JP2764589B2 - Silicon nitride based sintered body for bearing - Google Patents

Silicon nitride based sintered body for bearing

Info

Publication number
JP2764589B2
JP2764589B2 JP63292524A JP29252488A JP2764589B2 JP 2764589 B2 JP2764589 B2 JP 2764589B2 JP 63292524 A JP63292524 A JP 63292524A JP 29252488 A JP29252488 A JP 29252488A JP 2764589 B2 JP2764589 B2 JP 2764589B2
Authority
JP
Japan
Prior art keywords
sintered body
silicon nitride
bearing
based sintered
crushing load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63292524A
Other languages
Japanese (ja)
Other versions
JPH02141474A (en
Inventor
賢一 水野
勝久 藪田
正一 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tokushu Togyo KK
Original Assignee
Nippon Tokushu Togyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17782923&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2764589(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Tokushu Togyo KK filed Critical Nippon Tokushu Togyo KK
Priority to JP63292524A priority Critical patent/JP2764589B2/en
Priority to DE19893938644 priority patent/DE3938644A1/en
Publication of JPH02141474A publication Critical patent/JPH02141474A/en
Application granted granted Critical
Publication of JP2764589B2 publication Critical patent/JP2764589B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/597Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon oxynitride, e.g. SIALONS
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/593Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明はセラミック軸受け材料特に耐圧強度に優れベ
アリング用として好適な窒化珪素基焼結体に関するもの
である。
Description: TECHNICAL FIELD The present invention relates to a ceramic bearing material, particularly a silicon nitride-based sintered body having excellent pressure resistance and suitable for bearings.

<従来の技術> 従来ベアリング材料としては大部分が軸受鋼が用いら
れているが、軸受鋼は比重が大きく、特に高速回転用ベ
アリングとして用いた場合には遠心力が大きくなるので
発熱を生じ、熱膨張及び塑性変形によって寸法安定性が
失なわれ寿命特性が低下する等の問題があり、酸等の化
学薬品に対する耐蝕性にも欠けるものであった。
<Conventional technology> Conventionally, bearing steel is mostly used as a bearing material. However, bearing steel has a large specific gravity, and particularly when used as a bearing for high-speed rotation, a large centrifugal force causes heat generation. There are problems such as loss of dimensional stability due to thermal expansion and plastic deformation and deterioration of life characteristics, and lack of corrosion resistance to chemicals such as acids.

そのため、近年は軸受鋼に代わり、窒化珪素等のセラ
ミック焼結体が用いられるようになってきたが、軸受鋼
に比べて密度が小さく、軽量で高温強度及び寸法安定性
に優れているという利点があるが、靭性に欠ける上に軸
受鋼に比べ耐圧強度が小さく、例ば直径3/8インチ(9.5
25mm)の軸受鋼球の圧砕荷重最小値(JIS B 1501によ
る)は4670kgfであり、現行のSi3N4ボールの圧砕荷重は
2000〜2500kgf程度である。これらを解決する手段とし
て、空孔量を減じて転動体であるボールの圧砕荷重を向
上させる技術(特開昭63−74963号、特開昭63−106421
号)が提案されている。
Therefore, in recent years, ceramic sintered bodies such as silicon nitride have been used in place of bearing steel, but they have the advantage of lower density, lighter weight, and superior high-temperature strength and dimensional stability compared to bearing steel. However, it lacks toughness and has a lower compressive strength than bearing steel.
The minimum crushing load (according to JIS B 1501) of a bearing steel ball of 25 mm) is 4670 kgf, and the crushing load of the current Si 3 N 4 ball is
It is about 2000-2500kgf. As means for solving these problems, a technique of reducing the amount of holes to improve the crushing load of the ball as a rolling element (Japanese Patent Application Laid-Open Nos. 63-74463 and 63-106421).
No.) has been proposed.

<発明が解決しようとする課題> しかし空孔量と圧砕荷重との間の相関度は良いとは言
えず、単に空孔のみのコントロールでは耐圧強度を向上
させることはできず、耐圧強度の高い材料の出現が望ま
れていた。
<Problems to be Solved by the Invention> However, the correlation between the amount of vacancies and the crushing load cannot be said to be good, and control of only vacancies cannot improve the pressure resistance, and the pressure resistance is high. The emergence of materials was desired.

本発明は従来存在しなかった3200kgf以上の圧砕荷重
を有するSi3N4ボールを得ることを目的とするものであ
る。
An object of the present invention is to obtain a Si 3 N 4 ball having a crushing load of 3200 kgf or more, which has not existed conventionally.

<課題を解決するための手段> 本発明はベアリングの耐圧強度を向上させる目的で、
ベアリングの転動体であるボールの圧砕荷重の向上のた
めに種々検討の結果、窒化珪素(Si3N4)70重量%以上
と、焼結助剤30重量%以下とからなる窒化珪素基焼結体
であって相対密度95%以上の窒化珪素基焼結体中のSi3N
4粒子が微細であればある程、圧砕荷重が高くなること
を見出した。すなわち本発明によれば焼結体中のSi3N4
粒子の短径が1μm以下のものが90%以上、また長径が
5μm以下であるものが90%以上とすることにより非常
に圧砕荷重の高い焼結体となる。
<Means for Solving the Problems> The present invention aims to improve the pressure resistance of the bearing.
As a result of various investigations to improve the crushing load of the ball which is the rolling element of the bearing, a silicon nitride-based sintering composed of 70% by weight or more of silicon nitride (Si 3 N 4 ) and 30% by weight or less of a sintering aid N 3 in a silicon nitride based sintered body with a relative density of 95% or more
4 larger the particles are, if fine, found that the crushing load increases. That is, according to the present invention, the Si 3 N 4
By setting 90% or more of the particles having a minor axis of 1 μm or less and 90% or more of the particles having a major axis of 5 μm or less, a sintered body having a very high crushing load can be obtained.

<作用> 上記焼結体を得るためには、常圧焼結、ホットプレ
ス、ガス圧焼結、HIP等の焼結法が用いられるが、粒成
長を抑制しかつ高密度の焼結体を得るにはHIPを用いる
のが好ましい。
<Operation> In order to obtain the above sintered body, sintering methods such as normal pressure sintering, hot pressing, gas pressure sintering, and HIP are used. It is preferable to use HIP to obtain.

又焼結助剤としてはY2O3等の希土類酸化物、Al2O3,Mg
O,ZrO2等が用いられるが、粒成長を抑制する(微細組織
を得る)必要があるため、低温(例えばY2O3−Al2O3,等
では1700℃以下、Y2O3−MgO系では1550℃以下)で緻密
化可能であるものが望ましい。さらに用いる窒素珪素原
料は微細であるものが望ましい。
Rare earth oxides such as Y 2 O 3 , Al 2 O 3 , Mg
O, ZrO 2, etc. are used, but since it is necessary to suppress grain growth (obtain a fine structure), the temperature is lower than 1700 ° C. for Y 2 O 3 —Al 2 O 3 , for example, and Y 2 O 3 − A material that can be densified at 1550 ° C. or less for an MgO-based material is desirable. Further, it is desirable that the nitrogen silicon raw material used is fine.

ここで窒化珪素成分を70%以上としたのは強度が低下
しベアリング材料として使用できなくなるためである。
Here, the reason why the silicon nitride component is set to 70% or more is that the strength is reduced and it cannot be used as a bearing material.

又、焼結体中のSi3N4粒子の短径が1μm以下である
ものが90%以上、長径が5μm以下であるものが90%以
上としたのは、3/8インチのボールで3200kgf以上の圧砕
荷重を得るためで、短径が1μmを超える粒子が10%を
超え、長径が5μmを超える粒子が10%を超える場合、
圧砕荷重が3200kgf未満となり、軸受鋼球の最小値4670k
gfに対して著しく劣るものとなるためである。
Also, 90% or more of the Si 3 N 4 particles having a minor axis of 1 μm or less and 90% or more of the major axis having a major axis of 5 μm or less in the sintered body are 3200 kgf for a 3/8 inch ball. In order to obtain the above crushing load, if the minor diameter exceeds 1 μm exceeds 10% and the major diameter exceeds 5 μm exceeds 10%,
The crushing load is less than 3200kgf, the minimum value of the bearing steel ball 4670k
This is because it is significantly inferior to gf.

更に相対密度95%以上としたのは95%未満だと粒径の
如何にかかわらず圧砕荷重が密度に支配されるためであ
る。
Furthermore, the reason why the relative density is 95% or more is that if the relative density is less than 95%, the crushing load is governed by the density regardless of the particle size.

<実施例> 実施例1(試料No.1〜7) 平均粒径0.6μmの窒化珪素粉末88重量%に焼結助剤
としてY2O3とAl2O3を各6重量%を加えて、ボールミル
で24時間混合した後、有機バインダー6重量%を加えて
スプレードライ法にて乾燥造粒した。この粉末を金型プ
レスにて球形に成形した後、圧力2ton/cm2でCIPを行な
い、直径11mmの球状成形体を得た。成形体を脱脂後、1
気圧の窒素ガス雰囲気下で1600℃×2時間の条件で予備
焼結を行ない、相対密度93%の予備焼結体を得た。これ
を第1表に示す条件で二次焼結を行ない緻密な焼結体と
した。
<Example> Example 1 was added to each 6% by weight of Y 2 O 3 and for Al 2 O 3 (Sample Nanba1~7) sintering aid to an average particle diameter of 0.6μm silicon nitride powder of 88 wt% After mixing for 24 hours in a ball mill, 6% by weight of an organic binder was added and dried and granulated by a spray drying method. After this powder was formed into a spherical shape by a die press, CIP was performed at a pressure of 2 ton / cm 2 to obtain a spherical molded body having a diameter of 11 mm. After degreasing the compact, 1
Pre-sintering was performed under a pressure of 1600 ° C. for 2 hours under a nitrogen gas atmosphere at atmospheric pressure, to obtain a pre-sintered body having a relative density of 93%. This was subjected to secondary sintering under the conditions shown in Table 1 to obtain a dense sintered body.

この焼結体を研磨加工し、直径が9.525mm(3/8イン
チ)、表面粗さ0.01μmRaのボール試料とし以下の評価
を行なった。
This sintered body was polished, and a ball sample having a diameter of 9.525 mm (3/8 inch) and a surface roughness of 0.01 μmRa was evaluated as follows.

1)相対密度:アルキメデス法 2)Si3N4粒子 粒径解析:焼結体断面を鏡面研磨後SEM
により面積占有率を解析 3)圧砕荷重:JIS B 1501による(10点測定平均値) これらの結果も同第1表に示してある。
1) Relative density: Archimedes method 2) Si 3 N 4 particle size analysis: SEM after mirror-polishing the cross section of sintered body
3) Crushing load: According to JIS B 1501 (average value measured at 10 points) These results are also shown in Table 1 above.

本表の中でNo.1〜4は本発明の実施例、No.5〜7は比
較例である。
In this table, Nos. 1 to 4 are examples of the present invention, and Nos. 5 to 7 are comparative examples.

これによれば本発明の実施例は圧砕荷重は空孔の有無
や焼結体密度にかかわらず、3200kgf以上であるが、比
較例は2800kgf未満で、鋼球の最小値4670kgfに対し著し
く劣るものであった。
According to this example, the crushing load of the example of the present invention is 3200 kgf or more regardless of the presence or absence of porosity and the density of the sintered body, but the comparative example is less than 2800 kgf, which is significantly inferior to the minimum value of steel balls of 4670 kgf. Met.

実施例2(試料No.8〜11) 平均粒径0.6μmの窒化珪素粉末88重量%に焼結助剤
としてY2O3,MgOを各々6重量%を配合し、実施例1と同
様の方法で成形体を得た。この成形体を脱脂後、1気圧
の窒素ガス雰囲気下で1500℃・2時間の条件で予備焼結
を行ない相対密度92%の予備焼結体を得た。これを第1
表に示す条件で二次焼結を行い実施例1と同様な方法で
評価をし、その結果を第1表に示してある。
Example 2 (Samples Nos. 8 to 11) As in Example 1, 6% by weight of Y 2 O 3 and MgO were mixed as sintering aids with 88% by weight of silicon nitride powder having an average particle size of 0.6 μm. A molded article was obtained by the method. After degreased, the compact was pre-sintered under a nitrogen gas atmosphere of 1 atm at 1500 ° C. for 2 hours to obtain a pre-sintered body having a relative density of 92%. This is the first
Secondary sintering was performed under the conditions shown in the table, and evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

本表の中でNo.8,9は本発明の実施例、No.10,11は比較
例である。これによれば本発明の実施例は圧砕荷重が鋼
球に近いものまで得られ、比較例より著しく大きいこと
がわかる。
In the table, Nos. 8 and 9 are Examples of the present invention, and Nos. 10 and 11 are Comparative Examples. According to this, it can be seen that in the example of the present invention, the crushing load can be obtained up to a value close to that of a steel ball, and is significantly larger than that of the comparative example.

<発明の効果> 以上の説明から明らかなように、本発明の焼結体はSi
3N4粒子の粒成長を抑制し、微細組織を有することによ
り、3/8インチのボールにおいて3200kgf以上の(最高値
は4500kgf程度で鋼球のレベルに近い)圧砕荷重を有す
る。
<Effect of the Invention> As is clear from the above description, the sintered body of the present invention
3 N 4 to suppress grain growth of the particles, by having a microstructure, more 3200kgf in ball of 3/8 inches (maximum value is close to the level of the steel ball of about 4500Kgf) having a crushing load.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−74963(JP,A) 特開 昭63−55163(JP,A) (58)調査した分野(Int.Cl.6,DB名) C04B 35/584────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-63-74963 (JP, A) JP-A-63-55163 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C04B 35/584

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】窒化珪素(Si3N4)70重量%以上と、焼結
助剤30重量%以下とからなる窒化珪素基焼結体であっ
て、相対密度95%以上で、焼結体中のSi3N4粒子の短径
が1μm以下のもの90%以上、長径が5μm以下のもの
90%以上であることを特徴とするベアリング用窒化珪素
基焼結体。
1. A silicon nitride-based sintered body comprising 70% by weight or more of silicon nitride (Si 3 N 4 ) and 30% by weight or less of a sintering aid. 90% or more of Si 3 N 4 particles with a minor axis of 1 μm or less and a major axis of 5 μm or less
A silicon nitride-based sintered body for a bearing, wherein the sintered body is 90% or more.
JP63292524A 1988-11-21 1988-11-21 Silicon nitride based sintered body for bearing Expired - Fee Related JP2764589B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63292524A JP2764589B2 (en) 1988-11-21 1988-11-21 Silicon nitride based sintered body for bearing
DE19893938644 DE3938644A1 (en) 1988-11-21 1989-11-21 Sintered body of silicon nitride used in roller bearings - nitride particles are elongated with specific width and length dimensions to improve fracture strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63292524A JP2764589B2 (en) 1988-11-21 1988-11-21 Silicon nitride based sintered body for bearing

Publications (2)

Publication Number Publication Date
JPH02141474A JPH02141474A (en) 1990-05-30
JP2764589B2 true JP2764589B2 (en) 1998-06-11

Family

ID=17782923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63292524A Expired - Fee Related JP2764589B2 (en) 1988-11-21 1988-11-21 Silicon nitride based sintered body for bearing

Country Status (2)

Country Link
JP (1) JP2764589B2 (en)
DE (1) DE3938644A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138579A1 (en) 2020-12-24 2022-06-30 株式会社 東芝 Ceramic ball material, ceramic ball manufacturing method using same, and ceramic ball
WO2023003040A1 (en) 2021-07-21 2023-01-26 株式会社 東芝 Rubber die for use in cold isotropic pressure molding, production method for material for ceramic balls, and production method for ceramic balls
WO2023054611A1 (en) 2021-09-29 2023-04-06 株式会社 東芝 Material for ceramic ball, ceramic ball, and production method therefor
WO2023190467A1 (en) 2022-03-28 2023-10-05 株式会社 東芝 Material for ceramic ball, method for producing ceramic ball using same, and ceramic ball

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4011710A1 (en) * 1990-04-11 1991-10-17 Mtu Muenchen Gmbh Axial gap between two moving components - is closed by peripheral seal consisting of grooved support ring and sealing lips with balls
DE19859591A1 (en) * 1998-12-22 2000-06-29 Kennametal Inc Functional gradient sintered ceramic body, especially a cutter plate or insert for metal machining, is produced from silicon nitride powder containing a magnesium, titanium, zirconium, hafnium and-or yttrium oxide mixture
JP2000337386A (en) * 1999-05-31 2000-12-05 Kyocera Corp Ceramic rolling element raw material, its manufacture and rolling element using it
US6610113B1 (en) 1999-09-09 2003-08-26 Kennametal Pc Inc. Process for heat treating ceramics and articles of manufacture made thereby
DE10041420A1 (en) * 2000-08-23 2002-03-14 Alfred Jaeger Bearing for workpiece in machining comprises ceramic ballbearing of maximum accuracy to act as center tip engaging workpiece center hole.
EP2703669B1 (en) 2006-12-20 2016-08-31 NTN Corporation Method of producing a rolling contact member
US8376624B2 (en) 2007-06-27 2013-02-19 Ntn Corporation Rolling contact member and rolling bearing
EP2211067A4 (en) 2007-10-18 2011-11-02 Ntn Toyo Bearing Co Ltd Rolling member and rolling bearing
CN102066790A (en) * 2008-06-19 2011-05-18 Ntn株式会社 Bearing part and rolling bearing
DE102012207802A1 (en) 2012-05-10 2013-11-28 Schaeffler Technologies AG & Co. KG Silicon nitride ceramics and process for their preparation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4335392A (en) * 1978-03-23 1982-06-15 Brown, Boveri & Cie Aktiengesellschaft Semiconductor device with at least two semiconductor elements
JPS6355163A (en) * 1986-08-26 1988-03-09 株式会社豊田中央研究所 Silicon nitride base sintered body for antiabrasive material
JPS6374963A (en) * 1986-09-16 1988-04-05 株式会社豊田中央研究所 Silicon nitride base sintered body for antiabrasive material
JPS63106421A (en) * 1986-10-21 1988-05-11 Kyocera Corp Ceramic bearing
US4800182A (en) * 1987-01-22 1989-01-24 Mitsubishi Gas Chemical Company, Inc. Silicon nitride-silicon carbide composite material and process for production thereof
EP0336377B2 (en) * 1988-04-07 1997-07-16 Kabushiki Kaisha Toyota Chuo Kenkyusho Silicon nitride sintered body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138579A1 (en) 2020-12-24 2022-06-30 株式会社 東芝 Ceramic ball material, ceramic ball manufacturing method using same, and ceramic ball
WO2023003040A1 (en) 2021-07-21 2023-01-26 株式会社 東芝 Rubber die for use in cold isotropic pressure molding, production method for material for ceramic balls, and production method for ceramic balls
WO2023054611A1 (en) 2021-09-29 2023-04-06 株式会社 東芝 Material for ceramic ball, ceramic ball, and production method therefor
WO2023190467A1 (en) 2022-03-28 2023-10-05 株式会社 東芝 Material for ceramic ball, method for producing ceramic ball using same, and ceramic ball

Also Published As

Publication number Publication date
DE3938644A1 (en) 1990-05-23
JPH02141474A (en) 1990-05-30

Similar Documents

Publication Publication Date Title
JP2764589B2 (en) Silicon nitride based sintered body for bearing
Mitomo et al. Fabrication of silicon carbide nanoceramics
KR100417967B1 (en) Abrasion resistance materials and preparation method therefor
WO2006038489A1 (en) Conductive silicon nitride material and process for producing the same
Zhou et al. Tailoring the mechanical properties of silicon carbide ceramics by modification of the intergranular phase chemistry and microstructure
EP0659708B1 (en) Alumina based ceramic material and method of manufacturing the same
JPH0774103B2 (en) High hardness silicon nitride sintered body
JP2855243B2 (en) Silicon nitride sintered body with excellent wear resistance
Dutta Sinterability, strength and oxidation of alpha silicon carbide powders
Iizuka et al. Microstructures and Properties of Mo5Si3‐Particle‐Reinforced Si3N4‐Matrix Composites
JP2507480B2 (en) SiC-Al Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof
KR100395685B1 (en) Silicon Carbide Ceramic Materials with Improved High-Temperature-Strength and Process of Making the Same
JP2011132126A (en) Wear-resistant member
JP2736387B2 (en) Silicon nitride-based sintered body for rolling bearing material and method for producing the same
JP4859267B2 (en) Aluminum nitride sintered body and manufacturing method thereof
JPH0867568A (en) Silicon carbide/silicon nitride composite material and production thereof
JP3419495B2 (en) Composite ceramics
JP4565954B2 (en) Conductive silicon nitride material and manufacturing method thereof
WO1990008113A1 (en) Super tough monolithic silicon nitride
JP2652938B2 (en) Titanium carbide-carbon composite ceramic fired body and manufacturing method
JP4070254B2 (en) Composite sintered body of silicon nitride and silicon carbide and method for producing the same
JP3567001B2 (en) Method for producing composite sintered body of silicon carbide and silicon nitride
JPH09155415A (en) Ceramic roller
JP3580660B2 (en) Crusher components
JP2981187B2 (en) Alumina sintered body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees