JP2761594B2 - Manufacturing method of high strength ultra-thin steel sheet for cans with excellent in-plane anisotropy - Google Patents

Manufacturing method of high strength ultra-thin steel sheet for cans with excellent in-plane anisotropy

Info

Publication number
JP2761594B2
JP2761594B2 JP1172772A JP17277289A JP2761594B2 JP 2761594 B2 JP2761594 B2 JP 2761594B2 JP 1172772 A JP1172772 A JP 1172772A JP 17277289 A JP17277289 A JP 17277289A JP 2761594 B2 JP2761594 B2 JP 2761594B2
Authority
JP
Japan
Prior art keywords
cans
steel sheet
rolling
manufacturing
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1172772A
Other languages
Japanese (ja)
Other versions
JPH0336215A (en
Inventor
台三 佐藤
茂嘉 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP1172772A priority Critical patent/JP2761594B2/en
Publication of JPH0336215A publication Critical patent/JPH0336215A/en
Application granted granted Critical
Publication of JP2761594B2 publication Critical patent/JP2761594B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、面内異方性の小さい缶用高強度極薄鋼板の
製造方法に関し、より詳しくは、絞り加工に適した、所
謂、耳発生(イヤリング)の小さい高強度極薄鋼板の製
造方法に関する。
The present invention relates to a method for producing a high-strength ultra-thin steel sheet for cans having a small in-plane anisotropy, and more particularly, to a so-called ear suitable for drawing. The present invention relates to a method for producing a high-strength ultra-thin steel sheet with little occurrence (earring).

「従来の技術」 従来JISにおいて、ぶりき、ティンフリースチール(T
FS)等の缶用鋼板の調質度は製造方法により1回圧延製
品(SR:Single Cold−reduced Prodact)と、2回圧延
製品(DR:Dolble Cold−reduced Product)とに分類さ
れる。
"Conventional technology" Conventional tinplate, tin-free steel (T
FS) can be classified into single rolled products (SR: Single Cold-reduced Prodact) and double rolled products (DR: Dolble Cold-reduced Product) according to the manufacturing method.

ぶりき、TFS等を素材とした缶には蓋部、胴部、底部
からなる3ピース缶と、胴部と底部を絞り、シゴキ加工
等により一体成形したDI(drawn and ironed)缶やDRD
(draw/redraw)缶およびDTR(draw/thin/redraw)缶等
の2ピース缶がある。2ピース缶は接合部が少ないだけ
に耐リーク性などの点で優れた缶機能を有するので、ア
ルミ、鋼基材共に増加傾向にある。
Tin cans and TFS cans are made of three-piece cans consisting of a lid, a torso, and a bottom, and DI (drawn and ironed) cans and DRDs, which are formed by squeezing the torso and bottom and squeezing.
There are two-piece cans such as (draw / redraw) cans and DTR (draw / thin / redraw) cans. Since the two-piece can has an excellent can function in terms of leak resistance and the like as it has few joints, both aluminum and steel base materials tend to increase.

「発明が解決しようとする課題」 軽量化、省資源およびコストダウンの観点より2ピー
ス缶の薄ゲージ化が要請されているが、薄ゲージ化する
と製缶時、搬送時の強度低下が生じ、内容物充填後の耐
圧低下による変形さえ生じる傾向がある。強度低下並び
に耐圧低下を解決するため調質度の高いDRによる製缶が
試みられている。しかしながらDRは一般に絞り加工時基
材の異方性に起因する耳の発生が大きく歩留の低下、品
質低下を不可避的にもらしている。この耳の発生原因は
製缶上の要因もあるが、主として鋼板の異方性に起因す
るもので、現状ではこの硬質薄鋼板の異方性の問題は十
分に解決されているとは云い難い。
"Problems to be solved by the invention" From the viewpoint of weight reduction, resource saving and cost reduction, it is required to reduce the gauge of a two-piece can. However, when the gauge is reduced, the strength during can production and during transport decreases. There is a tendency for even deformation due to a decrease in pressure resistance after filling the contents. Attempts have been made to make cans using DR with high temper quality in order to solve the strength and pressure reduction. However, in DR, ears are generally generated due to the anisotropy of the substrate during drawing, and the yield and the quality are inevitably reduced. The cause of the occurrence of these ears depends on the can-making process, but is mainly due to the anisotropy of the steel sheet. At present, it is difficult to say that the problem of the anisotropy of the hard thin steel sheet has been sufficiently solved. .

この問題解決のため、仕上温度830〜900℃、巻取温度
580〜730℃にて熱間圧延し、一次冷間圧延圧下率R1を60
〜79.9%とし、二次冷間圧延圧下率R2を−0.92R1+8.1
≦R2≦0.75R1+98とする異方性を改善した超硬質極薄冷
延鋼板製造方法が提案されている(特開昭59−113123)
が、追試の結果、酸洗でのスケール残留による表面不
良、鋼板の耐力不足が認められ、従来技術の問題は必ず
しも充分に解決されていなかった。DI缶成形法は、シー
ト又はコイル状冷延鋼板から平板状の被成形材料(ブラ
ンク)を打抜き、カップ状成形体(1stカップ)に絞
り、続く2〜3回のシゴキ加工により、1stカップ側壁
の厚みを減少加工することにより造られる。
To solve this problem, finishing temperature 830 ~ 900 ℃, winding temperature
Hot-rolled at 580 to 730 ° C, primary cold rolling reduction R 1 is 60
And ~79.9%, -0.92R 1 +8.1 secondary cold rolling reduction ratio R 2
≦ R 2 ≦ 0.75R 1 +98 An ultra-hard ultra-thin cold-rolled steel sheet manufacturing method with improved anisotropy has been proposed (JP-A-59-113123).
However, as a result of the additional test, surface defects due to residual scale in pickling and insufficient strength of the steel sheet were recognized, and the problems of the prior art were not always sufficiently solved. In the DI can molding method, a plate-shaped material (blank) is punched from a sheet or a coil-shaped cold-rolled steel sheet, squeezed into a cup-shaped molded body (1st cup), and then squeezed two or three times to form a 1st cup side wall. It is made by reducing the thickness of the material.

また、DRD缶成形法はブランクを絞り加工によって製
缶される缶である点でDI缶成形法と共通する点を有する
が、DI缶成形法のようにカップ側壁缶素材の積極的な厚
み減少加工であるシゴキ加工を行なわず、二次加工も絞
り加工のみである点で異なる。
In addition, the DRD can molding method has a common point with the DI can molding method in that it is a can made by drawing blanks, but aggressive thickness reduction of the cup side wall can material like the DI can molding method The difference is that the secondary processing is only the drawing processing without performing the squeezing processing which is the processing.

さらに、DTR缶成形法は、ブランクを絞り加工により
成形する点においてDRD缶成形法と共通するが、深絞り
加工ブランクに高いシワ押え力を付与し缶側壁の絞り−
張出し加工を行なう点において上記二つの製缶法と異な
る。
Furthermore, the DTR can forming method is similar to the DRD can forming method in that the blank is formed by drawing, but the deep drawing blank is given a high wrinkle holding force to reduce the side wall of the can.
It differs from the above two can making methods in that the overhanging process is performed.

上記DI、DRD、DTR缶の製造において、素材の異方性が
高く、塑性加工による素材の流れが一様でないと、カッ
プの縁高さが不揃いとなり、所謂「耳」が発生する。こ
の耳は、成形缶を成形ポンチから抜き取る時に抜け不良
の原因を生じさせるのみならず、成形後除去を要する全
くの不要部分である。
In the manufacture of the DI, DRD, and DTR cans, if the material has high anisotropy and the flow of the material by plastic working is not uniform, the edge height of the cup is not uniform, and a so-called “ear” is generated. These ears are not only unnecessary parts that are caused not only when pulling out the molding can from the molding punch but also when removing the molding can, and are completely unnecessary parts that need to be removed after molding.

本発明は、上記3種の2ピース缶の中でも特にDRD、D
TR缶用素材として優れた鋼板を提供するものである。
The present invention is particularly applicable to DRD and D among the above three types of two-piece cans.
It provides excellent steel sheet as a material for TR cans.

すなわち、DRD缶やDTR缶成形においては、その製缶工
程においてシゴキ加工による素材の板厚減少はないの
で、素材としてDI缶要素材よりも板厚の薄い鋼板を用い
る必要がある。またDRD缶やDTR缶は製品板厚の薄ゲージ
化を目的として開発されたものであるので、その素材は
高い耐力を保持した調質度が要求される。
That is, in the DRD can or DTR can molding, since the thickness of the material is not reduced by squeezing in the can making process, it is necessary to use a steel plate having a thickness smaller than that of the DI can element material. Also, since DRD cans and DTR cans have been developed with the aim of reducing the thickness of the product plate, the quality of the material is required to be high with high yield strength.

また、DRD缶やDTR缶はその加工工程においてシゴキ加
工を行なわないので、シートやコイル状態で予め印刷塗
装された各種表面処理鋼板(プレコート鋼板)や、あら
かじめ印刷されたプラスチックフィルムを張り合せた鋼
板(ラミネート鋼板)を用いることが可能となる。しか
しながらこのようなプレコート鋼板乃至ラミネート鋼板
等を用いてDRD缶やDTR缶を成形した場合、異方性が大き
いと素材の塑性流れが均一でないため耳やシワの発生
や、缶表面の印刷歪の発生という不都合を招来する。こ
のため異方性の小さい素材が強く望まれていた。
Also, since DRD cans and DTR cans are not squeezed in the processing process, various surface-treated steel sheets (pre-coated steel sheets) pre-printed and coated in sheet or coil form, or steel sheets laminated with a pre-printed plastic film (Laminated steel sheet) can be used. However, when DRD cans or DTR cans are formed using such pre-coated steel sheets or laminated steel sheets, if the anisotropy is large, the plastic flow of the material is not uniform, so that ears and wrinkles are generated, and printing distortion on the can surface is caused. This leads to the disadvantage of occurrence. Therefore, a material having small anisotropy has been strongly desired.

本発明の目的は、DRD,DTR等の絞り、しごき加工によ
って2ピース缶を製造する際、耳発生が少なくかつ製品
強度に優れた2ピース缶製造の可能な面内異方性の小さ
い硬質薄鋼板の製造方法を提供するにある。
An object of the present invention is to produce a two-piece can by drawing and ironing such as DRD, DTR, etc., in order to produce a two-piece can with little ears and excellent product strength. An object of the present invention is to provide a method for manufacturing a steel sheet.

本発明の第2の目的は、上記2ピース缶を可能な限り
経済的に量産するための薄ゲージの素材を提供するにあ
る。
A second object of the present invention is to provide a thin gauge material for mass-producing the two-piece can as economically as possible.

「課題を解決するための手段」 そこで、本発明者などは、鋭意研究の結果、Cを低炭
素鋼の低目に規制し、Nを高富化する事により、一次圧
延率R1を高目に採れ、R2も低目に抑制出来る事を見出し
た。
Therefore "SUMMARY OF THE INVENTION", etc. The present inventors, as a result of intensive studies, to regulate the C rather low for low carbon steel, by high enriched N, high eye primary reduction ratio R 1 Torre, found that the R 2 can also be suppressed to a low eye.

本発明は、連続鋳造鋼片をAr3点以上の仕上げ温度で
熱間圧延し、次いで700℃以下の温度で巻き取り、酸
洗、一次圧延、連続焼鈍、二次圧延を順に行う高強度極
薄鋼板の製造に於いて、連続鋳片が、C:0.006〜0.02
%、Si≦0.06% Mn ≦0.6%、P ≦0.03%、S≦0.0
3%、sol.Al≦0.08%、N=0.0018〜0.015%、残部がFe
および不可避的不純物より、一次圧延率R1が80%〜90%
であり、かつ二次圧延率R2が20%〜45%である事を特徴
とする缶用極薄鋼板の製造方法によって構成される。
The present invention provides a high-strength electrode in which a continuously cast steel slab is hot-rolled at a finishing temperature of at least three points of Ar, then wound at a temperature of 700 ° C or less, pickled, primary rolled, continuously annealed, and secondary rolled in this order. In the production of thin steel sheets, continuous slabs, C: 0.006-0.02
%, Si ≦ 0.06% Mn ≦ 0.6%, P ≦ 0.03%, S ≦ 0.0
3%, sol.Al ≦ 0.08%, N = 0.018 ~ 0.015%, balance is Fe
And from unavoidable impurities, the primary reduction ratio R 1 of 80% to 90%
, And the and configured by the production method of the extra-thin steel sheet for a can, characterized in that the secondary rolling reduction R 2 is 20% to 45%.

「作用」 鋼成分について Cは、本発明の重要な要素の一つである。第1図にお
いて、二次圧延率R2を固定して考えると、Cが0.01%ま
ではC量に比例して引張強度は急激に増加する。また、
0.01%を超えるとC量の増加にもかかわらず引張強度は
増加しない。ただし、Cが0.02%を超えると80〜90%の
高い一次圧延率では耳高さが高くなり望ましくない。す
なわち、第2図においては、缶Aを絞り加工したときの
耳率(△H/H×100)を示す。第2図から耳率の良好なC
量はある範囲であることが判る。従って本発明における
C量は缶強度上必要とされる引張強度および、耳高さか
ら決定され、本発明においては0.006〜0.02%とする。
"Action" Regarding steel composition C is one of the important elements of the present invention. In Figure 1, considering to secure the secondary rolling reduction R 2, C is the tensile strength in proportion to the amount of C to 0.01% increases rapidly. Also,
If it exceeds 0.01%, the tensile strength does not increase despite the increase in the amount of C. However, if C exceeds 0.02%, the ear height increases at a high primary rolling reduction of 80 to 90%, which is not desirable. That is, FIG. 2 shows the ear ratio (ΔH / H × 100) when the can A was drawn. FIG. 2 shows that the ear ratio is good.
It can be seen that the amount is in a certain range. Therefore, the C content in the present invention is determined from the tensile strength and ear height required for the strength of the can, and is set to 0.006 to 0.02% in the present invention.

Siは、缶用材料としては耐食性に有害な元素である
が、Alキルド鋼としては、不可避的に含有される元素で
あり、上限は0.06%である。
Si is an element harmful to corrosion resistance as a material for cans, but is an unavoidable element contained in Al-killed steel, with an upper limit of 0.06%.

Mnは、不純物であるSによる熱延時の赤熱脆性を防止
する為に、必要な元素であり、上限は0.6%である。
Mn is an element necessary for preventing red hot brittleness at the time of hot rolling due to S as an impurity, and has an upper limit of 0.6%.

Pは、材質を硬化させる為高強度という観点からは有
用であるが、偏析し、缶材としては、耐食性で有害の
為、上限は0.03%である。
P is useful from the viewpoint of high strength because it hardens the material, but segregates and is harmful to the corrosion resistance of the can material, so the upper limit is 0.03%.

Sは、熱延時の赤熱脆性を生じさせる有害元素であ
り、極力少ない方が望ましいが不可避的に混入する成分
であり、上限は0.03%である。
S is a harmful element that causes red-hot embrittlement during hot rolling, and is preferably a component as small as possible, but is an unavoidable component, and the upper limit is 0.03%.

Alは、製鋼後脱酸剤として投入される成分でAlNとし
て析出し、Nの固溶強固作用を低減させるので、少ない
程望ましいが、その上限は0.08%であるのが望ましい。
Al is a component added as a deoxidizing agent after steelmaking and precipitates as AlN, and reduces the solid-solution and strong action of N. Therefore, the smaller the amount, the better, but the upper limit is desirably 0.08%.

Nは、C、Mn、Pと同様に強化作用を有し、本発明の
主要因のひとつであり、下限を0.0018%とした。Nは多
い程望ましいが多過ぎると一次圧延後の焼鈍のr値を小
さくし、また、製鋼時添加するフェロ窒化物の歩留まり
を考慮し、上限は0.015%である。
N has a strengthening effect similarly to C, Mn, and P, and is one of the main factors of the present invention, and the lower limit is made 0.0018%. The N content is preferably as large as possible, but if it is too large, the upper limit is 0.015% in consideration of the r value of annealing after primary rolling and the yield of ferro-nitride added during steelmaking.

製造条件について、 熱間圧延について、加熱炉抽出温度としては、低すぎ
ると、熱延時の温度確保が難しく、又、冷延板の高強度
化に寄与する固溶N分を考慮すると高い程望ましいが、
経済性を考慮すると、下限を1100℃、上限を1200℃とす
るのが望ましい。熱延仕上げ温度は、板厚精度制御及び
イヤリングを考慮し、Ar3以上とする必要がある。
Regarding the production conditions, for the hot rolling, if the heating furnace extraction temperature is too low, it is difficult to ensure the temperature during hot rolling, and it is preferable that the higher the solid solution N content that contributes to increasing the strength of the cold-rolled sheet, But,
In consideration of economy, it is desirable to set the lower limit to 1100 ° C and the upper limit to 1200 ° C. The hot rolling finishing temperature needs to be Ar 3 or more in consideration of thickness accuracy control and earring.

酸洗後の1回目の圧延率は、90%を超えるとイヤリン
グが大きくなるため上限を90%、下限は熱延板の製造の
安定性を考え80%とすると良い。
If the first rolling ratio after pickling exceeds 90%, the earring becomes large, so the upper limit is 90%, and the lower limit is preferably 80% in consideration of the production stability of the hot-rolled sheet.

再結晶焼鈍は、箱型焼鈍を施すと、所定の強度を得る
為の二次圧延率が高くなるため、イヤリングに望ましく
なく、又、経済的でもない為、さらに箱型焼鈍は、焼鈍
後の結晶粒が大きくなる為、絞り加工後のフランジ加工
時にフランジ割れが発生しやすく、又、結晶粒が大きい
と加工による肌荒れも大きく、耐食性にも有害であるた
め連続焼鈍に限定した。
Recrystallization annealing, when subjected to box-shaped annealing, because the secondary rolling rate to obtain a predetermined strength is increased, it is not desirable for earrings, and also because it is not economical, further box-shaped annealing, after annealing Since the crystal grains are large, flange cracks are likely to occur at the time of flange processing after drawing, and if the crystal grains are large, the surface roughness due to the processing is large and the corrosion resistance is harmful.

第2回目の圧延は、圧延率が低過ぎると所定の強度が
出ない。その下限は20%であり、又、圧延率が高過ぎる
とイヤリングに対して望ましくなくその上限は50%であ
る。
In the second rolling, a predetermined strength is not obtained when the rolling ratio is too low. The lower limit is 20%, and if the rolling reduction is too high, it is undesirable for earrings, and the upper limit is 50%.

「実施例1」 表1に示す鋼で熱延、酸洗後一次圧延率88%で圧延後
連続焼鈍680℃再結晶焼鈍後、二次圧延率と強度の関係
を調査した。C量が0.006〜0.06%まででは、焼鈍後DR
圧延後の強度差はなく、所定の強度を得る為に、0.006
%までC量を低減しても二次圧延率を高く取る必要がな
い事が判明した(C量・二次圧延率と強度の関係を第1
図に示した)。
Example 1 The steel shown in Table 1 was hot-rolled, pickled, rolled at a primary rolling ratio of 88%, and then continuously annealed at 680 ° C. After recrystallization annealing, the relationship between the secondary rolling ratio and strength was investigated. For C content of 0.006 to 0.06%, DR after annealing
There is no difference in strength after rolling, and 0.006
%, It was found that it was not necessary to increase the secondary rolling ratio even if the C content was reduced (the relationship between the C content / secondary rolling ratio and the strength was the first).
Shown in the figure).

第2図には、表1に示す成分鋼を表2の製造条件でブ
ラックプレートとした後ティンフリー表面処理し、その
後ポリエチレンテレフタレートフィルムをラミネートし
た後、ブランク径176mm、ポンチ径90mm絞り比1.95で缶
Aを絞り加工した時の耳率(△H/H×100)を示すもの
で、耳率の良好なC量が0.006〜0.020%である事が判
る。又、表2には同時に最終製品の板厚及び機械的性質
を示した。
FIG. 2 shows that the component steels shown in Table 1 were black-plated under the manufacturing conditions shown in Table 2 and then subjected to tin-free surface treatment, and then a polyethylene terephthalate film was laminated. The blank diameter was 176 mm, the punch diameter was 90 mm, and the drawing ratio was 1.95. It shows the ear ratio (ΔH / H × 100) when the can A was drawn, and it can be seen that the C amount with a good ear ratio is 0.006 to 0.020%. Table 2 also shows the thickness and mechanical properties of the final product.

「実施例2」 表3に本発明の実施例と比較例の一覧を示す。使用し
た鋼成分は実施例1の表1中のサンプルNo4を種々の厚
みに仕上げた熱延板を使用して一次圧延、二次圧延の影
響を調べたもので、連続焼鈍は680℃で行った。本覧に
示した実施例は、いずれも本発明において、特定した範
囲で実施した結果を示したものであり、耳率はいずれも
小さな値を示しており、またフランジ加工時の割れ評価
を含めて評価しても優れた特性を備えている。
Example 2 Table 3 shows a list of examples of the present invention and comparative examples. The steel components used were obtained by examining the effects of primary rolling and secondary rolling using hot rolled sheets obtained by finishing sample No. 4 in Table 1 of Example 1 to various thicknesses. Continuous annealing was performed at 680 ° C. Was. All the examples shown in this book show the results of the present invention carried out in the specified range, the ear ratio shows a small value, and also includes the evaluation of cracking during flange processing. It has excellent characteristics even when evaluated.

これに対して比較例では、本発明とは一部圧延率が異
なる条件で製造した結果をしめした。比較例において
は、いずれも耳率が大きく、絞り用缶(DRD・DTR)用と
して用いるのは不適当であった。
On the other hand, in the comparative example, the result of manufacturing under the condition that the rolling reduction is partially different from that of the present invention is shown. In the comparative examples, the ear ratios were all large, and it was inappropriate to use them for squeezing cans (DRD / DTR).

「発明の効果」 本発明の実施により、DRD、DTR等のごとく、絞りまた
はしごき加工によって2ピース缶を製造する際、耳発生
が少なくかつ製品強度に優れた2ピース缶を製造するこ
とができる。
[Effects of the Invention] By the practice of the present invention, when producing a two-piece can by drawing or ironing, such as DRD, DTR, etc., it is possible to produce a two-piece can with less occurrence of ears and excellent product strength. .

また、上記2ピース缶を可能な限り経済的に量産する
ための薄ゲージの素材を提供することができる。
Further, a thin gauge material for mass-producing the two-piece can as economically as possible can be provided.

さらに、プレコート鋼板やラミネート鋼板を用いて、
DRD缶、DTR缶を成形することができる。
Furthermore, using pre-coated steel sheet and laminated steel sheet,
DRD cans and DTR cans can be formed.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の成分鋼(表1)のC量・二次圧延率と
強度の関係図、第2図は上記成分鋼を本発明の製造条件
(表2)で加工した場合の耳率曲線、、第3図は缶の耳
率図である。
FIG. 1 is a diagram showing the relationship between the C content / secondary rolling ratio and the strength of the component steel of the present invention (Table 1), and FIG. 2 is an ear obtained when the above component steel is processed under the production conditions of the present invention (Table 2). FIG. 3 is a chart showing the ear ratio of the can.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】冷間圧延、焼鈍、表面処理後、鋼板上に塗
装をするか、又は樹脂フィルムをラミネートするかし
て、2ピース缶成形加工用の缶用素材を製造する方法に
おいて、鋼片の成分が、 C=0.006〜0.02% Si≦0.06% Mn≦0.6% P ≦0.03% S≦0.03% solAl≦0.08% N=0.0018〜0.015% 残部が鉄および不可避的成分からなり、この鋼片を熱間
圧延し、700℃以下の温度で巻取り熱圧鋼帯とし、次い
で酸洗い後、圧延率(R1)80%〜90%で第1回の冷間圧
延を施し、次いで連続焼鈍で再結晶焼鈍温度以上、オー
ステナイト化温度以下に加熱・均熱し、再結晶焼鈍後、
圧延率(R2)20%〜50%で第2回圧延を施した高強度極
薄鋼板を製造し、その後この鋼板上に塗装するか又はプ
ラスチックフィルムをラミネートすることを特徴とする
面内異方性の優れた缶用プレコート鋼板又はラミネート
鋼板の製造方法。
1. A method for producing a material for cans for forming two-piece cans by cold-rolling, annealing, and surface-treating, followed by painting on a steel plate or laminating a resin film. The composition of the piece is as follows: C = 0.006-0.02% Si ≤ 0.06% Mn ≤ 0.6% P ≤ 0.03% S ≤ 0.03% solAl ≤ 0.08% N = 0.0018-0.015% The balance consists of iron and unavoidable components. Hot rolled at 700 ° C. or lower to form a hot-pressed steel strip, then pickled, subjected to a first cold rolling at a rolling ratio (R 1 ) of 80% to 90%, and then continuously annealed. Heating and soaking below the recrystallization annealing temperature and below the austenitizing temperature, and after recrystallization annealing,
Manufacturing a high-strength ultra-thin steel sheet that has been subjected to a second rolling at a rolling rate (R 2 ) of 20% to 50%, and then painting or laminating a plastic film on the steel sheet. Method for producing precoated steel sheet or laminated steel sheet for can with excellent anisotropy.
JP1172772A 1989-07-03 1989-07-03 Manufacturing method of high strength ultra-thin steel sheet for cans with excellent in-plane anisotropy Expired - Fee Related JP2761594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1172772A JP2761594B2 (en) 1989-07-03 1989-07-03 Manufacturing method of high strength ultra-thin steel sheet for cans with excellent in-plane anisotropy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1172772A JP2761594B2 (en) 1989-07-03 1989-07-03 Manufacturing method of high strength ultra-thin steel sheet for cans with excellent in-plane anisotropy

Publications (2)

Publication Number Publication Date
JPH0336215A JPH0336215A (en) 1991-02-15
JP2761594B2 true JP2761594B2 (en) 1998-06-04

Family

ID=15948050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1172772A Expired - Fee Related JP2761594B2 (en) 1989-07-03 1989-07-03 Manufacturing method of high strength ultra-thin steel sheet for cans with excellent in-plane anisotropy

Country Status (1)

Country Link
JP (1) JP2761594B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH086143B2 (en) * 1990-03-06 1996-01-24 新日本製鐵株式会社 Manufacturing method of steel plate for ultra-thin welding can with excellent stripping property
JP2571166B2 (en) * 1991-07-29 1997-01-16 東洋鋼鈑株式会社 Method for producing surface-treated steel sheet for DI can
DE69311393T2 (en) * 1992-02-21 1997-09-25 Kawasaki Steel Co Process for producing high-strength steel sheets for cans
JPH0754101A (en) * 1993-08-13 1995-02-28 Toyo Kohan Co Ltd Steel sheet for thinning/deep drawing
US5725697A (en) * 1993-12-24 1998-03-10 Kawasaki Steel Corporation Method of manufacturing cold-rolled can steel sheet having less planar anisotropy and good workability
JP3434905B2 (en) * 1994-09-29 2003-08-11 新日本製鐵株式会社 Manufacturing method of steel plate for welding can
JPH0892642A (en) * 1994-09-29 1996-04-09 Nippon Steel Corp Production of steel sheet for vessel excellent in yearing resistance
FR2739105B1 (en) * 1995-09-21 1998-04-30 Lorraine Laminage METHOD FOR MANUFACTURING A METAL STRIP FOR PACKAGINGS AND METAL PACKAGES OBTAINED BY THIS PROCESS
JPH09184018A (en) * 1995-12-28 1997-07-15 Kawasaki Steel Corp Manufacture of high strength steel sheet for vessel, reduced in inplane anisotroty
JP5434212B2 (en) * 2008-04-11 2014-03-05 Jfeスチール株式会社 Steel plate for high-strength container and manufacturing method thereof
KR101975129B1 (en) * 2014-11-28 2019-05-03 제이에프이 스틸 가부시키가이샤 Steel sheet for crown cap, manufacturing method therefor, and crown cap
CN116657048A (en) * 2019-03-29 2023-08-29 杰富意钢铁株式会社 Steel sheet for cans and method for producing same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6045690A (en) * 1983-08-22 1985-03-12 東洋インキ製造株式会社 Liquid colorant for molded polyester resin

Also Published As

Publication number Publication date
JPH0336215A (en) 1991-02-15

Similar Documents

Publication Publication Date Title
JP5858208B1 (en) Steel plate for high-strength container and manufacturing method thereof
JP2761594B2 (en) Manufacturing method of high strength ultra-thin steel sheet for cans with excellent in-plane anisotropy
US20130294963A1 (en) Steel sheet for can having high strength and high formability, and method for manufacturing the same
JP4788030B2 (en) Steel plate for lightweight two-piece can and manufacturing method thereof
JP6813132B2 (en) Steel sheet for cans and its manufacturing method
JP2571166B2 (en) Method for producing surface-treated steel sheet for DI can
JPS6045690B2 (en) Manufacturing method of ultra-thin steel sheet for cans with small in-plane anisotropy
JP2623432B2 (en) Steel sheet suitable for thinned deep-drawing can and its manufacturing method
JP2668503B2 (en) Steel sheet suitable for thinned deep-drawing can and its manufacturing method
JP3023385B2 (en) Manufacturing method of steel sheet for cans
JP3718865B2 (en) Manufacturing method of lightweight can with excellent bottom pressure strength
JP3224265B2 (en) Non-aging steel plate for container with excellent necked-in workability
JP3471483B2 (en) Steel plate for DI can excellent in pressure resistance and neck workability and method for producing the same
JPH0711031B2 (en) Method for manufacturing hard thin steel sheet with small anisotropy
JP2816358B2 (en) Manufacturing method of steel sheet for DI can
JP3244956B2 (en) Method for producing ultra-thin container steel sheet with excellent can formability
JP5803510B2 (en) High-strength, high-formability steel plate for cans and method for producing the same
JP3647932B2 (en) Method for producing steel plate for cans with excellent earring properties
JP3331504B2 (en) Non-aging steel plate for container with excellent necked-in workability
JP3226775B2 (en) Method for producing steel sheet for DI can with excellent necked-in workability
JPH05345925A (en) Production of extra thin steel sheet for dwi can excellent in flange workability
JPWO2020203052A1 (en) Steel sheet for cans and its manufacturing method
WO2019026739A1 (en) Steel sheet for crown cap, crown cap, and method for manufacturing steel sheet for crown cap
JP2003342682A (en) Thin steel sheet for can excellent in workability after heat treatment, its production method, and production method for its hot rolled material
JPH05311245A (en) Manufacture of cold rolled steel sheet for deep drawing extremely small in plane anisotropy

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees