JPS63106421A - Ceramic bearing - Google Patents

Ceramic bearing

Info

Publication number
JPS63106421A
JPS63106421A JP25048686A JP25048686A JPS63106421A JP S63106421 A JPS63106421 A JP S63106421A JP 25048686 A JP25048686 A JP 25048686A JP 25048686 A JP25048686 A JP 25048686A JP S63106421 A JPS63106421 A JP S63106421A
Authority
JP
Japan
Prior art keywords
sintered body
bearing
void
toughness
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25048686A
Other languages
Japanese (ja)
Inventor
Akira Saito
彰 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP25048686A priority Critical patent/JPS63106421A/en
Publication of JPS63106421A publication Critical patent/JPS63106421A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a bearing having excellent defective strength and toughness by adjusting components, namely, Si, Y, Al to their specific ratio, and making void occupying ratio on a bearing surface and its section, and the maximum diameter of the void below 0.5% and 5mum respectively. CONSTITUTION:A sintered body is composed of following components contained as main component at specified weight percentage, namely, Si converted from a silicide at 90-97, Al and converted from an oxide at 0.5-8 respectively. The above composition makes it possible that said sintered body is formed into minute structure, and is homogenized above 99% in the ratio of its actual density to its theoretical density, and becomes below 0.5% in area occupied by voids per unit area of its surface and section and below 5mum in their maximum void diameter. Thus said sintered body produced as mentioned above can have mechanical strength excellent in defective strength and toughness.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はセラミック製ベアリングに関し、より詳細には
耐摩耗性、耐久性に優れたセラミック製ベアリングに関
する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a ceramic bearing, and more particularly to a ceramic bearing with excellent wear resistance and durability.

(従来技術) 従来、ベアリングは機械要素として大きな位置を占め、
その利用は多種多様に亘り、近年に至っては例えば工作
機械主軸等の高速化に対応すべく、軸受に対し、長寿命
、高性能化が求められている。
(Prior art) Bearings have traditionally occupied a major role as mechanical elements.
BACKGROUND ART Bearings are used in a wide variety of ways, and in recent years, there has been a demand for bearings with long life and high performance in order to cope with the increasing speeds of machine tool spindles, for example.

通常、ベアリング用材料としてはそのほとんどが軸受鋼
であって機械的強度、耐摩耗性が比較的高く、ころがり
疲労、圧砕強度等ベアリングとして要求される特性をあ
る程度満足したものである。
Usually, most of the materials for bearings are bearing steel, which has relatively high mechanical strength and wear resistance, and satisfies to some extent the properties required for bearings, such as rolling fatigue and crushing strength.

しかしながら、軸受鋼は比重が大きく、大きな遠心力が
生じる為、高速化に限界があり、また熱的安定性が劣り
、高温下で使用すると熱膨張や塑性変形によって寸法安
定性が失われたり、酸等の化学薬品に対する耐蝕性にも
欠けるという欠点を有している。
However, bearing steel has a high specific gravity and generates a large centrifugal force, so there is a limit to how high the speed can be increased, and it also has poor thermal stability.When used at high temperatures, dimensional stability may be lost due to thermal expansion or plastic deformation. It also has the disadvantage of lacking corrosion resistance against chemicals such as acids.

そこで近年、軸受鋼にかわり炭化珪素、窒化珪素、アル
ミナ等のセ、ラミック焼結体から成るベアリングが提案
されている。このようなセラミックは軸受鋼と比較して
密度が小さく、軽量で高温強度及び寸法安定性に優れる
という利点を有するが靭性に欠けるうえに強度が小さい
等の欠点があり、欠け、割れ等を発生する等の問題が生
じている。
Therefore, in recent years, instead of bearing steel, bearings made of ceramic or ceramic sintered ceramics such as silicon carbide, silicon nitride, alumina, etc. have been proposed. Compared to bearing steel, such ceramics have the advantages of being lower in density, lighter, and have superior high-temperature strength and dimensional stability, but they also have disadvantages such as lack of toughness and low strength, and are prone to chipping, cracking, etc. Problems such as

(発明の目的) 本発明者は上記問題点を解決することを目的とするもの
で、詳細には抗折強度、靭性に優れるとともに圧砕荷重
、ころがり寿命に優れたセラミック製ベアリングを提供
することを目的とするものである。
(Purpose of the Invention) The present inventor aims to solve the above-mentioned problems, and specifically, to provide a ceramic bearing that has excellent bending strength and toughness, as well as excellent crushing load and rolling life. This is the purpose.

(問題点を解決するための手段) 本発明によればベアリング材料として焼結性、緻密化に
優れた組成を用い、得られるベアリングの表面または断
面におけるボイドの面積占有率およびボイドの最大径を
特定することにより優れた特性を有するベアリングが得
られることを見出し本発明に至った。
(Means for Solving the Problems) According to the present invention, a composition with excellent sinterability and densification is used as a bearing material, and the area occupation rate of voids and the maximum diameter of voids on the surface or cross section of the resulting bearing are It was discovered that a bearing with excellent characteristics could be obtained by specifying the specific properties, and the present invention was achieved.

即ち、本発明によれば焼結体として Si  90乃至97重量%(珪化物換算)AIo、5
乃至 8重量%(酸化物換算)Y  0.5乃至 8重
量%(酸化物換算)を主成分とする対理論密度比99%
以上の緻密質から成るセラミック製ベアリングであって
、該ベアリングの表面および断面におけるボイド面積占
有率が0.5%以下で、且つそのボイド最大径を5μ−
以下にすることにより前述の目的が達成される。
That is, according to the present invention, the sintered body contains 90 to 97% by weight of Si (in terms of silicide) AIo, 5
8% by weight (in terms of oxide) Y 99% theoretical density ratio with main component of 0.5 to 8% by weight (in terms of oxide)
A ceramic bearing made of the above dense material, in which the void area occupation rate on the surface and cross section of the bearing is 0.5% or less, and the maximum diameter of the void is 5 μ-
The above objectives are achieved by the following.

以下、本発明を詳述する。The present invention will be explained in detail below.

ベアリングにおける機械的特性は大きく分けて静定格荷
重と動定格荷重とによって示され、静定格荷重は圧砕荷
重、または焼結体自体の抗折強度、靭性(Lc)として
評価される。一方、動定格荷重はころがり寿命として評
価される。
The mechanical properties of a bearing are roughly divided into static load ratings and dynamic load ratings, and the static load ratings are evaluated as crushing loads or the bending strength and toughness (Lc) of the sintered body itself. On the other hand, the dynamic load rating is evaluated as the rolling life.

本発明において用いられる焼結体は対理論密度比99%
以上、特に実質上100%の緻密質であるが、焼結体中
には対理論密度比としての数値には表れない程の微少な
ボイドが存在する。
The sintered body used in the present invention has a theoretical density ratio of 99%
As described above, although the sintered body is essentially 100% dense, there are very small voids in the sintered body that do not appear in the numerical value of the theoretical density ratio.

ボイドは焼結体中にいわゆる空孔として存在するもので
あるが、例えばこのようなボイドがベアリング表面に露
出している場合、表面強度が低下するとともにボイドが
クランクの発生源となるため圧砕荷重は低下する。一方
、内部のボイドは転がり疲労に対し大きく関与する。ベ
アリングに対し外部応力を加えると応力は表面近傍の内
部に集中することが知られている。よって内部にボイド
が存在することによってころがり寿命が低下する。
Voids exist in the sintered body as so-called pores. For example, if such voids are exposed on the bearing surface, the surface strength will decrease and the crushing load will be reduced because the voids become a source of cranking. decreases. On the other hand, internal voids greatly contribute to rolling fatigue. It is known that when external stress is applied to a bearing, the stress is concentrated inside the bearing near the surface. Therefore, the presence of voids inside reduces the rolling life.

これらの要因からベアリングとしての材質は抗折強度、
靭性に優れるとともにその焼結体がボイドのない均質な
ものであることが重要である。
Based on these factors, the materials used for bearings are determined by their bending strength,
It is important that the sintered body has excellent toughness and is void-free and homogeneous.

よって本発明によれば、まず焼結体の組成が珪化物換算
で90乃至97重量%、特に90乃至95重量%のSi
と、酸化物換算で0.5乃至8重量%、特に1乃至4重
量%のAnと、酸化物換算で0.5乃至8重量%、特に
1乃至5重量%のYを主成分とするものであることが重
要である。この組成によれば5isAL、Yの3成分の
配合によって焼結体の易焼結性が高められ、ボイドの少
ない高緻密質の焼結体を容易に且つ安定して得ることが
できる。
Therefore, according to the present invention, first, the composition of the sintered body is 90 to 97% by weight, particularly 90 to 95% by weight of Si in terms of silicide.
The main components are 0.5 to 8% by weight, especially 1 to 4% by weight of An in terms of oxide, and 0.5 to 8% by weight, especially 1 to 5% by weight in terms of oxide. It is important that According to this composition, the ease of sintering of the sintered body is enhanced by the combination of the three components 5isAL and Y, and a highly dense sintered body with few voids can be easily and stably obtained.

組成を上記の範囲に限定した理由は、Si(珪化物換算
)が90重量%を下回ると緻密化が低下して、ボイドが
発生するとともに抗折強度、靭性が低下し、97重量%
を超えると易焼結性が低下し、各特性が低下する。
The reason for limiting the composition to the above range is that if Si (in terms of silicide) is less than 90% by weight, densification will decrease, voids will occur, and the bending strength and toughness will decrease.
If it exceeds this, the ease of sintering will decrease, and each property will deteriorate.

一方、YおよびAlの量はいずれも焼結性を助長する上
で不可欠であり、いずれかが少なくても焼結性が低下す
る。
On the other hand, the amounts of Y and Al are both essential for promoting sinterability, and even if either is small, the sinterability will deteriorate.

なお、本発明に用いられる上記組成の焼結体はβ−窒化
珪素の結晶相の粒界にA 1 zOs 、Yz(hが存
在するか、或いはβ相の窒化珪素結晶格子内で珪素の一
部がAfによって置換され、窒素の一部が酸素により置
換された単相SiA IONが生成され、その粒界にY
が存在するかまたはSi、Aj!、Yの3成分および酸
素、窒素の組合せにより他の結晶、例えばメリライトや
YAG等が生成されてもよい。
In addition, in the sintered body having the above composition used in the present invention, A 1 zOs and Yz(h) exist at the grain boundaries of the β-silicon nitride crystal phase, or one of silicon in the β-phase silicon nitride crystal lattice. A single-phase SiA ION is produced in which part of the nitrogen is replaced by Af and a part of the nitrogen is replaced by oxygen, and Y is present at the grain boundaries.
exists or Si, Aj! , Y, oxygen, and nitrogen, other crystals, such as melilite and YAG, may be produced.

さらに本発明によれば、上述の組成でもって高緻密化を
行い焼結体としての対理論密度比が99%以上の均質で
あって、その焼結体のボイドが表面及び断面の単位面積
当たりのボイドの占める面積、即ちボイド面積占有率と
して表した時、0.5%以下、特に0.2%以下であり
、その最大ボイド径が5μ剛以下、特に3μm以下であ
ることが重要である。ボイド面積占有率が0.5%を超
えるか最大ボイド径が5μmを超えても強度、靭性が低
下するとともに圧砕荷重、ころがり寿命が低下する。
Further, according to the present invention, the sintered body is highly densified with the above-mentioned composition and has a homogeneous theoretical density ratio of 99% or more, and the voids of the sintered body are small per unit area of the surface and cross section. It is important that the area occupied by the voids, that is, expressed as void area occupancy, is 0.5% or less, especially 0.2% or less, and that the maximum void diameter is 5 μm or less, especially 3 μm or less. . Even if the void area occupancy exceeds 0.5% or the maximum void diameter exceeds 5 μm, the strength and toughness are reduced, and the crushing load and rolling life are also reduced.

本発明のセラミック製ベアリングの製造に当たっては前
述の焼結体組成となるように窒化珪素粉末、Y2O1、
YN等のY化合物、A It zOs、AAN 。
In manufacturing the ceramic bearing of the present invention, silicon nitride powder, Y2O1,
Y compounds such as YN, AItzOs, AAN.

^1ON等の^l化合物を適量配合し混合粉体を調製す
る。混合粉体は公知の成形手段、例えばプレス成形、鋳
込み成形、押出成形、インジェクション成形等によって
所望の形に成形した後、焼成工程に移される。
A suitable amount of a ^1 compound such as ^1ON is blended to prepare a mixed powder. The mixed powder is molded into a desired shape by known molding means such as press molding, cast molding, extrusion molding, injection molding, etc., and then transferred to a firing process.

焼成工程は、ホットプレス法、非加圧焼成法、ガス加圧
焼成法によって焼成するか、またはこれらの方法によっ
て得られた焼結体を予備焼結体とし、さらに熱間静水圧
プレス法によって緻密化を促進することが望ましい、具
体的には、予備焼成工程としてN2雰囲気中で1750
乃至1950℃の温度で焼成して98%以上の予備焼結
体を得る0次に得られた予備焼結体をN2雰囲気中の1
000乃至2000気圧下で1700乃至1900℃の
焼成温度で焼成を行う。
In the firing process, firing is performed by a hot press method, a non-pressure firing method, or a gas pressure firing method, or the sintered body obtained by these methods is used as a pre-sintered body, and then further fired by a hot isostatic pressing method. It is desirable to promote densification, specifically, as a pre-calcination step, 1750
A pre-sintered body of 98% or more is obtained by firing at a temperature of 1,950°C to 1,950°C.
Firing is performed at a firing temperature of 1,700 to 1,900° C. under 000 to 2,000 atmospheres.

このようにして得られた焼結体は後述する実施例からも
明らかなように常温における抗折強度が90Kg/ms
”以上、靭性(にtc) 6MN/m””以上の優れた
機械的強度を有するものである。
As is clear from the examples described later, the sintered body thus obtained has a bending strength of 90 kg/ms at room temperature.
It has excellent mechanical strength with a toughness of 6 MN/m or more.

また焼結体の結晶構造は長柱状であるが、この結晶は1
0μ爾以下の微細な結晶で異常粒成長のないことが望ま
しい。
In addition, the crystal structure of the sintered body is long columnar;
It is desirable to have fine crystals of 0 μm or less and no abnormal grain growth.

最終的に焼結体はベアリング形状に切出し加工され、表
面を研摩機により鏡面出し研摩することによって完成す
る。
Finally, the sintered body is cut into a bearing shape, and the surface is polished to a mirror finish using a polishing machine.

以下、本発明を次の例で説明する。The invention will now be explained with the following examples.

(実施例) α−窒化珪素微粉末、酸化アルミニウム、酸化イツトリ
ウムの各々の粉末を第1表に示す組成にて混合した後、
混合7粉体を成形後、第1表に示す焼成条件にて焼成し
、焼結体Nol〜16を得た。
(Example) After mixing α-silicon nitride fine powder, aluminum oxide, and yttrium oxide powder in the composition shown in Table 1,
After molding the mixed 7 powder, it was fired under the firing conditions shown in Table 1 to obtain sintered bodies No. 1 to 16.

得られた焼結体に対し、次の特性の測定を行った。The following characteristics were measured for the obtained sintered body.

ボイド    率、最 ボイド径 焼結体の表面を鏡面研摩し、その研摩面を画像解析装置
にて単位面積当たりのボイドの面積比率および最大ボイ
ド径を測定した。
Void ratio and maximum void diameter The surface of the sintered body was mirror-polished, and the polished surface was measured using an image analyzer to measure the area ratio of voids per unit area and the maximum void diameter.

抜折侠皮」皿艶 JISR1601に基づいて室温にて4点曲げ法にて測
定した。
It was measured by the four-point bending method at room temperature based on JISR1601.

靭性〕」、ユ ビッカース圧痕法により鏡面研摩面に対し、荷重20K
gにて測定した。
Toughness], a load of 20K was applied to a mirror-polished surface using the Uwickers indentation method.
Measured in g.

立点が息嵐命 焼結体から60φの円盤を切出し、鏡面研摩後、高クロ
ム炭素鋼5UJ−2と比較してメジアン寿命(50%が
破壊に至る応力回数)の比率で示した。なお、条件は最
大ヘルツ応力600Kg/1IIll+2、回転数11
00Orp 、 50℃で行った。
A disk with a diameter of 60 mm was cut from a sintered body with a vertical point, and after mirror polishing, it was compared to high chromium carbon steel 5UJ-2 and expressed as a ratio of median life (the number of stress that causes 50% to break). The conditions are maximum Hertzian stress 600Kg/1IIll+2, rotation speed 11
00Orp, 50°C.

各測定結果は第1表に示す。The results of each measurement are shown in Table 1.

第1表から明らかなようにYが0.5重量%を下回るN
o8は靭性が低く、ころがり寿命も低い。Alが0.5
重量%を下回るNo12はボイド占有率が0゜5%を越
え、抗折強度およびころがり寿命が小さい。焼成条件に
おける焼成温度を低く設定したN。
As is clear from Table 1, N is less than 0.5% by weight.
o8 has low toughness and low rolling life. Al is 0.5
In No. 12, which is less than 0.5% by weight, the void occupancy exceeds 0.5%, and the bending strength and rolling life are small. N in which the firing temperature in the firing conditions was set low.

13は焼結不足により対理論密度比93%と低く、鏡面
が出なかった為に抗折強度しか測定できなかった。また
窒化珪素の量が97重量%を超えるNo16は測定デー
タのいずれにおいても満足した結果が得られずベアリン
グとしては不適であった。
No. 13 had a low theoretical density ratio of 93% due to insufficient sintering, and because no mirror surface appeared, only the bending strength could be measured. Further, No. 16 in which the amount of silicon nitride exceeded 97% by weight did not give satisfactory results in any of the measured data and was unsuitable for use as a bearing.

これらの比較例に対し、本発明のサンプルNo1〜7.
9〜11.14.15はいずれも抗折強度、靭性とも優
れており、抗折強度90Kg/mm2以上、靭性6゜O
MN/m””以上、ころがり寿命5 XIO’以上が達
成された。
In contrast to these comparative examples, samples Nos. 1 to 7 of the present invention.
9 to 11, 14, and 15 all have excellent bending strength and toughness, with bending strength of 90 Kg/mm2 or more and toughness of 6°O.
MN/m'' or more and rolling life of 5 XIO' or more were achieved.

次に先の実施例中で特性の良好なものを選択して圧砕荷
重を測定した。
Next, from the previous examples, those with good characteristics were selected and the crushing load was measured.

圧砕荷重は前述の実施例にて得られた焼結体から378
”の2つの略球形のサンプルを切出して真球加工及び鏡
面加工を行いベアリング球を得た。この2つの球を点接
触させて荷重を加え破壊に至る時の荷重値を求めた。そ
の結果、NO2が1.7(ton)、No4が2.6(
ton)、No5が2.3(ton)、No7が2.6
 Cton) 、No9が2.5(ton)、No15
が1.8(ton)といずれも優れたものであった。
The crushing load was 378 from the sintered body obtained in the above example.
Two roughly spherical samples were cut out and subjected to true spherical processing and mirror finishing to obtain bearing balls.The two balls were brought into point contact and a load was applied to them to determine the load value at which it would break.The results , NO2 is 1.7 (ton), No4 is 2.6 (
ton), No. 5 is 2.3 (ton), and No. 7 is 2.6 (ton).
Cton), No.9 is 2.5 (ton), No.15
was 1.8 (ton), which was excellent.

(発明の効果) 以上詳述した通り、本発明のセラミック製ベアリングは
、Si、Y、AIを特定比率で調製したものであり、ベ
アリングとしてその表面におけるボイド面積占有率、ボ
イド最大径を特定値以下に設定することによりベアリン
グとしての特性上抗折強度、靭性を高めることができる
とともにころがり寿命並びに圧砕荷重を高めることがで
き、それによりベアリングとしての性能を高め長寿命化
を図ることができる。
(Effects of the Invention) As detailed above, the ceramic bearing of the present invention is prepared by preparing Si, Y, and AI in a specific ratio, and the void area occupancy rate and the void maximum diameter on the surface of the bearing are set to specific values. By setting the following, it is possible to increase the bending strength and toughness of the bearing, as well as increase the rolling life and crushing load, thereby improving the performance of the bearing and extending its life.

Claims (1)

【特許請求の範囲】 Si 90乃至97重量%(珪化物換算) Al0.5乃至 8重量%(酸化物換算) Y 0.5乃至 8重量%(酸化物換算) を主成分とする対理論密度比99%以上の緻密質から成
るセラミック製ベアリングであって、該ベアリングの表
面および断面におけるボイド面積占有率が0.5%以下
で、且つそのボイド最大径が5μm以下であることを特
徴とするセラミック製ベアリング。
[Claims] A theoretical density whose main components are: Si 90 to 97% by weight (in terms of silicide) Al 0.5 to 8% by weight (in terms of oxide) Y 0.5 to 8% by weight (in terms of oxide) A ceramic bearing made of a dense material with a ratio of 99% or more, characterized in that the void area occupancy on the surface and cross section of the bearing is 0.5% or less, and the maximum diameter of the void is 5 μm or less. Ceramic bearing.
JP25048686A 1986-10-21 1986-10-21 Ceramic bearing Pending JPS63106421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25048686A JPS63106421A (en) 1986-10-21 1986-10-21 Ceramic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25048686A JPS63106421A (en) 1986-10-21 1986-10-21 Ceramic bearing

Publications (1)

Publication Number Publication Date
JPS63106421A true JPS63106421A (en) 1988-05-11

Family

ID=17208575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25048686A Pending JPS63106421A (en) 1986-10-21 1986-10-21 Ceramic bearing

Country Status (1)

Country Link
JP (1) JPS63106421A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01230478A (en) * 1987-11-26 1989-09-13 Ngk Insulators Ltd Homogeneous sintered silicon nitride and production thereof
DE3938644A1 (en) * 1988-11-21 1990-05-23 Ngk Spark Plug Co Sintered body of silicon nitride used in roller bearings - nitride particles are elongated with specific width and length dimensions to improve fracture strength
US5511959A (en) * 1991-08-06 1996-04-30 Hitachi, Ltd. Scroll type fluid machine with parts of sintered ceramics

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59215805A (en) * 1983-05-25 1984-12-05 株式会社東芝 Manufacture of spherical body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59215805A (en) * 1983-05-25 1984-12-05 株式会社東芝 Manufacture of spherical body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01230478A (en) * 1987-11-26 1989-09-13 Ngk Insulators Ltd Homogeneous sintered silicon nitride and production thereof
JP2512061B2 (en) * 1987-11-26 1996-07-03 日本碍子株式会社 Homogeneous silicon nitride sintered body and method for producing the same
DE3938644A1 (en) * 1988-11-21 1990-05-23 Ngk Spark Plug Co Sintered body of silicon nitride used in roller bearings - nitride particles are elongated with specific width and length dimensions to improve fracture strength
US5511959A (en) * 1991-08-06 1996-04-30 Hitachi, Ltd. Scroll type fluid machine with parts of sintered ceramics

Similar Documents

Publication Publication Date Title
KR100417967B1 (en) Abrasion resistance materials and preparation method therefor
JP3624225B2 (en) Silicon nitride or sialon ceramics and molding method thereof
EP2336098B1 (en) Process for producing part of silicon carbide matrix composite material
US5908798A (en) In-situ toughened alpha prime-sialon-based ceramics
US5922629A (en) Silicon nitride ceramic sliding material and process for producing the same
JPS5860677A (en) Manufacture of high tenacity silicon nitride sintered body
JPS61174165A (en) Alumina-silicon carbide heat-resistant composite sintered body and manufacture
JP2842723B2 (en) Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same
JPS5851910B2 (en) Titsukakeisokeishyouketsutainoseizouhouhou
US5472919A (en) β-silicon nitride sintered body
JP2730245B2 (en) Method for producing silicon carbide / silicon nitride composite sintered body
JP5362758B2 (en) Wear resistant parts
JPS63106421A (en) Ceramic bearing
US4806510A (en) Silicon nitride sintered body and method for producing same
CN111517798A (en) Carbide-based ceramic material, preparation method and application thereof
Semen et al. A preceramic polymer route to molded SiC ceramic parts
JP2001335363A (en) Material for bearing and manufacturing method therefor
JP2743666B2 (en) Ceramic material for turbine and method of manufacturing the same
JPS6230666A (en) High toughenss silicon nitride sintered body and manufacture
JP2001130966A (en) Silicon nitride-based sintered body, method for producing the same, and silicon nitride-based abrasion resistant member by using the same
JPH03141161A (en) Composite sintered compact
JP2000335976A (en) Silicon nitride-based sintered compact and its production and abrasion-resistant member using the same
JPH10212167A (en) Silicon nitride-base composite sintered compact and its production
JP2687633B2 (en) Method for producing silicon nitride sintered body
JPH0523921A (en) Silicone nitride basis sintered body for cutting tool