向Zの間での異方性(面内異方性△r)は下記
の式(2)で表される。 △r=(rx+ry)/2−rz…(2)
Rankhorde values r y , r z for a force in the horizontal direction Y and a force in the oblique direction Z forming an angle of 45 degrees with the vertical direction X.
Is also expressed in the same manner as the above formula (1), and the anisotropy (in-plane anisotropy Δr) between the vertical direction X, the horizontal direction Y and the oblique direction Z is expressed by the following formula (2). . △ r = (r x + r y) / 2-r z ... (2)

【0008】本出願人の実験より、上記ランクホード値
rと面内異方性△rによりイヤリング発生率が異なるこ
とが判明している。即ち、上記各ランクホード値rは所
要値以上でなければイヤリングが発生しやすく、かつ、
上記△rは(+)でも(−)でも、その絶対値が大きく
なればイヤリング発生率が高くなり、円筒部開口端に9
0度間隔をあけて突出した山部が発生し所謂4つ耳とな
る。絶対値が(+)側になるとX方向に対して0度と9
0度に4つ耳が発生し、絶対値が(−)側になるとX方
向に対して45度に4つ耳が発生し、絶対値が0に近づ
く程、6つ耳となりイヤリングの発生は押さえられてい
る。
[0008] From an experiment conducted by the present applicant, it has been found that the earring occurrence rate differs depending on the above-mentioned rank horde value r and in-plane anisotropy Δr. That is, if the above-mentioned rank horde value r is not more than the required value, earring is likely to occur, and
Regardless of whether the above Δr is (+) or (−), the earring occurrence rate increases as the absolute value increases, and 9
Crests projecting at intervals of 0 degrees are generated, so-called four ears. When the absolute value is on the (+) side, 0 degree and 9 with respect to the X direction
Four ears are generated at 0 degrees, and when the absolute value is on the (-) side, four ears are generated at 45 degrees with respect to the X direction. As the absolute value approaches 0, six ears are generated and earrings are generated. Being held down.

【0009】上記イヤリングが発生した際、上記図6に
示すように、イヤリングの最高位置がA点で、最低位置
がB点であり、必要な電池用缶とするための位置がC点
である場合、最低位置のB点でカットしなければならな
いが、B点はC点より下方で電池用缶の長さとしては不
足することになる。上記した所要長さより短い部分が生
じないようにするため、円筒部の長さが長くなるように
絞り、最低位置のB点をC点より上げるようにすると、
今度はC点と最高位置のA点との差が大きくなり、材料
が無駄になる欠点がある。
When the above-mentioned earring occurs, as shown in FIG. 6, the highest position of the earring is point A, the lowest position is point B, and the position for obtaining the necessary battery can is point C. In this case, it is necessary to cut at the lowest point B, but the point B is below the point C and the length of the battery can is insufficient. In order to prevent a portion shorter than the required length from being generated, the cylindrical portion is squeezed so as to have a longer length, and the lowest point B is raised above the point C.
This time, there is a disadvantage that the difference between the point C and the point A at the highest position becomes large, and the material is wasted.

【0010】上記した問題はイヤリングの発生を防止で
きれば解消できるが、 イヤリング発生防止のためには、
缶形成材料の長さ方向(圧延方向)である縦方向、幅方
向の横方向及び斜め方向の各ランクホード値rを一定以
上で、これらランクホード値の差である面内異方性△r
を0に近づけることが必要であるが、極めて困難であっ
た。
[0010] The above problem can be solved by preventing the occurrence of earrings.
The longitudinal direction (rolling direction) of the can forming material, the longitudinal direction, the lateral direction in the width direction, and the oblique direction are each equal to or greater than a certain rank hod value r.
Is required to approach 0, but it was extremely difficult.

【0011】また、DI絞り加工で電池用缶に形成する
場合、材料の延性が十分でないと、底壁と周壁との曲げ
部分において、クラックが発生しやすく、クラックが生
じると耐食性が悪化する問題があった。
In addition, when the battery can is formed by DI drawing, if the material is not sufficiently ductile, cracks are likely to occur in the bent portion between the bottom wall and the peripheral wall, and if cracks occur, the corrosion resistance deteriorates. was there.

【0012】本発明は上記した問題に鑑みてなされたも
ので、電池用缶の材料となるメッキ鋼板の延性を良好と
してクラック発生の防止、それに伴う耐食性の向上を図
ると共に、缶材料となるメッキ鋼板の縦方向、横方向及
び斜め方向のランクホード値rを所要以上とすると共
に、ランクホード値の差△rを0に近づけて、DI絞り
加工時に、 開口部端面でのイヤリングが発生しないよう
にすることを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and aims to improve the ductility of a plated steel sheet used as a material for a battery can, thereby preventing cracks and improving the corrosion resistance. Rankhord values r in the longitudinal, lateral, and diagonal directions of the steel sheet are set to be greater than required, and the difference Δr between the rankhord values is made close to 0 to prevent the occurrence of earring at the opening end face during DI drawing. It is intended to be.

【0013】[0013]

【課題を解決するための手段】即ち、本発明は、一端開
口の円筒形状の電池用缶をDI(Drawing and Ironin
g)絞り加工で形成するために用いる形成材料であって、
Fe鋼板の表裏両面に、粒状組織のニッケルメッキ層を
備えていることを特徴とする電池用缶の形成材料を提供
するものである。上記Fe鋼板は炭素含有量が少ない低
炭素材である程、絞り加工性の点より好ましい。
That is, according to the present invention, a cylindrical battery can having an opening at one end is provided by DI (Drawing and Ironin).
g) a forming material used for forming by drawing,
An object of the present invention is to provide a material for forming a battery can, comprising a nickel plating layer having a granular structure on both front and back surfaces of an Fe steel plate. The lower the carbon content of the Fe steel sheet, the lower the carbon content, the more preferable in terms of drawability.

【0014】上記ニッケルメッキ層を備えたFe鋼板
は、その縦方向、横方向および斜め方向のランクホード
値rx,ry、rzの差△rが±0.15以下としている
(請求項2) また、上記縦方向、横方向および斜め方
向のランクホード値(rx,ry、rz)の平均値を1.
2以上としている(請求項3) さらに、上記Fe鋼板
とニッケルメッキ層の間に、Fe−Ni拡散層を備えて
いることが好ましい(請求項4)。
[0014] The Fe steel plate having a nickel plating layer has a longitudinal direction, transverse and diagonal directions of Rankuhodo values r x, r y, the difference between r z △ r is set to ± 0.15 or less (claim 2 Also, the average of the above-mentioned rank-horizontal values (r x , r y , r z ) in the vertical direction, the horizontal direction and the diagonal direction is 1.
(Claim 3) It is preferable that an Fe—Ni diffusion layer is provided between the Fe steel sheet and the nickel plating layer (Claim 4).

【0015】本発明は、また、請求項5で、上記請求項
1乃至請求項3のいずれか1項の形成材料を用いてDI
絞り加工で形成された電池用缶を提供している。
According to a fifth aspect of the present invention, there is provided a semiconductor device using the forming material according to any one of the first to third aspects.
We provide battery cans formed by drawing.

【0016】さらに、本発明は、請求項6で、未焼鈍冷
延鋼板の表裏両面に、ニッケルメッキを施した後、焼鈍
を行って、上記ニッケルメッキ層の針状(金属)組織を
粒状(金属)組織に変態化させると同時に、冷延鋼板の
上記メッキ層の間にFe−Ni拡散層を形成し、かつ、
Feの金属組織を粒状組織とすることを特徴とするDI
絞り加工される電池用缶の缶材料の製造方法を提供する
ものである。
Further, according to the present invention, the nickel-plated nickel-plated steel sheet is subjected to nickel plating on both the front and back surfaces of the unannealed cold-rolled steel sheet and then annealed so that the needle-like (metal) structure of the nickel-plated layer is granular ( At the same time as being transformed into a metal) structure, an Fe—Ni diffusion layer is formed between the plating layers of the cold-rolled steel sheet, and
DI characterized in that the metallic structure of Fe is a granular structure
An object of the present invention is to provide a method for producing a can material for a battery can to be drawn.

【0017】上記方法において、ニッケルメッキ層は、
2μm〜5μmの厚さで施した後、焼鈍を600℃〜9
00℃で0.5分〜2分行うことが好ましい。さらに、
上記焼鈍後に、0.5〜2.0%の調質圧延を行い、連続
焼鈍で再結晶化して生成した粒状組織を細粒化して靭性
を高めていることが好ましい。
In the above method, the nickel plating layer is
After applying a thickness of 2 μm to 5 μm, annealing is performed at 600 ° C. to 9
It is preferable to carry out at 00 ° C. for 0.5 to 2 minutes. further,
After the above-mentioned annealing, it is preferable to perform a temper rolling of 0.5 to 2.0%, and to refine the granular structure produced by recrystallization by continuous annealing to increase the toughness.

【0018】[0018]

【作用】上記未焼鈍冷延鋼板にニッケルメッキを施す
と、Fe鋼板の表裏両面に電積溶着される軟質ニッケル
メッキの金属組織は針状組織となっており、このままで
は延性が悪く、曲げ加工時に曲げ部分にクラックが入り
耐食性が悪い。これに対して、メッキ後に連続焼鈍をお
こなって針状組織を粒状組織に変態化させていることに
より、延性が向上し、加工時に曲げ部分にクラックが入
らず、耐食性を向上させることができる。
When the nickel-plated unannealed cold-rolled steel sheet is nickel-plated, the soft nickel-plated metal structure that is electrodeposited on the front and back surfaces of the Fe steel sheet has a needle-like structure. Cracks sometimes occur in the bent portion, resulting in poor corrosion resistance. On the other hand, since the needle-like structure is transformed into a granular structure by performing continuous annealing after plating, ductility is improved, cracks are not formed in a bent portion during processing, and corrosion resistance can be improved.

【0019】さらに、上記メッキ後の連続焼鈍で、鋼板
とメッキ層の間にFe−Ni拡散層が形成されると共
に、Fe金属組織が再結晶して粒状組織ができる。この
ように再結晶で金属組織が粒状組織になると、上記ラン
クホード値rが平均1.2以上で、ランクホード値rの
差である面内異方性△rを±0.15以下として、イヤ
リングの発生を大幅に低減でき、 円筒部開口端の高さを
略均一にする事が出来る。
Further, by the continuous annealing after the plating, an Fe—Ni diffusion layer is formed between the steel sheet and the plating layer, and the Fe metal structure is recrystallized to form a granular structure. As described above, when the metal structure becomes a granular structure by recrystallization, the above-mentioned rank horde value r is 1.2 or more on average, and the in-plane anisotropy Δr, which is the difference between the rank horse values r, is set to ± 0.15 or less, and Generation can be greatly reduced, and the height of the opening end of the cylindrical portion can be made substantially uniform.

【0020】[0020]

【実施例】以下、本発明を図面に示す実施例により詳細
に説明する。図1及び図2は本発明に係る形成材料であ
るニッケルメッキ鋼板から形成した電池用缶1を示し、
底壁2及び周壁3を備えた上端開口の深底円筒形状であ
る。この缶1の底壁2にプラス側接点2aを形成してお
り、底壁2と周壁3に囲繞された中空部に充填剤(図示
せず)を充填した後、 上端開口にマイナス側接点を形成
した蓋(図示せず)を被せて固着し、 電池を組み立てて
いる。尚、上記プラス側接点及びマイナス側接点は底壁
側及び開口側に取り付ける蓋のいずれの側に設けても良
い。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings. 1 and 2 show a battery can 1 formed from a nickel-plated steel sheet as a forming material according to the present invention,
It is a deep-bottom cylindrical shape having an upper end opening provided with a bottom wall 2 and a peripheral wall 3. A positive contact 2a is formed on the bottom wall 2 of the can 1, and after filling the hollow portion surrounded by the bottom wall 2 and the peripheral wall 3 with a filler (not shown), a negative contact is inserted into the upper end opening. The battery is assembled by covering and fixing the lid (not shown) formed. The positive contact and the negative contact may be provided on any side of the lid attached to the bottom wall and the opening.

【0021】上記電池用缶1を形成するためのニッケル
メッキ鋼板は図3に示す順序で製造している。即ち、第
1ステップとして、未焼鈍冷延鋼板の表裏両面に2μm
〜5μmの厚さでニッケルメッキ層を電気メッキにより
設ける。第2ステップで、ガス雰囲気中で、600℃〜
900℃で0.5分〜2.0分の間連続焼鈍を行う。尚、
上記温度及び時間は第1ステップで施すニッケルメッキ
層の厚さが薄い程、温度を低くすると共に時間を短くし
ている一方、厚さが厚くなる程、温度を高くすると共に
時間を長くしている。この焼鈍により、第1ステップで
未焼鈍冷延鋼板5の表面に電積溶着したニッケルメッキ
層の金属組織全体を図4(A)に示す針状組織より図4
(B)に示す粒状組織へと変態化させる。同時に、鋼板
5とメッキ層の間のFe−Ni拡散層を形成すると共
に、鋼板5を再結晶して金属組織を粒状とする。第3ス
テップで、調質圧延を圧延率0.5〜2.0%で行う。
The nickel-plated steel sheet for forming the battery can 1 is manufactured in the order shown in FIG. That is, as a first step, 2 μm
A nickel plating layer having a thickness of about 5 μm is provided by electroplating. In the second step, in a gas atmosphere,
Continuous annealing is performed at 900 ° C. for 0.5 to 2.0 minutes. still,
The temperature and time are set such that the thinner the nickel plating layer applied in the first step, the lower the temperature and the shorter the time, while the thicker the thickness, the higher the temperature and the longer the time. I have. By this annealing, the entire metallographic structure of the nickel plating layer electrodeposited and deposited on the surface of the unannealed cold-rolled steel sheet 5 in the first step was changed from the needle-like structure shown in FIG.
Transform to the granular structure shown in (B). At the same time, an Fe—Ni diffusion layer is formed between the steel sheet 5 and the plating layer, and the steel sheet 5 is recrystallized to make the metal structure granular. In the third step, temper rolling is performed at a rolling rate of 0.5 to 2.0%.

【0022】上記第1ステップから第3ステップで電池
用缶の形成材料10が製造され、該電池用缶の形成材料
は前記図2の断面図に示すように、鋼板からなる基板1
1の両側にFe−Ni拡散層12A,12Bと、粒状組
織を有するニッケルメッキ層13A,13Bを有する。
上記ニッケルメッキ鋼板からなる缶形成材料10を、次
に、前記図5に示すDI絞り方法により図1及び図2に
示す形状の電池用缶1として成形加工している。
In the first to third steps, a material 10 for forming a battery can is manufactured. As shown in the cross-sectional view of FIG.
1 has Fe-Ni diffusion layers 12A, 12B and nickel plating layers 13A, 13B having a granular structure on both sides.
Next, the can-forming material 10 made of the nickel-plated steel sheet is formed into a battery can 1 having the shape shown in FIGS. 1 and 2 by the DI drawing method shown in FIG.

【0023】上記DI絞り加工時において、重要なこと
は、上記第2ステップの焼鈍でニッケルメッキ層の金属
組織を図4(A)に示す針状組織より、図4(B)に示
す粒状金属組織としている点である。上記のように、ニ
ッケルメッキ層の針状組織を粒状組織とすると、ニッケ
ルメッキ層の延性が良好となり、電池用缶への加工時に
曲げ部分にクラックが発生しにくくなり、耐食性を向上
させることができる。また、基板11の金属組織を粒状
組織とすることにより、前記図7に示す圧延鋼板の縦方
向(圧延方向)X、横方向Y、斜め方向Zの各ランクホ
ード値rx,ry,rzが平均1.2以上、 かつ、これらラ
ンクホード値rの差である面内異方性△rを±0.15
以下とする事が出来る。
In the DI drawing, it is important that the metal structure of the nickel plating layer is changed from the needle-like structure shown in FIG. 4A to the granular metal structure shown in FIG. It is an organization. As described above, when the needle-shaped structure of the nickel plating layer is a granular structure, the ductility of the nickel plating layer becomes good, cracks are less likely to occur in a bent portion during processing into a battery can, and corrosion resistance can be improved. it can. Further, by making the metal structure of the substrate 11 and the granular structure, the vertical direction (rolling direction) X of the rolled steel sheet shown in FIG. 7, the horizontal direction Y, each Rankuhodo value r x in an oblique direction Z, r y, r z Is 1.2 or more on average, and the in-plane anisotropy Δr, which is the difference between these rank-hord values r, is ± 0.15.
You can do the following:

【0024】尚、上記第2ステップの連続焼鈍におい
て、高温にて長時間焼鈍を行った場合、金属組織が急激
に生長し、表層部の金属組織が粗大粒(ミックスグレー
ン)となり、内部と表層部との差が生じることがある。
そのため、上記連続焼鈍では、ニッケルメッキ層では針
状金属組織が粒状金属組織へと変態化するが、鋼板のF
eでは金属組織が生長して粗大粒とならないように、加
熱温度と加熱時間とを上記したように600℃〜900
℃の範囲で0.5〜2.0分の非常に短い時間範囲に限定
し、かつ、2μm〜5μmのニッケルメッキ層の厚さに
応じて、上記範囲内で加熱温度と加熱時間を設定してい
る。このように設定して連続焼鈍を行うと、ニッケルメ
ッキ層の針状金属組織を直径が略1μm〜5μmの粒状
組織に変態化させることができる。
In the continuous annealing in the second step, when annealing is performed at a high temperature for a long time, the metal structure grows rapidly, and the metal structure in the surface layer becomes coarse grains (mixed grains). May differ from the part.
Therefore, in the above continuous annealing, the needle-shaped metal structure is transformed into a granular metal structure in the nickel plating layer, but the F
In e, the heating temperature and the heating time are set at 600 ° C. to 900 ° C. as described above so that the metal structure does not grow and become coarse grains.
The heating temperature and the heating time are set within the above range according to the nickel plating layer thickness of 2 μm to 5 μm, limited to a very short time range of 0.5 to 2.0 minutes in the range of 0 ° C. ing. When continuous annealing is performed with such settings, the needle-shaped metal structure of the nickel plating layer can be transformed into a granular structure having a diameter of approximately 1 μm to 5 μm.

【0025】さらに、上記第2ステップの連続焼鈍後
に、第3ステップで0.5〜2.0%の調質圧延を行うこ
とにより、粒状金属組織の結晶粒は、表面側及び内部側
のいずれにおいても、JIS−G−0552に規定され
る粒度No.9程度の小さい結晶粒となるようにしてい
る。
Further, after the continuous annealing in the second step, a temper rolling of 0.5 to 2.0% is performed in the third step, so that the crystal grains of the granular metal structure can be either on the surface side or the inside side. In this case, a crystal grain having a particle size of about 0.9 specified in JIS-G-0552 is formed.

【0026】このように、上記工程で製造されたニッケ
ルメッキ鋼板10では、そのニッケルメッキ層13A,
13Bの金属組織は粒状組織となっており、しかも、基
板11の表層部と内部との粒径が略均一で、小さい粒で
あるため、縦方向X、横方向Y及び斜め方向Zの伸び、
即ち、X方向の幅変形度/X方向の板厚変形度、Y方向
の幅変形度/Y方向の板厚変形度、Z方向の幅変形度/
Z方向の板厚変形度である各ランクホード値rx,ry
zを平均1.2以上と高くでき、しかも、これらランク
ホード値rの差である面内異方性△rを±0.15以下
と0に近づける事が出来る。このように、面内異方性△
rを小さく出来ることにより、絞り加工時に円筒缶の開
口端にイヤリングの発生するのを防止でき、絞り性を良
好とすることができる。
As described above, in the nickel-plated steel sheet 10 manufactured in the above process, the nickel-plated layer 13A,
The metal structure of 13B is a granular structure, and furthermore, since the surface layer portion and the inside of the substrate 11 have a substantially uniform particle size and are small particles, the elongation in the vertical direction X, the horizontal direction Y, and the oblique direction Z,
That is, the width deformation degree in the X direction / the thickness deformation degree in the X direction, the width deformation degree in the Y direction / the thickness deformation degree in the Y direction, the width deformation degree in the Z direction /
Each is a Z direction thickness deformation degree Rankuhodo values r x, r y,
r z can be as high as 1.2 or more on average, and the in-plane anisotropy Δr, which is the difference between these rank-hord values r, can be made close to 0, ± 0.15 or less. Thus, the in-plane anisotropy △
By making r smaller, it is possible to prevent the occurrence of earring at the opening end of the cylindrical can at the time of drawing, and to improve drawability.

【0027】また、焼鈍により粒状組織に変態化したニ
ッケルメッキ層13A,13Bは延性がすぐれ、よっ
て、加工時に曲げ部分にクラックが入りにくく、耐食性
が優れていることが、下記の実験データから実証され
た。
The following experimental data demonstrate that the nickel plating layers 13A and 13B transformed into a granular structure by annealing have excellent ductility, so that cracks are less likely to be formed in a bent portion during processing and have excellent corrosion resistance. Was done.

【0028】[0028]

【実験例1】電積されたニッケルメッキ層の金属組織及
び伸びが、焼鈍するとどのように変化するかを測定し
た。尚、未焼鈍冷延鋼板にニッケルメッキを施した後に
焼鈍を行っても、ニッケルメッキ層のみの金属組織及び
機械特性を観察及び測定することが困難であるため、ニ
ッケルメッキ層のみに相当するニッケル箔を用いて焼鈍
し、その金属組織を観察するとともに、機械特性を測定
した。即ち、ニッケル箔(電積)49μm〜54μm
(縦方向250mm、横方向250mm、厚さ50μ
m)を、縦方向300mm、横方向300mm、高さ2
50mmの実験炉に入れ、水素75%、窒素25%のガ
ス雰囲気中で、加熱温度650℃、加熱時間1分で、焼
鈍を行った。
[Experimental Example 1] It was measured how the metallographic structure and the elongation of the deposited nickel plating layer were changed by annealing. Incidentally, even if the unannealed cold-rolled steel sheet is annealed after being subjected to nickel plating, it is difficult to observe and measure the metallographic structure and mechanical properties of only the nickel plated layer. Annealing was performed using the foil, the metal structure thereof was observed, and mechanical properties were measured. That is, nickel foil (electrical deposition) 49 μm to 54 μm
(Vertical 250mm, horizontal 250mm, thickness 50μ
m) is 300 mm in the vertical direction, 300 mm in the horizontal direction, and height 2
The sample was placed in a 50 mm experimental furnace and annealed in a gas atmosphere of 75% hydrogen and 25% nitrogen at a heating temperature of 650 ° C. for a heating time of 1 minute.

【0029】上記実験結果は下記の表1に示す通り、焼
鈍により、引張力(T.S)は低く、伸び(EL.)は大
きくなり、金属組織は粒状組織となっていた。
As shown in Table 1 below, the results of the above experiments show that the annealing reduced the tensile force (TS), increased the elongation (EL) and increased the metal structure to a granular structure.

【0030】[0030]

【表1】 T.S(kgf/mm) EL.(%) 組織 焼鈍前 55.6 7 針状金属組織 焼鈍後 30.9 14 粒状金属組織(1〜5μm) [Table 1] TS (kgf / mm) EL. (%) Before structure annealing 55.6 7 After needle-shaped metal structure annealing 30.9 14 Granular metal structure (1-5 μm)

【0031】[0031]

【実験例2】上記実施例のニッケルメッキ鋼板を製造し
て、その引張力、伸び、ニッケルメッキ層の金属組織、
及び曲げ面の耐食性テストをJIS規格(JIS−Z−
2371)に準ずる塩水噴霧テストで測定した。未焼鈍
冷延鋼板の表裏両面に3.5μmの厚さでニッケルメッ
キを施した後、650℃で1分間連続焼鈍してニッケル
メッキ鋼板を製造した。上記ニッケルメッキ鋼板の引張
力、伸び、表面硬度(HV)、ニッケルメッキ層の金属
組織は下記の表2の示す通りであった。また、上記ニッ
ケルメッキ鋼板を90度(R1)に曲折し、該曲折部の
曲げ面に塩水を噴霧して上記JIS規格に基づき、限界
時間を測定した。
[Experimental example 2] The nickel-plated steel sheet of the above embodiment was manufactured, and its tensile force, elongation, metal structure of nickel-plated layer,
And the corrosion resistance test of the bending surface according to JIS standard (JIS-Z-
2371). A nickel-plated steel sheet was manufactured by applying nickel plating to both sides of the unannealed cold-rolled steel sheet at a thickness of 3.5 μm and continuously annealing at 650 ° C. for 1 minute. The tensile strength, elongation, surface hardness (HV), and metal structure of the nickel plating layer of the nickel-plated steel sheet were as shown in Table 2 below. Further, the nickel-plated steel sheet was bent at 90 degrees (R1), salt water was sprayed on the bent surface of the bent portion, and the limit time was measured based on the JIS standard.

【0032】[0032]

【表2】 T.S EL. HV 組織 塩水噴霧時間 r △r 焼鈍前 76 3 200 針状 1時間 1.0 +0.2焼鈍後 33 39 105 粒状 8時間 1.3 +0.005 *HV(荷重1kg) *r ランクホード値 *△r 面内異方性[Table 2] T.S. HV structure Salt spraying time r △ r Before annealing 76 3 200 Needle-like 1 hour 1.0 + After 0.233 annealing 33 39 105 Granular 8 hours 1.3 +0.005 * HV (load 1 kg) * r Rankhord value * △ r In-plane anisotropy

【0033】上記表2に示すように、ニッケルメッキ層
を焼鈍して粒状組織とすることにより、焼鈍前と比較し
て、即ち、焼鈍しないものと比較して、限界時間を8倍
とすることができ、高耐食性を備えていることが確認さ
れた。
As shown in Table 2 above, by forming the granular structure by annealing the nickel plating layer, the limit time can be increased eight times as compared with that before annealing, that is, as compared with the case without annealing. It was confirmed that it had high corrosion resistance.

【0034】また、第2ステップの連続焼鈍に代えてバ
ッチ焼鈍を用いても良いが、ニッケルメッキを施した鋼
板がコイル状である場合は、連続焼鈍の方が好ましい。
さらに、上記構造のニッケルメッキ鋼板からDI絞り加
工で電池用缶を成形した後、その内周面に導電性材をコ
ーティングして、電池特性を高めることが好ましい。
Further, batch annealing may be used instead of continuous annealing in the second step. However, when the nickel-plated steel sheet has a coil shape, continuous annealing is preferable.
Further, it is preferable to form a battery can by DI drawing from the nickel-plated steel plate having the above structure, and then coat a conductive material on an inner peripheral surface thereof to improve battery characteristics.

【0035】尚、本発明は上記実施例に限定されず、第
3ステップの調質圧延工程の後、絞り加工で外面側とな
る面に硬質ニッケルメッキあるいは光沢ニッケルメッキ
を施して、耐食性及び外観性をさらに向上させてもよ
い。
The present invention is not limited to the above embodiment. After the temper rolling in the third step, the outer surface side is subjected to hard nickel plating or bright nickel plating by drawing to obtain corrosion resistance and appearance. The property may be further improved.

【0036】[0036]

【発明の効果】以上の説明より明らかなように、本発明
では、ニッケルメッキ鋼板をDI絞り加工で上端開口の
円筒形状の電池用缶とする形成材料において、表裏両面
のニッケルメッキ層の金属組織を一定の粒状組織として
いるため、延性を高めて加工時に曲げ部分におけるクラ
ックの発生を低減することができる。このように、クラ
ックの発生を低減することにより耐食性を高めることが
できる。
As is apparent from the above description, in the present invention, the metallographic structure of the nickel plating layers on both the front and back surfaces of a nickel-plated steel sheet formed by DI drawing processing to form a cylindrical battery can having an upper end opening. Has a constant granular structure, so that the ductility can be increased and the occurrence of cracks in the bent portion during processing can be reduced. Thus, the corrosion resistance can be improved by reducing the occurrence of cracks.

【0037】さらに、メッキ後の連続焼鈍により、鋼板
の金属組織が粒状組織となり、よって、縦方向、横方向
及び斜め方向の伸びを所要値以上の大きなものとするこ
とができると共に、これら各方向への伸びの差を一定値
以下にしているため、DI絞り加工時に加工性が良好と
なるとともに、開口端縁にイヤリングが発生するのを防
止できる。よって、材料の歩留まりを良くして、コスト
ダウンを図ることが出来る。
Further, by continuous annealing after plating, the metallographic structure of the steel sheet becomes a granular structure, so that the elongation in the longitudinal, lateral and oblique directions can be made larger than required values and in each of these directions. Since the difference in elongation is less than or equal to a certain value, workability during DI drawing is improved and earrings can be prevented from occurring at the opening edge. Therefore, the yield of the material can be improved, and the cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係わる電池用缶の正面図である。FIG. 1 is a front view of a battery can according to the present invention.

【図2】 図1の一部拡大断面図である。FIG. 2 is a partially enlarged sectional view of FIG.

【図3】 本発明に係わる電池用缶の形成材料の製造方
法を示すフローチャートである。
FIG. 3 is a flowchart showing a method for producing a material for forming a battery can according to the present invention.

【図4】 (A)は焼鈍前のニッケルメッキ層の針状組
織を示す概略断面図、(B)は焼鈍後のニッケルメッキ
層の粒状組織を示す概略断面図である。
FIG. 4A is a schematic sectional view showing a needle-like structure of a nickel plating layer before annealing, and FIG. 4B is a schematic sectional view showing a granular structure of a nickel plating layer after annealing.

【図5】 DI絞り方法による電池用缶の製造方法を示
す図面である。
FIG. 5 is a view showing a method for manufacturing a battery can by a DI drawing method.

【図6】 DI絞り方法により缶を製造した場合の問題
点を示す斜視図である。
FIG. 6 is a perspective view showing a problem when a can is manufactured by the DI drawing method.

【図7】 電池用缶の材料における伸び方向を示す図面
である。
FIG. 7 is a drawing showing an elongation direction in a material for a battery can.

【符号の説明】[Explanation of symbols]

1 電池用缶 2 底壁 3 周壁 11 基板 12A,12B FeーNi拡散層 13A,13B ニッケルメッキ層 10 電池用缶の形成材料 DESCRIPTION OF SYMBOLS 1 Battery can 2 Bottom wall 3 Perimeter wall 11 Substrate 12A, 12B Fe-Ni diffusion layer 13A, 13B Nickel plating layer 10 Material for forming battery can

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成10年3月9日[Submission date] March 9, 1998

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【書類名】 明細書[Document Name] Statement

【発明の名称】 電池用缶の形成材料の製造方法および
該形成材料からなる電池缶
Patent application title: Method for producing a material for forming a battery can and a battery can made from the material

【特許請求の範囲】[Claims]

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電池用缶の形成材料の
製造方法、 および電池缶に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a material for forming a battery can and a battery can.

【0002】[0002]

【従来の技術】近時、一端閉鎖面と、他端開口部を有す
る円筒形状の電池用缶を製造する方法として、図5に示
すような、DI絞り加工方法が近時開発されている。こ
のDI絞り加工方法はシート鋼板Sから基材Mを打ち抜
く際に、底壁M−1と周壁M−2とを有する浅底円筒形
状のカップとして絞りながら打ち抜き、このカップを次
の一工程の深絞り加工で所要の深さと径を有する円筒形
状に加工するものである。
2. Description of the Related Art Recently, as a method for manufacturing a cylindrical battery can having one end closed surface and the other end opening, a DI drawing method as shown in FIG. 5 has recently been developed. In the DI drawing method, when the base material M is punched from the sheet steel sheet S, the punching is performed while drawing as a shallow cylindrical cup having a bottom wall M-1 and a peripheral wall M-2. This is a process of forming into a cylindrical shape having a required depth and diameter by deep drawing.

【0003】上記DI絞り加工を用いる場合、カップを
深絞りする工程で、周壁のみを引き伸ばし加工するた
め、例えば、底壁の板厚0.4mmで、 周壁の板厚を0.
15mmまで絞ることが可能で、板厚に対するしごき率
(減少率)は従来の2倍強とすることが出来る。このよう
に、周壁を薄肉とすると中空部の容積が大となり、充填
剤が増加して電池特性を向上させることが出来る。ま
た、加工工程が缶形成材料となるシート鋼板からカップ
を打ち抜く一工程のカッピング工程と、絞り加工するD
I工程の一工程との合計二工程のみで良いため、加工工
程の大幅な減少、それに伴う製造コストの低減を図るこ
とが出来る。
When the above-mentioned DI drawing is used, only the peripheral wall is stretched in the step of deep drawing the cup. For example, when the thickness of the bottom wall is 0.4 mm and the thickness of the peripheral wall is 0.4 mm.
It can be squeezed down to 15mm, and the ironing ratio to the plate thickness
The (decrease rate) can be slightly more than twice the conventional value. As described above, when the peripheral wall is made thin, the volume of the hollow portion becomes large, and the amount of the filler is increased, so that the battery characteristics can be improved. In addition, a processing step includes a cupping step of punching a cup from a sheet steel sheet as a can forming material, and a D step of drawing.
Since only two steps, one step of the I step, are required, the number of processing steps can be significantly reduced and the manufacturing cost can be reduced accordingly.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記D
I絞り加工方法を用いる場合、カッピング工程及びDI
工程において、缶形成材の縦方向、横方向及び斜め方向
の伸び率が一定でない場合、及び板厚が均一でない場合
には、図6に示すように、円筒部開口端に5mm程度の
大きな高低差が生じる所謂イヤリング(耳高低差)が発
生しやすい。このイヤリングはカッピング工程で発生
し、DI工程でさらに助長される。
However, the above D
When using the I drawing method, the cupping process and DI
In the process, when the elongation percentage of the can forming material in the vertical, horizontal and oblique directions is not constant, and when the plate thickness is not uniform, as shown in FIG. A so-called earring (ear height difference) that causes a difference easily occurs. This earring occurs during the cupping process and is further promoted during the DI process.

【0005】具体的には、図7に示す鋼板において、圧
延方向(縦方向X)に一様な伸び限度以下のひずみを与
えた時、板幅をWx0,Wx、板厚をtx0,txとすると、上
記圧延方向Xの力に対する変形の異方性(ランクホード
値rx)は下記の式(1)により表される。
Specifically, in the steel sheet shown in FIG. 7, when a strain equal to or less than the elongation limit is applied uniformly in the rolling direction (longitudinal direction X), the sheet width is set to W x0 , W x , and the sheet thickness is set to t x0. , t x , the anisotropy of deformation (rankhorse value r x ) with respect to the force in the rolling direction X is represented by the following equation (1).

【0006】 rx=ln(Wx/Wx0)/ln(tx/txo)…(1)R x = ln (W x / W x0 ) / ln (t x / t xo ) (1)

【0007】横方向Yの力や縦方向Xと45度の角度を
なす斜め方向Zの力についてのランクホード値rx,ry
も上記式(1)と同様に表され、縦方向X、横方向Y及
び斜め方向Zの間での異方性(面内異方性△r)は下記
の式(2)で表される。 △r=(rx+ry)/2−rz…(2)
[0007] Rankuhodo values for force in an oblique direction Z at an angle of lateral Y force or longitudinal direction X and 45 degrees r x, r y
Is also expressed in the same manner as the above formula (1), and the anisotropy (in-plane anisotropy Δr) between the vertical direction X, the horizontal direction Y and the oblique direction Z is expressed by the following formula (2). . △ r = (r x + r y) / 2-r z ... (2)

【0008】本出願人の実験より、上記ランクホード値
rと面内異方性△rによりイヤリング発生率が異なるこ
とを見いだした。即ち、上記各ランクホード値rは所要
値以上でなければイヤリングが発生しやすく、かつ、上
記△rは(+)でも(−)でも、その絶対値が大きくな
ればイヤリング発生率が高くなり、円筒部開口端に90
度間隔をあけて突出した山部が発生し所謂4つ耳とな
る。絶対値が(+)側になるとX方向に対して0度と9
0度に4つ耳が発生し、絶対値が(−)側になるとX方
向に対して45度に4つ耳が発生し、絶対値が0に近づ
く程、6つ耳となりイヤリングの発生は押さえられてい
る。
From the experiments conducted by the present applicant, it has been found that the earring occurrence rate differs depending on the above-mentioned rank horde value r and the in-plane anisotropy Δr. That is, if the above-mentioned rank horde value r is not more than the required value, earring is likely to occur. Also, if the absolute value of △ r is (+) or (−), the earring occurrence rate increases as the absolute value increases, 90 at the open end
Crests protruding at an interval are generated, so-called four ears are formed. When the absolute value is on the (+) side, 0 degree and 9 with respect to the X direction
Four ears are generated at 0 degrees, and when the absolute value is on the (-) side, four ears are generated at 45 degrees with respect to the X direction. As the absolute value approaches 0, six ears are generated and earrings are generated. Being held down.

【0009】上記イヤリングが発生した際、上記図6に
示すように、イヤリングの最高位置がA点で、最低位置
がB点であり、必要な電池用缶とするための位置がC点
である場合、最低位置のB点でカットしなければならな
いが、B点はC点より下方で電池用缶の長さとしては不
足することになる。上記した所要長さより短い部分が生
じないようにするため、円筒部の長さが長くなるように
絞り、最低位置のB点をC点より上げるようにすると、
今度はC点と最高位置のA点との差が大きくなり、材料
が無駄になる欠点がある。
When the above-mentioned earring occurs, as shown in FIG. 6, the highest position of the earring is point A, the lowest position is point B, and the position for obtaining the necessary battery can is point C. In this case, it is necessary to cut at the lowest point B, but the point B is below the point C and the length of the battery can is insufficient. In order to prevent a portion shorter than the required length from being generated, the cylindrical portion is squeezed so as to have a longer length, and the lowest point B is raised above the point C.
This time, there is a disadvantage that the difference between the point C and the point A at the highest position becomes large, and the material is wasted.

【0010】上記した問題はイヤリングの発生を防止で
きれば解消できるが、 イヤリング発生防止のためには、
缶形成材料の長さ方向(圧延方向)である縦方向、幅方
向の横方向及び斜め方向の各ランクホード値rを一定以
上で、これらランクホード値の差である面内異方性△r
を0に近づけることが必要であるが、極めて困難であっ
た。
[0010] The above problem can be solved by preventing the occurrence of earrings.
The longitudinal direction (rolling direction) of the can forming material, the longitudinal direction, the lateral direction in the width direction, and the oblique direction are each equal to or greater than a certain rank hod value r.
Is required to approach 0, but it was extremely difficult.

【0011】また、DI絞り加工で電池用缶に形成する
場合、材料の延性が十分でないと、底壁と周壁との曲げ
部分において、クラックが発生しやすく、クラックが生
じると耐食性が悪化する問題があった。
In addition, when the battery can is formed by DI drawing, if the material is not sufficiently ductile, cracks are likely to occur in the bent portion between the bottom wall and the peripheral wall, and if cracks occur, the corrosion resistance deteriorates. was there.

【0012】本発明は上記した問題に鑑みてなされたも
ので、電池用缶の材料となるメッキ鋼板の延性を良好と
してクラック発生の防止、それに伴う耐食性の向上を図
ると共に、缶材料となるメッキ鋼板の縦方向、横方向及
び斜め方向のランクホード値rを所要以上とすると共
に、ランクホード値の差△rを0に近づけて、DI絞り
加工時に、 開口部端面でのイヤリングが発生しないよう
にすることを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and aims to improve the ductility of a plated steel sheet used as a material for a battery can, thereby preventing cracks and improving the corrosion resistance. Rankhord values r in the longitudinal, lateral, and diagonal directions of the steel sheet are set to be greater than required, and the difference Δr between the rankhord values is made close to 0 to prevent the occurrence of earring at the opening end face during DI drawing. It is intended to be.

【0013】[0013]

【課題を解決するための手段】即ち、本発明は、請求項
1で、冷延鋼板の表裏両面にニッケルメッキを施した
後、焼鈍を行って、上記ニッケルメッキ層の針状組織を
粒状組織に変態化させると同時に、冷延鋼板とニッケル
メッキ層との間にFe−Ni拡散層を形成し、かつ、こ
の形成されるニッケルメッキ鋼板の縦方向、横方向およ
び斜め方向のランクホード値rx,ry、rzの差△rを
±0.15以下としていることを特徴とする電池用缶の
形成材料の製造方法を提供している。
That is, according to the first aspect of the present invention, the nickel-plated cold-rolled steel sheet is subjected to nickel plating on both the front and back surfaces and then annealed to change the needle-like structure of the nickel-plated layer to a granular structure. simultaneously with the transformation of the form a Fe-Ni diffusion layer between the cold rolled steel sheet and the nickel plating layer, and the vertical direction of the nickel-plated steel plate to be this formation, lateral and oblique directions Rankuhodo value r x , R y , r z, wherein the difference Δr is ± 0.15 or less.

【0014】また、請求項2で、冷延鋼板の表裏両面に
ニッケルメッキを施した後、焼鈍を行って、上記ニッケ
ルメッキ層の針状組織を粒状組織に変態化させると同時
に、冷延鋼板とニッケルメッキ層との間にFe−Ni拡
散層を形成し、かつ、この形成されるニッケルメッキ鋼
板の縦方向、横方向および斜め方向のランクホード値
(rx,ry、rz)の平均値を1.2以上としているこ
とを特徴とする電池缶の形成材料の製造方法を提供して
いる。
According to the second aspect of the present invention, both the front and back surfaces of the cold-rolled steel sheet are nickel-plated and then annealed to transform the needle-like structure of the nickel-plated layer into a granular structure. and forming a Fe-Ni diffusion layer between the nickel plating layer, and the vertical direction of the nickel-plated steel plate to be this formation, lateral and oblique directions of Rankuhodo values (r x, r y, r z) average A method for producing a material for forming a battery can, characterized in that the value is 1.2 or more.

【0015】さらに、請求項3で、冷延鋼板の表裏両面
にニッケルメッキを施した後、焼鈍を行って、上記ニッ
ケルメッキ層の針状組織を粒状組織に変態化させると同
時に、冷延鋼板とニッケルメッキ層との間にFe−Ni
拡散層を形成し、かつ、この形成されるニッケルメッキ
鋼板の縦方向、横方向および斜め方向のランクホード値
x,ry、rzの差△rを±0.15以下とし、かつ、
上記ランクホード値(rx,ry、rz)の平均値を1.
2以上としていることを特徴とする電池缶の形成材料の
製造方法を提供している。
Further, the cold-rolled steel sheet according to claim 3 is provided with nickel plating on both the front and back surfaces of the cold-rolled steel sheet, and then annealing to transform the needle-like structure of the nickel-plated layer into a granular structure. Between the nickel plating layer and Fe-Ni
The diffusion layer is formed, and this longitudinal nickel-plated steel plate formed, lateral and oblique directions of Rankuhodo values r x, r y, and the difference △ r of r z ± 0.15 or less,
The Rankuhodo values (r x, r y, r z) the average value of 1.
A method for producing a material for forming a battery can, characterized in that the number is two or more.

【0016】上記冷延鋼板として未焼鈍冷延鋼板を用い
ることが好ましい(請求項4)。上記方法において、ニ
ッケルメッキ層は、2μm〜5μmの厚さで施した後、
焼鈍を600℃〜900℃で0.5分〜2分行うことが
好ましい。さらに、上記焼鈍後に、0.5〜2.0%の調
質圧延を行い、連続焼鈍で再結晶化して生成した粒状組
織を細粒化して靭性を高めていることが好ましい。
It is preferable to use an unannealed cold-rolled steel sheet as the cold-rolled steel sheet. In the above method, the nickel plating layer is applied with a thickness of 2 μm to 5 μm,
Annealing is preferably performed at 600 to 900 ° C. for 0.5 to 2 minutes. Furthermore, after the above-mentioned annealing, it is preferable to perform a temper rolling of 0.5 to 2.0%, and to refine the granular structure formed by recrystallization by continuous annealing to increase the toughness.

【0017】さらに、本発明は、請求項5で、請求項1
乃至請求項4のいずれか1項に記載の方法で製造された
電池用缶の形成材料を絞り加工して形成されたもので、
一端開口の円筒状形状で、周壁の板厚が底壁の板厚より
も薄いことを特徴とする電池缶を提供している。
Further, the present invention relates to claim 5 and claim 1.
It is formed by drawing a forming material of a battery can manufactured by the method according to any one of claims 4 to 4,
There is provided a battery can having a cylindrical shape with one end opened, wherein the thickness of the peripheral wall is smaller than the thickness of the bottom wall.

【0018】[0018]

【作用】上記未焼鈍冷延鋼板にニッケルメッキを施す
と、Fe鋼板の表裏両面に電積溶着される軟質ニッケル
メッキの金属組織は針状組織となっており、このままで
は延性が悪く、曲げ加工時に曲げ部分にクラックが入り
耐食性が悪い。これに対して、メッキ後に連続焼鈍をお
こなって針状組織を粒状組織に変態化させていることに
より、延性が向上し、加工時に曲げ部分にクラックが入
らず、耐食性を向上させることができる。
When the nickel-plated unannealed cold-rolled steel sheet is nickel-plated, the soft nickel-plated metal structure that is electrodeposited on the front and back surfaces of the Fe steel sheet has a needle-like structure. Cracks sometimes occur in the bent portion, resulting in poor corrosion resistance. On the other hand, since the needle-like structure is transformed into a granular structure by performing continuous annealing after plating, ductility is improved, cracks are not formed in a bent portion during processing, and corrosion resistance can be improved.

【0019】さらに、上記メッキ後の連続焼鈍で、鋼板
とメッキ層の間にFe−Ni拡散層が形成されると共
に、Fe金属組織が再結晶して粒状組織ができる。この
ように再結晶で金属組織が粒状組織になると、上記ラン
クホード値rが平均1.2以上で、ランクホード値rの
差である面内異方性△rを±0.15以下として、イヤ
リングの発生を大幅に低減でき、 円筒部開口端の高さを
略均一にする事が出来る。
Further, by the continuous annealing after the plating, an Fe—Ni diffusion layer is formed between the steel sheet and the plating layer, and the Fe metal structure is recrystallized to form a granular structure. As described above, when the metal structure becomes a granular structure by recrystallization, the above-mentioned rank horde value r is 1.2 or more on average, and the in-plane anisotropy Δr, which is the difference between the rank horse values r, is set to ± 0.15 or less, and Generation can be greatly reduced, and the height of the opening end of the cylindrical portion can be made substantially uniform.

【0020】[0020]

【実施例】以下、本発明を図面に示す実施例により詳細
に説明する。図1及び図2は本発明に係る形成材料であ
るニッケルメッキ鋼板から形成した電池用缶1を示し、
底壁2及び周壁3を備えた上端開口の深底円筒形状であ
る。この缶1の底壁2にプラス側接点2aを形成してお
り、底壁2と周壁3に囲繞された中空部に充填剤(図示
せず)を充填した後、 上端開口にマイナス側接点を形成
した蓋(図示せず)を被せて固着し、 電池を組み立てて
いる。尚、上記プラス側接点及びマイナス側接点は底壁
側及び開口側に取り付ける蓋のいずれの側に設けても良
い。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings. 1 and 2 show a battery can 1 formed from a nickel-plated steel sheet as a forming material according to the present invention,
It is a deep-bottom cylindrical shape having an upper end opening provided with a bottom wall 2 and a peripheral wall 3. A positive contact 2a is formed on the bottom wall 2 of the can 1, and after filling the hollow portion surrounded by the bottom wall 2 and the peripheral wall 3 with a filler (not shown), a negative contact is inserted into the upper end opening. The battery is assembled by covering and fixing the lid (not shown) formed. The positive contact and the negative contact may be provided on any side of the lid attached to the bottom wall and the opening.

【0021】上記電池用缶1を形成するためのニッケル
メッキ鋼板は図3に示す順序で製造している。即ち、第
1ステップとして、未焼鈍冷延鋼板の表裏両面に2μm
〜5μmの厚さでニッケルメッキ層を電気メッキにより
設ける。第2ステップで、ガス雰囲気中で、600℃〜
900℃で0.5分〜2.0分の間連続焼鈍を行う。尚、
上記温度及び時間は第1ステップで施すニッケルメッキ
層の厚さが薄い程、温度を低くすると共に時間を短くし
ている一方、厚さが厚くなる程、温度を高くすると共に
時間を長くしている。この焼鈍により、第1ステップで
未焼鈍冷延鋼板5の表面に電積溶着したニッケルメッキ
層の金属組織全体を図4(A)に示す針状組織より図4
(B)に示す粒状組織へと変態化させる。同時に、鋼板
5とメッキ層の間のFe−Ni拡散層を形成すると共
に、鋼板5を再結晶して金属組織を粒状とする。第3ス
テップで、調質圧延を圧延率0.5〜2.0%で行う。
The nickel-plated steel sheet for forming the battery can 1 is manufactured in the order shown in FIG. That is, as a first step, 2 μm
A nickel plating layer having a thickness of about 5 μm is provided by electroplating. In the second step, in a gas atmosphere,
Continuous annealing is performed at 900 ° C. for 0.5 to 2.0 minutes. still,
The temperature and time are set such that the thinner the nickel plating layer applied in the first step, the lower the temperature and the shorter the time, while the thicker the thickness, the higher the temperature and the longer the time. I have. By this annealing, the entire metallographic structure of the nickel plating layer electrodeposited and deposited on the surface of the unannealed cold-rolled steel sheet 5 in the first step was changed from the needle-like structure shown in FIG.
Transform to the granular structure shown in (B). At the same time, an Fe—Ni diffusion layer is formed between the steel sheet 5 and the plating layer, and the steel sheet 5 is recrystallized to make the metal structure granular. In the third step, temper rolling is performed at a rolling rate of 0.5 to 2.0%.

【0022】上記第1ステップから第3ステップで電池
用缶の形成材料10が製造され、該電池用缶の形成材料
は前記図2の断面図に示すように、鋼板からなる基板1
1の両側にFe−Ni拡散層12A,12Bと、粒状組
織を有するニッケルメッキ層13A,13Bを有する。
上記ニッケルメッキ鋼板からなる缶形成材料10を、次
に、前記図5に示すDI絞り方法により図1及び図2に
示す形状の電池用缶1として成形加工している。
In the first to third steps, a material 10 for forming a battery can is manufactured. As shown in the cross-sectional view of FIG.
1 has Fe-Ni diffusion layers 12A, 12B and nickel plating layers 13A, 13B having a granular structure on both sides.
Next, the can-forming material 10 made of the nickel-plated steel sheet is formed into a battery can 1 having the shape shown in FIGS. 1 and 2 by the DI drawing method shown in FIG.

【0023】上記DI絞り加工時において、重要なこと
は、上記第2ステップの焼鈍でニッケルメッキ層の金属
組織を図4(A)に示す針状組織より、図4(B)に示
す粒状金属組織としている点である。上記のように、ニ
ッケルメッキ層の針状組織を粒状組織とすると、ニッケ
ルメッキ層の延性が良好となり、電池用缶への加工時に
曲げ部分にクラックが発生しにくくなり、耐食性を向上
させることができる。また、基板11の金属組織を粒状
組織とすることにより、前記図7に示す圧延鋼板の縦方
向(圧延方向)X、横方向Y、斜め方向Zの各ランクホ
ード値rx,ry,rzが平均1.2以上、 かつ、これらラ
ンクホード値rの差である面内異方性△rを±0.15
以下とする事が出来る。
In the DI drawing, it is important that the metal structure of the nickel plating layer is changed from the needle-like structure shown in FIG. 4A to the granular metal structure shown in FIG. It is an organization. As described above, when the needle-shaped structure of the nickel plating layer is a granular structure, the ductility of the nickel plating layer becomes good, cracks are less likely to occur in a bent portion during processing into a battery can, and corrosion resistance can be improved. it can. Further, by making the metal structure of the substrate 11 and the granular structure, the vertical direction (rolling direction) X of the rolled steel sheet shown in FIG. 7, the horizontal direction Y, each Rankuhodo value r x in an oblique direction Z, r y, r z Is 1.2 or more on average, and the in-plane anisotropy Δr, which is the difference between these rank-hord values r, is ± 0.15.
You can do the following:

【0024】尚、上記第2ステップの連続焼鈍におい
て、高温にて長時間焼鈍を行った場合、金属組織が急激
に生長し、表層部の金属組織が粗大粒(ミックスグレー
ン)となり、内部と表層部との差が生じることがある。
そのため、上記連続焼鈍では、ニッケルメッキ層では針
状金属組織が粒状金属組織へと変態化するが、鋼板のF
eでは金属組織が生長して粗大粒とならないように、加
熱温度と加熱時間とを上記したように600℃〜900
℃の範囲で0.5〜2.0分の非常に短い時間範囲に限定
し、かつ、2μm〜5μmのニッケルメッキ層の厚さに
応じて、上記範囲内で加熱温度と加熱時間を設定してい
る。このように設定して連続焼鈍を行うと、ニッケルメ
ッキ層の針状金属組織を直径が略1μm〜5μmの粒状
組織に変態化させることができる。
In the continuous annealing in the second step, when annealing is performed at a high temperature for a long time, the metal structure grows rapidly, and the metal structure in the surface layer becomes coarse grains (mixed grains). May differ from the part.
Therefore, in the above continuous annealing, the needle-shaped metal structure is transformed into a granular metal structure in the nickel plating layer, but the F
In e, the heating temperature and the heating time are set at 600 ° C. to 900 ° C. as described above so that the metal structure does not grow and become coarse grains.
The heating temperature and the heating time are set within the above range according to the nickel plating layer thickness of 2 μm to 5 μm, limited to a very short time range of 0.5 to 2.0 minutes in the range of 0 ° C. ing. When continuous annealing is performed with such settings, the needle-shaped metal structure of the nickel plating layer can be transformed into a granular structure having a diameter of approximately 1 μm to 5 μm.

【0025】さらに、上記第2ステップの連続焼鈍後
に、第3ステップで0.5〜2.0%の調質圧延を行うこ
とにより、粒状金属組織の結晶粒は、表面側及び内部側
のいずれにおいても、JIS−G−0552に規定され
る粒度No.9程度の小さい結晶粒となるようにしてい
る。
Further, after the continuous annealing in the second step, a temper rolling of 0.5 to 2.0% is performed in the third step, so that the crystal grains of the granular metal structure can be either on the surface side or the inside side. In this case, a crystal grain having a particle size of about 0.9 specified in JIS-G-0552 is formed.

【0026】このように、上記工程で製造されたニッケ
ルメッキ鋼板10では、そのニッケルメッキ層13A,
13Bの金属組織は粒状組織となっており、しかも、基
板11の表層部と内部との粒径が略均一で、小さい粒で
あるため、縦方向X、横方向Y及び斜め方向Zの伸び、
即ち、X方向の幅変形度/X方向の板厚変形度、Y方向
の幅変形度/Y方向の板厚変形度、Z方向の幅変形度/
Z方向の板厚変形度である各ランクホード値rx,ry
zを平均1.2以上と高くでき、しかも、これらランク
ホード値rの差である面内異方性△rを±0.15以下
と0に近づける事が出来る。このように、面内異方性△
rを小さく出来ることにより、絞り加工時に円筒缶の開
口端にイヤリングの発生するのを防止でき、絞り性を良
好とすることができる。
As described above, in the nickel-plated steel sheet 10 manufactured in the above process, the nickel-plated layer 13A,
The metal structure of 13B is a granular structure, and furthermore, since the surface layer portion and the inside of the substrate 11 have a substantially uniform particle size and are small particles, the elongation in the vertical direction X, the horizontal direction Y, and the oblique direction Z,
That is, the width deformation degree in the X direction / the thickness deformation degree in the X direction, the width deformation degree in the Y direction / the thickness deformation degree in the Y direction, the width deformation degree in the Z direction /
Each is a Z direction thickness deformation degree Rankuhodo values r x, r y,
r z can be as high as 1.2 or more on average, and the in-plane anisotropy Δr, which is the difference between these rank-hord values r, can be made close to 0, ± 0.15 or less. Thus, the in-plane anisotropy △
By making r smaller, it is possible to prevent the occurrence of earring at the opening end of the cylindrical can at the time of drawing, and to improve drawability.

【0027】また、焼鈍により粒状組織に変態化したニ
ッケルメッキ層13A,13Bは延性がすぐれ、よっ
て、加工時に曲げ部分にクラックが入りにくく、耐食性
が優れていることが、下記の実験データから実証され
た。
The following experimental data demonstrate that the nickel plating layers 13A and 13B transformed into a granular structure by annealing have excellent ductility, so that cracks are less likely to be formed in a bent portion during processing and have excellent corrosion resistance. Was done.

【0028】[0028]

【実験例1】電積されたニッケルメッキ層の金属組織及
び伸びが、焼鈍するとどのように変化するかを測定し
た。尚、未焼鈍冷延鋼板にニッケルメッキを施した後に
焼鈍を行っても、ニッケルメッキ層のみの金属組織及び
機械特性を観察及び測定することが困難であるため、ニ
ッケルメッキ層のみに相当するニッケル箔を用いて焼鈍
し、その金属組織を観察するとともに、機械特性を測定
した。即ち、ニッケル箔(電積)49μm〜54μm
(縦方向250mm、横方向250mm、厚さ50μ
m)を、縦方向300mm、横方向300mm、高さ2
50mmの実験炉に入れ、水素75%、窒素25%のガ
ス雰囲気中で、加熱温度650℃、加熱時間1分で、焼
鈍を行った。
[Experimental Example 1] It was measured how the metallographic structure and the elongation of the deposited nickel plating layer were changed by annealing. Incidentally, even if the unannealed cold-rolled steel sheet is annealed after being subjected to nickel plating, it is difficult to observe and measure the metallographic structure and mechanical properties of only the nickel plated layer. Annealing was performed using the foil, the metal structure thereof was observed, and mechanical properties were measured. That is, nickel foil (electrical deposition) 49 μm to 54 μm
(Vertical 250mm, horizontal 250mm, thickness 50μ
m) is 300 mm in the vertical direction, 300 mm in the horizontal direction, and height 2
The sample was placed in a 50 mm experimental furnace and annealed in a gas atmosphere of 75% hydrogen and 25% nitrogen at a heating temperature of 650 ° C. for a heating time of 1 minute.

【0029】上記実験結果は下記の表1に示す通り、焼
鈍により、引張力(T.S)は低く、伸び(EL.)は大
きくなり、金属組織は粒状組織となっていた。
As shown in Table 1 below, the results of the above experiments show that the annealing reduced the tensile force (TS), increased the elongation (EL) and increased the metal structure to a granular structure.

【0030】[0030]

【表1】 T.S(kgf/mm) EL.(%) 組織 焼鈍前 55.6 7 針状金属組織 焼鈍後 30.9 14 粒状金属組織(1〜5μm) [Table 1] TS (kgf / mm) EL. (%) Before structure annealing 55.6 7 After needle-shaped metal structure annealing 30.9 14 Granular metal structure (1-5 μm)

【0031】[0031]

【実験例2】上記実施例のニッケルメッキ鋼板を製造し
て、その引張力、伸び、ニッケルメッキ層の金属組織、
及び曲げ面の耐食性テストをJIS規格(JIS−Z−
2371)に準ずる塩水噴霧テストで測定した。未焼鈍
冷延鋼板の表裏両面に3.5μmの厚さでニッケルメッ
キを施した後、650℃で1分間連続焼鈍してニッケル
メッキ鋼板を製造した。上記ニッケルメッキ鋼板の引張
力、伸び、表面硬度(HV)、ニッケルメッキ層の金属
組織は下記の表2の示す通りであった。また、上記ニッ
ケルメッキ鋼板を90度(R1)に曲折し、該曲折部の
曲げ面に塩水を噴霧して上記JIS規格に基づき、限界
時間を測定した。
[Experimental example 2] The nickel-plated steel sheet of the above embodiment was manufactured, and its tensile force, elongation, metal structure of nickel-plated layer,
And the corrosion resistance test of the bending surface according to JIS standard (JIS-Z-
2371). A nickel-plated steel sheet was manufactured by applying nickel plating to both sides of the unannealed cold-rolled steel sheet at a thickness of 3.5 μm and continuously annealing at 650 ° C. for 1 minute. The tensile strength, elongation, surface hardness (HV), and metal structure of the nickel plating layer of the nickel-plated steel sheet were as shown in Table 2 below. Further, the nickel-plated steel sheet was bent at 90 degrees (R1), salt water was sprayed on the bent surface of the bent portion, and the limit time was measured based on the JIS standard.

【0032】[0032]

【表2】 T.S EL. HV 組織 塩水噴霧時間 r △r 焼鈍前 76 3 200 針状 1時間 1.0 +0.2焼鈍後 33 39 105 粒状 8時間 1.3 +0.005 *HV(荷重1kg) *r ランクホード値 *△r 面内異方性[Table 2] T.S. HV structure Salt spraying time r △ r Before annealing 76 3 200 Needle-like 1 hour 1.0 + After 0.233 annealing 33 39 105 Granular 8 hours 1.3 +0.005 * HV (load 1 kg) * r Rankhord value * △ r In-plane anisotropy

【0033】上記表2に示すように、ニッケルメッキ層
を焼鈍して粒状組織とすることにより、焼鈍前と比較し
て、即ち、焼鈍しないものと比較して、限界時間を8倍
とすることができ、高耐食性を備えていることが確認さ
れた。
As shown in Table 2 above, by forming the granular structure by annealing the nickel plating layer, the limit time can be increased eight times as compared with that before annealing, that is, as compared with the case without annealing. It was confirmed that it had high corrosion resistance.

【0034】また、第2ステップの連続焼鈍に代えてバ
ッチ焼鈍を用いても良いが、ニッケルメッキを施した鋼
板がコイル状である場合は、連続焼鈍の方が好ましい。
さらに、上記構造のニッケルメッキ鋼板からDI絞り加
工で電池用缶を成形した後、その内周面に導電性材をコ
ーティングして、電池特性を高めることが好ましい。
Further, batch annealing may be used instead of continuous annealing in the second step. However, when the nickel-plated steel sheet has a coil shape, continuous annealing is preferable.
Further, it is preferable to form a battery can by DI drawing from the nickel-plated steel plate having the above structure, and then coat a conductive material on an inner peripheral surface thereof to improve battery characteristics.

【0035】尚、本発明は上記実施例に限定されず、第
3ステップの調質圧延工程の後、絞り加工で外面側とな
る面に硬質ニッケルメッキあるいは光沢ニッケルメッキ
を施して、耐食性及び外観性をさらに向上させてもよ
い。
The present invention is not limited to the above embodiment. After the temper rolling in the third step, the outer surface side is subjected to hard nickel plating or bright nickel plating by drawing to obtain corrosion resistance and appearance. The property may be further improved.

【0036】[0036]

【発明の効果】以上の説明より明らかなように、本発明
では、ニッケルメッキ鋼板をDI絞り加工等で上端開口
の円筒形状の電池用缶とする形成材料において、表裏両
面のニッケルメッキ層の金属組織を一定の粒状組織とし
ているため、延性を高めて加工時に曲げ部分におけるク
ラックの発生を低減することができる。このように、ク
ラックの発生を低減することにより耐食性を高めること
ができる。
As is apparent from the above description, according to the present invention, in a material for forming a nickel-plated steel sheet into a cylindrical battery can having an opening at the upper end by DI drawing or the like, the metal of the nickel-plated layer on both front and back surfaces is formed. Since the structure is a certain granular structure, it is possible to increase the ductility and reduce the occurrence of cracks in the bent portion during processing. Thus, the corrosion resistance can be improved by reducing the occurrence of cracks.

【0037】さらに、メッキ後の連続焼鈍により、鋼板
の金属組織が粒状組織となり、よって、縦方向、横方向
及び斜め方向の伸びを所要値以上の大きなものとするこ
とができると共に、これら各方向への伸びの差を一定値
以下にしているため、DI絞り加工時に加工性が良好と
なるとともに、開口端縁にイヤリングが発生するのを防
止できる。よって、材料の歩留まりを良くして、コスト
ダウンを図ることが出来る。
Further, by continuous annealing after plating, the metallographic structure of the steel sheet becomes a granular structure, so that the elongation in the longitudinal, lateral and oblique directions can be made larger than required values and in each of these directions. Since the difference in elongation is less than or equal to a certain value, workability during DI drawing is improved and earrings can be prevented from occurring at the opening edge. Therefore, the yield of the material can be improved, and the cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係わる電池用缶の正面図である。FIG. 1 is a front view of a battery can according to the present invention.

【図2】 図1の一部拡大断面図である。FIG. 2 is a partially enlarged sectional view of FIG.

【図3】 本発明に係わる電池用缶の形成材料の製造方
法を示すフローチャートである。
FIG. 3 is a flowchart showing a method for producing a material for forming a battery can according to the present invention.

【図4】 (A)は焼鈍前のニッケルメッキ層の針状組
織を示す概略断面図、(B)は焼鈍後のニッケルメッキ
層の粒状組織を示す概略断面図である。
FIG. 4A is a schematic sectional view showing a needle-like structure of a nickel plating layer before annealing, and FIG. 4B is a schematic sectional view showing a granular structure of a nickel plating layer after annealing.

【図5】 DI絞り方法による電池用缶の製造方法を示
す図面である。
FIG. 5 is a view showing a method for manufacturing a battery can by a DI drawing method.

【図6】 DI絞り方法により缶を製造した場合の問題
点を示す斜視図である。
FIG. 6 is a perspective view showing a problem when a can is manufactured by the DI drawing method.

【図7】 電池用缶の材料における伸び方向を示す図面
である。
FIG. 7 is a drawing showing an elongation direction in a material for a battery can.

【符号の説明】 1 電池用缶 2 底壁 3 周壁 11 基板 12A,12B FeーNi拡散層 13A,13B ニッケルメッキ層 10 電池用缶の形成材料[Description of Signs] 1 Battery can 2 Bottom wall 3 Peripheral wall 11 Substrate 12A, 12B Fe-Ni diffusion layer 13A, 13B Nickel plating layer 10 Material for forming battery can

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 冷延鋼板の表裏両面にニッケルメッキを
施した後、焼鈍を行って、上記ニッケルメッキ層の針状
組織を粒状組織に変態化させると同時に、冷延鋼板とニ
ッケルメッキ層との間にFe−Ni拡散層を形成し、か
つ、この形成されるニッケルメッキ鋼板の縦方向、横方
向および斜め方向のランクホード値rx,ry、rzの差
△rを±0.15以下としていることを特徴とする電池
用缶の形成材料の製造方法。
1. A cold-rolled steel sheet is coated with nickel on both sides thereof and then annealed to transform the needle-like structure of the nickel-plated layer into a granular structure. And a difference Δr between rank-horse values r x , r y , and r z in the longitudinal, lateral, and oblique directions of the nickel-plated steel sheet to be formed is ± 0.15. A method for producing a material for forming a battery can, characterized in that:
【請求項2】 冷延鋼板の表裏両面にニッケルメッキを
施した後、焼鈍を行って、上記ニッケルメッキ層の針状
組織を粒状組織に変態化させると同時に、冷延鋼板とニ
ッケルメッキ層との間にFe−Ni拡散層を形成し、か
つ、この形成されるニッケルメッキ鋼板の縦方向、横方
向および斜め方向のランクホード値(rx,ry、rz
の平均値を1.2以上としていることを特徴とする電池
缶の形成材料の製造方法。
2. After cold-rolled steel sheet is nickel-plated on both sides, annealing is performed to transform the needle-like structure of the nickel-plated layer into a granular structure, and simultaneously, the cold-rolled steel sheet and the nickel-plated layer forming a Fe-Ni diffusion layer between, and the vertical direction, transverse and diagonal directions of Rankuhodo value of nickel-plated steel plate which is the form (r x, r y, r z)
A method for producing a material for forming a battery can, characterized in that the average value is 1.2 or more.
【請求項3】 冷延鋼板の表裏両面にニッケルメッキを
施した後、焼鈍を行って、上記ニッケルメッキ層の針状
組織を粒状組織に変態化させると同時に、冷延鋼板とニ
ッケルメッキ層との間にFe−Ni拡散層を形成し、か
つ、この形成されるニッケルメッキ鋼板の縦方向、横方
向および斜め方向のランクホード値rx,ry、rzの差
△rを±0.15以下とし、かつ、上記ランクホード値
(rx,ry、rz)の平均値を1.2以上としているこ
とを特徴とする電池缶の形成材料の製造方法。
3. After applying nickel plating to both front and back surfaces of the cold-rolled steel sheet, annealing is performed to transform the needle-like structure of the nickel-plated layer into a granular structure, And a difference Δr between rank-horse values r x , r y , and r z in the longitudinal, lateral, and oblique directions of the nickel-plated steel sheet to be formed is ± 0.15. follows and, and, above Rankuhodo value (r x, r y, r z) method for producing a material for forming the battery can, characterized in that it the mean value of a least 1.2.
【請求項4】 上記冷延鋼板は未焼鈍冷延鋼板からなる
請求項1乃至請求項3のいずれか1項に記載の電池缶の
形成材料の製造方法。
4. The method according to claim 1, wherein the cold-rolled steel sheet is an unannealed cold-rolled steel sheet.
【請求項5】 請求項1乃至請求項4のいずれか1項に
記載の方法で製造された電池用缶の形成材料を絞り加工
して形成されたもので、一端開口の円筒状形状で、周壁
の板厚が底壁の板厚よりも薄いことを特徴とする電池
缶。
5. A battery can produced by the method according to any one of claims 1 to 4, which is formed by drawing a material, and has a cylindrical shape with one end opened. A battery can, wherein the thickness of the peripheral wall is smaller than the thickness of the bottom wall.
JP10055547A 1998-03-06 1998-03-06 Manufacture of battery can forming material and battery can made of the same forming material Pending JPH10212595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10055547A JPH10212595A (en) 1998-03-06 1998-03-06 Manufacture of battery can forming material and battery can made of the same forming material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10055547A JPH10212595A (en) 1998-03-06 1998-03-06 Manufacture of battery can forming material and battery can made of the same forming material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP5134989A Division JP2785902B2 (en) 1993-06-04 1993-06-04 Material for forming battery can and battery can using the material

Publications (1)

Publication Number Publication Date
JPH10212595A true JPH10212595A (en) 1998-08-11

Family

ID=13001744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10055547A Pending JPH10212595A (en) 1998-03-06 1998-03-06 Manufacture of battery can forming material and battery can made of the same forming material

Country Status (1)

Country Link
JP (1) JPH10212595A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002013289A1 (en) * 2000-08-04 2002-02-14 Toyo Kohan Co., Ltd. Surface-treated steel plate for battery case and battery case
KR100601535B1 (en) 2004-07-28 2006-07-19 삼성에스디아이 주식회사 Manufacturing method of outer case for battery
JP2007122940A (en) * 2005-10-26 2007-05-17 Toyo Kohan Co Ltd Manufacturing method of battery container, battery container manufactured by this manufacturing method of battery container, and battery using battery container
WO2013002356A1 (en) * 2011-06-30 2013-01-03 東洋鋼鈑株式会社 Surface-treated steel plate, fuel pipe, cell can
WO2014007025A1 (en) * 2012-07-03 2014-01-09 東洋鋼鈑株式会社 Surface-treated steel sheet for battery containers, method for producing same, battery container, and battery
WO2015015846A1 (en) * 2013-07-31 2015-02-05 東洋鋼鈑株式会社 Surface-treated steel sheet for use as battery casing, battery casing, and battery
WO2016013572A1 (en) * 2014-07-22 2016-01-28 新日鐵住金株式会社 Steel foil for electricity-storing-device container, container for electricity-storing device, electricity-storing device, and method for manufacturing steel foil for electricity-storing-device container

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002050324A (en) * 2000-08-04 2002-02-15 Toyo Kohan Co Ltd Surface treatment steel plate for battery case and battery case
US6979515B2 (en) * 2000-08-04 2005-12-27 Toyo Kohan Co., Ltd. Surface-treated steel plate for battery case and battery case
US8043741B2 (en) 2000-08-04 2011-10-25 Toyo Kohan Co., Ltd. Surface-treated steel plate for battery case and battery case
WO2002013289A1 (en) * 2000-08-04 2002-02-14 Toyo Kohan Co., Ltd. Surface-treated steel plate for battery case and battery case
KR100601535B1 (en) 2004-07-28 2006-07-19 삼성에스디아이 주식회사 Manufacturing method of outer case for battery
JP2007122940A (en) * 2005-10-26 2007-05-17 Toyo Kohan Co Ltd Manufacturing method of battery container, battery container manufactured by this manufacturing method of battery container, and battery using battery container
JPWO2013002356A1 (en) * 2011-06-30 2015-02-23 東洋鋼鈑株式会社 Surface-treated steel sheet, fuel pipe and battery can
WO2013002356A1 (en) * 2011-06-30 2013-01-03 東洋鋼鈑株式会社 Surface-treated steel plate, fuel pipe, cell can
WO2014007025A1 (en) * 2012-07-03 2014-01-09 東洋鋼鈑株式会社 Surface-treated steel sheet for battery containers, method for producing same, battery container, and battery
WO2015015846A1 (en) * 2013-07-31 2015-02-05 東洋鋼鈑株式会社 Surface-treated steel sheet for use as battery casing, battery casing, and battery
JP2015032346A (en) * 2013-07-31 2015-02-16 東洋鋼鈑株式会社 Surface-processed steel plate for battery containers, battery container and battery
US9887396B2 (en) 2013-07-31 2018-02-06 Toyo Kohan Co., Ltd. Surface-treated steel sheet for battery containers, battery container, and battery
WO2016013572A1 (en) * 2014-07-22 2016-01-28 新日鐵住金株式会社 Steel foil for electricity-storing-device container, container for electricity-storing device, electricity-storing device, and method for manufacturing steel foil for electricity-storing-device container
JP5909606B1 (en) * 2014-07-22 2016-04-26 新日鐵住金株式会社 Steel foil for electrical storage device container, electrical storage device container and electrical storage device, and method for producing steel foil for electrical storage device container
TWI586815B (en) * 2014-07-22 2017-06-11 新日鐵住金股份有限公司 Steel foil for electricity storage device container, container for electricity storage device, electricity storage device, and manufacturing method of steel foil for electricity storage device container
US10418601B2 (en) 2014-07-22 2019-09-17 Nippon Steel Corporation Steel foil for power storage device container, power storage device container, power storage device, and manufacturing method of steel foil for power storage device container

Similar Documents

Publication Publication Date Title
US5840441A (en) Battery can, sheet for forming battery can, and method for manufacturing sheet
JP6803852B2 (en) Nickel-plated heat-treated steel sheet for battery cans
US6165640A (en) Battery can-forming plate and battery can
JP6140611B2 (en) Steel foil and manufacturing method thereof
JP6729821B2 (en) Surface-treated steel sheet and method for producing surface-treated steel sheet
JP2785902B2 (en) Material for forming battery can and battery can using the material
JP6428986B1 (en) Cold-rolled steel sheet for drawn cans and manufacturing method thereof
KR102393707B1 (en) Surface-treated steel sheet and method for manufacturing surface-treated steel sheet
US6982011B1 (en) Method for producing improved cold-rolled strip that is capable of being deep-drawn or ironed, and cold-rolled strip, preferably used for producing cylindrical containers and, in particular, battery containers
JPH10212595A (en) Manufacture of battery can forming material and battery can made of the same forming material
JPH0317916B2 (en)
EP1020247B1 (en) Clad material and method of manufacturing the material
EP0822266B1 (en) Steel sheet for two-piece battery can excellent in moldability, secondary work embrittlement resistance, and corrosion resistance
JP2810257B2 (en) Battery can and can forming material
TW446761B (en) A steel sheet for electrogalvanization and an electrogalvanized steel sheet with excellent black mark resistance, and a method for manufacturing them
KR102416183B1 (en) Method for manufacturing Ni diffusion plated steel sheet and Ni diffusion plated steel sheet
JP4698205B2 (en) Steel plate for battery case, surface-treated steel plate for battery case, battery case and battery
US7179541B2 (en) Heat treatment method for a cold-rolled strip with an Ni and/or Co surface coating, sheet metal producible by said method and battery can producible by said method
EP1544326A1 (en) Surface treated steel plate for battery cases and battery case using same
WO2022215642A1 (en) Surface-treated steel sheet
JP2786578B2 (en) Method for producing can material for battery and can material for battery
EP0028684A1 (en) Manufacture and aftertreatment of an article plated with gold, and article obtained thereby
CN115927992A (en) Galvanized high-strength steel and preparation method and application thereof
JPS58104158A (en) Extra-low carbon, nitrogen ferritic stainless steel with small plane anisotropy and superior formability
CN117488181A (en) Nickel pre-plated steel plate for new energy battery case and preparation method thereof

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20001017