JP2001164275A - Method for estimating production amount of hydrate producing facility and apparatus therefor - Google Patents

Method for estimating production amount of hydrate producing facility and apparatus therefor

Info

Publication number
JP2001164275A
JP2001164275A JP35166199A JP35166199A JP2001164275A JP 2001164275 A JP2001164275 A JP 2001164275A JP 35166199 A JP35166199 A JP 35166199A JP 35166199 A JP35166199 A JP 35166199A JP 2001164275 A JP2001164275 A JP 2001164275A
Authority
JP
Japan
Prior art keywords
hydrate
gas
production
amount
production reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35166199A
Other languages
Japanese (ja)
Other versions
JP4016554B2 (en
Inventor
Yasuo Koda
康雄 国府田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP35166199A priority Critical patent/JP4016554B2/en
Publication of JP2001164275A publication Critical patent/JP2001164275A/en
Application granted granted Critical
Publication of JP4016554B2 publication Critical patent/JP4016554B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To easily estimate the production amount of a hydrate at a low cost by using a versatile apparatus. SOLUTION: Natural gas G to be stored is passed through a medium W (water) stored in a formation reactor 9 to increase the inner pressure of the reactor 9 and the reactor is cooled to form a hydrate H of the natural gas G and the medium W. The amount of hydrate produced by the above process is estimated by detecting the pressures in the reactor 9 at plural points distributed in vertical direction using a general-purpose pressure gauge 24 and comparing the variation of the pressure distribution by a processor 25 with a relational data between the production amount and the pressure distribution obtained beforehand by a preliminary experiment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はハイドレート生成設
備の生成量把握方法及び装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for determining the amount of hydrate generation equipment.

【0002】[0002]

【従来の技術】沿岸部の液化天然ガスの受入基地から離
れた内陸部の都市には、その都市でのガスの消費量に応
じたガス貯蔵設備が設けられている。
2. Description of the Related Art Inland cities located offshore from liquefied natural gas receiving terminals are provided with gas storage facilities according to the gas consumption in the cities.

【0003】図2は従来のガス貯蔵設備の一例を示すも
のであり、この種のガス貯蔵設備においては、ガスを貯
蔵するガスタンク1と、開閉弁6を有する管路7とが備
えられ、該管路7が受入基地から内陸部の都市へのガス
送給用の導管8とガスタンク1との間を接続するように
なっている。
FIG. 2 shows an example of a conventional gas storage facility. In this type of gas storage facility, a gas tank 1 for storing gas and a pipeline 7 having an on-off valve 6 are provided. A pipe 7 connects between the gas tank 1 and the conduit 8 for gas supply from the receiving base to the city in the inland area.

【0004】尚、前記導管8には、ガス流通方向上流端
から下流端へ向かって順に開閉弁2、圧縮機3及び逆止
弁4を有する管路5が接続されている。
The conduit 8 is connected to a pipeline 5 having an on-off valve 2, a compressor 3, and a check valve 4 in order from the upstream end to the downstream end in the gas flow direction.

【0005】そして、深夜及び早朝などのガス使用量が
減少する閑散時間帯に、受入基地の圧縮機3より導管8
に送給されるガスをガスタンク1に貯蔵し、また、日中
及び夕方などのガス使用量が増加する繁忙時間帯に、ガ
スタンク1に貯蔵したガスを導管8へ送給し、需要者へ
のガス送給量を確保するようにしている。
In the off-peak hours, such as late night and early morning, when the gas usage decreases, the compressor 8 of the receiving base supplies the conduit 8
The gas stored in the gas tank 1 is stored in the gas tank 1, and the gas stored in the gas tank 1 is transmitted to the conduit 8 during busy hours when the amount of gas used increases, such as during the day and in the evening, so that the gas is supplied to the consumers. We are trying to secure gas supply.

【0006】ただし、このような従来のガス貯蔵設備で
は、ガスタンク1の貯蔵密度が大きくないので、繁忙時
間帯における需要者へのガス供給量を確保するために、
ガスタンク1を多数設けなければならないという不具合
がある。
However, in such a conventional gas storage facility, since the storage density of the gas tank 1 is not high, it is necessary to secure a gas supply amount to a customer during a busy time.
There is a problem that a large number of gas tanks 1 must be provided.

【0007】そこで、近年、図3に示すようなハイドレ
ート生成設備が新たなガス貯蔵設備として提案されてお
り、この種のハイドレート生成設備では、耐圧構造の生
成反応器9と、ガス流通方向上流側から下流側へ向かっ
て順に取入弁10、圧縮機11、中間熱交換器12及び
逆止弁13を有する管路14と、中間弁15を有する管
路16と、生成反応器9の内底部近傍に配置した散気管
17と、生成反応器9の内側部に配置した冷却管18及
び加熱管19と、冷却管18に対して冷媒を連続的に供
給し得る冷媒源20と、加熱管19に対して熱媒を連続
的に供給し得る熱媒源21と、送出弁22を有する管路
23とを備えている。
Therefore, in recent years, a hydrate generation facility as shown in FIG. 3 has been proposed as a new gas storage facility. In this type of hydrate generation facility, a generation reactor 9 having a pressure-resistant structure and a gas flow direction are provided. From the upstream side to the downstream side, in order from the intake valve 10, the compressor 11, the intermediate heat exchanger 12 and the pipeline 14 having the check valve 13, the pipeline 16 having the intermediate valve 15, and the production reactor 9. A diffuser pipe 17 disposed near the inner bottom, a cooling pipe 18 and a heating pipe 19 disposed inside the production reactor 9, a refrigerant source 20 capable of continuously supplying a refrigerant to the cooling pipe 18, A heat medium source 21 capable of continuously supplying a heat medium to the pipe 19 and a pipe 23 having a delivery valve 22 are provided.

【0008】生成反応器9には、貯蔵すべき天然ガスG
と反応してハイドレートH(固体の水和物)を生成し得
る物性の媒質W(水)が貯留されている。
In the production reactor 9, natural gas G to be stored is stored.
And a medium W (water) having physical properties capable of producing hydrate H (solid hydrate) by reacting with water.

【0009】管路14のガス流通方向上流端は、受入基
地から内陸部の都市へのガス送給用の導管8に接続さ
れ、管路14のガス流通方向下流端は、前記の散気管1
7に接続されている。
The upstream end of the pipe 14 in the gas flow direction is connected to the conduit 8 for gas supply from the receiving terminal to the city in the inland area. The downstream end of the pipe 14 in the gas flow direction is connected to the air diffusion pipe 1.
7 is connected.

【0010】管路16のガス流通方向上流端は、生成反
応器9内上部の非媒質貯留空間Sに連通するように生成
反応器9の頂部に接続され、管路16のガス流通方向下
流端は、管路14の圧縮機11ガス吸入口寄り部分に接
続されている。
The upstream end of the pipe 16 in the gas flow direction is connected to the top of the production reactor 9 so as to communicate with the non-medium storage space S in the upper part of the production reactor 9, and the downstream end of the pipe 16 in the gas flow direction. Is connected to a portion of the pipe 14 near the gas inlet of the compressor 11.

【0011】更に、管路23のガス流通方向上流端は、
管路14の中間熱交換器12ガス吐出口寄り部分に接続
され、管路23のガス流通方向下流端は、導管8に接続
されている。
Further, the upstream end of the pipe 23 in the gas flow direction is
The pipe 14 is connected to the portion of the intermediate heat exchanger 12 near the gas discharge port, and the downstream end of the pipe 23 in the gas flow direction is connected to the conduit 8.

【0012】そして、深夜及び早朝などのガスの使用量
が減少する閑散時間帯に、取入弁10及び中間弁15を
開き且つ送出弁22を閉じて、圧縮機11及び冷媒源2
0を運転し、導管8を流通する天然ガスGの一部を散気
管17から媒質W中に通気させて、生成反応器9内を昇
圧すると共に、冷却管18へ冷媒を連続的に供給して、
生成反応器9内を冷却するようにしている。
In the off-peak hours, such as late at night and early in the morning, when the gas usage decreases, the intake valve 10 and the intermediate valve 15 are opened and the delivery valve 22 is closed, and the compressor 11 and the refrigerant source 2 are closed.
0, a part of the natural gas G flowing through the conduit 8 is passed through the diffuser 17 into the medium W to increase the pressure in the production reactor 9 and continuously supply the refrigerant to the cooling pipe 18. hand,
The inside of the production reactor 9 is cooled.

【0013】生成反応器9の内圧が30kg/cm2
度に上昇し且つ内部温度が2〜3℃程度に低下すると、
メタンハイドレート(CH4・5.75H2O)を主成分
として、エタンハイドレート(C26・7.67H
2O)及びブタンハイドレート(C38・17H2O)な
どのハイドレートHが、天然ガスGと媒質Wとから生成
され、天然ガスGがハイドレートHとして生成反応器9
の内部に徐々に貯蔵される。
When the internal pressure of the production reactor 9 increases to about 30 kg / cm 2 and the internal temperature decreases to about 2 to 3 ° C.,
Methane hydrate the (CH 4 · 5.75H 2 O) as a main component, ethane hydrate (C 2 H 6 · 7.67H
Hydrates H such as 2 O) and butane hydrate (C 3 H 8 .17H 2 O) are produced from the natural gas G and the medium W, and the natural gas G is produced as the hydrate H in the production reactor 9.
It is gradually stored inside.

【0014】組成がメタン(CH4)92mol%、エ
タン(C26)5mol%、ブタン(C38)の天然ガ
スG(都市ガス)と媒質W(水)とから生成されるハイ
ドレートHの密度は、氷と同程度になる。
Hydride formed from natural gas G (city gas) of methane (CH 4 ) 92 mol%, ethane (C 2 H 6 ) 5 mol%, butane (C 3 H 8 ) and medium W (water) The density of the rate H is comparable to that of ice.

【0015】図4は、上記組成の天然ガスGと媒質Wと
から生成されるハイドレートHの温度圧力平衡線図の一
例である。
FIG. 4 is an example of a temperature-pressure equilibrium diagram of the hydrate H generated from the natural gas G having the above composition and the medium W.

【0016】媒質Wと反応せずに媒質W中から生成反応
器9の非媒質貯留空間Sに達した天然ガスGは、管路1
6を経て圧縮機11のガス吸引口へ送出され、散気管1
7から再度媒質W中へ通気される。
The natural gas G that has reached the non-medium storage space S of the production reactor 9 from the medium W without reacting with the medium W is supplied to the pipeline 1
6 to the gas suction port of the compressor 11,
7 again ventilates into the medium W.

【0017】また、日中及び夕方などのガス使用量が増
加する繁忙時間帯に、取入弁10を閉じ且つ中間弁15
及び送出弁22を開いて、圧縮機11及び熱媒源21を
運転し、加熱管19へ熱媒を連続的に供給して、生成反
応器9内を昇温させる。
In addition, during busy hours when gas consumption increases, such as during the daytime and in the evening, the intake valve 10 is closed and the intermediate valve 15 is closed.
Then, the delivery valve 22 is opened, the compressor 11 and the heat medium source 21 are operated, and the heat medium is continuously supplied to the heating pipe 19 to raise the temperature inside the production reactor 9.

【0018】生成反応器9の内部温度が2〜3℃以上に
上昇すると、平衡状態が保持されなくなって、ハイドレ
ートHが天然ガスGと媒質Wとに分離する。
When the internal temperature of the production reactor 9 rises to 2 to 3 ° C. or more, the equilibrium state is not maintained, and the hydrate H is separated into the natural gas G and the medium W.

【0019】媒質W中から生成反応器9の非媒質貯留空
間Sに達した天然ガスGは、管路16を経て圧縮機11
のガス吸引口へ送出され、更に圧縮機11により管路1
4,23を経て導管8へ送給され、繁忙時間帯における
需要者へのガス送給量が確保される。
The natural gas G that has reached the non-medium storage space S of the production reactor 9 from the medium W passes through the pipe 16 and is compressed by the compressor 11.
Is sent to the gas suction port of
The gas is supplied to the conduit 8 via the pipes 4 and 23, and the gas supply amount to the consumer during the busy hours is secured.

【0020】従って、このようなハイドレート生成設備
によれば、生成反応器9内で天然ガスGを媒質Wに通気
させて圧縮ガスよりも高密度のハイドレートHを生成す
るので、ガスの貯蔵効率の向上を図ることができ、ま
た、生成反応器9内を昇温させることにより、天然ガス
Gを生成反応器9外へ容易に送出することができる。
Therefore, according to such a hydrate production facility, the natural gas G is passed through the medium W in the production reactor 9 to produce the hydrate H having a higher density than the compressed gas. Efficiency can be improved, and the natural gas G can be easily sent out of the production reactor 9 by raising the temperature inside the production reactor 9.

【0021】[0021]

【発明が解決しようとする課題】しかしながら、前述し
た如きハイドレート生成設備を採用する場合、生成反応
器9内におけるハイドレートHの生成反応の進行状況、
即ちハイドレートHの生成量を把握しながら運転を行う
必要があるが、生成反応器9内のハイドレートHの生成
量を外部から把握する有効な手段は未だ提案されていな
いのが実情であり、例えば放射線透過装置等といった大
掛かりな特殊装置を用いても、いたずらに設備コストの
高騰を招いてしまうという不具合がある。
However, when the hydrate generation equipment as described above is employed, the progress of the hydrate H production reaction in the production reactor 9
That is, it is necessary to perform the operation while grasping the amount of hydrate H produced. However, there is no effective means for grasping the amount of hydrate H produced in the production reactor 9 from the outside. For example, even if a large-scale special device such as a radiation transmission device is used, there is a problem that the equipment cost is unnecessarily increased.

【0022】本発明は上述した実情に鑑みてなしたもの
で、大掛かりな特殊装置を用いることなく、汎用装置を
利用して簡易に且つ安価にハイドレートの生成量を把握
し得るようにした方法及び装置を提供することを目的と
している。
The present invention has been made in view of the above-described circumstances, and is a method for easily and inexpensively grasping the amount of hydrate generation using a general-purpose device without using a large-scale special device. And a device.

【0023】[0023]

【課題を解決するための手段】本発明は、生成反応器内
に貯留した媒質に貯蔵すべきガスを通気させて生成反応
器内を昇圧すると共に、生成反応器内を冷却してガスと
媒質とのハイドレートを生成するハイドレート生成設備
の生成量把握方法であって、生成反応器の鉛直方向複数
箇所における圧力を検出し、その圧力分布の変化を予備
実験から得られている生成量と圧力分布との関係データ
に照らし合わせてハイドレートの生成量を判断すること
を特徴とするものである。
According to the present invention, a gas to be stored is passed through a medium stored in a production reactor to increase the pressure in the production reactor and to cool the gas in the production reactor by cooling the gas in the production reactor. A method for grasping the production amount of hydrate production equipment that produces hydrate with, detecting the pressure at a plurality of points in the vertical direction of the production reactor, and comparing the change in the pressure distribution with the production amount obtained from preliminary experiments. It is characterized in that the amount of hydrate generation is determined in light of data relating to the pressure distribution.

【0024】而して、生成反応器内にハイドレートが生
成されていない初期状態にあっては、生成反応器内がガ
スと媒質とから成る気液の二相状態となっているので、
生成反応器の鉛直方向複数箇所で圧力を検出すると、夫
々の検出箇所における液ヘッドと生成反応器内の気相圧
力との合算圧力が検出され、生成反応器内の液面レベル
から下方への距離が深くなるに従い圧力は高く検出され
ることになる。
In the initial state where hydrate is not generated in the production reactor, the interior of the production reactor is in a gas-liquid two-phase state composed of gas and medium.
When the pressure is detected at a plurality of points in the vertical direction of the production reactor, the total pressure of the liquid head and the gas phase pressure in the production reactor at each of the detection points is detected, and the total pressure from the liquid level in the production reactor is detected. The higher the distance, the higher the pressure will be detected.

【0025】ところが、反応が進行してガスと媒質との
ハイドレートが生成されてくると、生成反応器内は気固
液の三相状態に遷移して流動抵抗が大きく変化し、ハイ
ドレート化(固体化)が進んだ部位同士の検出圧力が近
づく傾向となり、液ヘッドの影響が少なくなって圧力分
布が均等化してくる。
However, when the reaction proceeds and hydrates of the gas and the medium are generated, the inside of the production reactor transits to a gas-solid three-phase state, and the flow resistance changes greatly, and the hydrate is formed. The detected pressure between the parts where (solidification) has progressed tends to be closer, the influence of the liquid head is reduced, and the pressure distribution becomes uniform.

【0026】そして、遂には生成反応器内が気固の二相
状態となって反応が完結し、生成反応器の鉛直方向にお
ける各検出位置間で圧力に大きな差異がなくなり、略均
等な圧力分布が得られることになる。
Finally, the inside of the production reactor is in a gas-solid two-phase state and the reaction is completed, and there is no large difference in pressure between the detection positions in the vertical direction of the production reactor. Is obtained.

【0027】ここで、生成反応器内が気固液の三相状態
に遷移してハイドレートの生成が進行している途中の圧
力分布の変化は、圧力や温度等といった生成反応条件
と、生成反応器の規模や形状等といった設備ごとの独自
な条件に応じて異なる為、一概に圧力分布の変化量とハ
イドレートの生成量とを定量的に一般化することはでき
ないが、各設備ごとに本運転での生成反応条件で予備実
験を行って生成量と圧力分布との関係データを事前に求
めておけば、この関係データには当該設備についての反
復性があるので、本運転で実測した圧力分布を関係デー
タと照らし合わせることにより現在のハイドレートの生
成量を判断することが可能となる。
Here, the change in the pressure distribution during the formation of hydrate due to the transition of the inside of the production reactor to the gas-solid three-phase state depends on the production reaction conditions such as pressure and temperature and the production reaction conditions. Since it varies depending on the unique conditions of each facility such as the scale and shape of the reactor, the amount of change in pressure distribution and the amount of hydrate generated cannot be generalized quantitatively, but Preliminary experiments were carried out under the production reaction conditions in this operation, and if the relational data between the amount of production and the pressure distribution was obtained in advance, this relational data had repeatability for the equipment concerned. By comparing the pressure distribution with the related data, it is possible to determine the current hydrate generation amount.

【0028】また、本発明は、貯蔵すべきガスと反応し
てハイドレートを生成し得る媒質を貯留する生成反応器
と、生成反応器の底部へガスを送給するガス送給手段
と、生成反応器内を冷却する冷却手段とを備えたハイド
レート生成設備の生成量把握装置であって、生成反応器
の鉛直方向複数箇所に圧力検出器を夫々取り付け、該各
圧力検出器からの検出信号を入力し且つその圧力分布の
変化を予備実験から得られている生成量と圧力分布との
関係データに照らし合わせてハイドレートの生成量を算
出する演算装置を装備したことを特徴とするものでもあ
る。
The present invention also provides a production reactor for storing a medium capable of producing hydrate by reacting with a gas to be stored, a gas supply means for supplying gas to the bottom of the production reactor, A production amount grasping device for hydrate production equipment comprising cooling means for cooling the inside of the reactor, wherein pressure detectors are respectively attached to a plurality of positions in the vertical direction of the production reactor, and a detection signal from each of the pressure detectors is provided. And an arithmetic unit for calculating the amount of hydrate generation by comparing the change in the pressure distribution with the relational data between the amount of generation and the pressure distribution obtained from the preliminary experiment. is there.

【0029】而して、このような装置によれば、媒質を
貯留した生成反応器の底部へガス送給手段からガスを送
給し、該ガスを媒質中に通気させて生成反応器内を昇圧
すると共に、冷却手段により生成反応器内を冷却する
と、生成反応器内にガスと媒質とによりハイドレートが
徐々に生成されて貯蔵される。
According to such an apparatus, a gas is supplied from the gas supply means to the bottom of the production reactor storing the medium, and the gas is passed through the medium to cause the inside of the production reactor to flow. When the pressure is increased and the inside of the production reactor is cooled by the cooling means, hydrate is gradually generated and stored in the production reactor by the gas and the medium.

【0030】このとき、生成反応器の鉛直方向複数箇所
で圧力検出器により圧力が検出され、その検出信号が演
算装置に入力されて生成反応器内における鉛直方向の圧
力分布が監視されているので、その圧力分布の変化が演
算装置にて予備実験から得られている生成量と圧力分布
との関係データに照らし合わされてハイドレートの生成
量が算出される。
At this time, the pressure is detected by the pressure detector at a plurality of points in the vertical direction of the production reactor, and the detection signal is input to the arithmetic unit to monitor the vertical pressure distribution in the production reactor. Then, the change in the pressure distribution is compared with the relational data between the generation amount and the pressure distribution obtained from the preliminary experiment by the arithmetic unit to calculate the hydrate generation amount.

【0031】[0031]

【発明の実施の形態】以下本発明の実施の形態を図面を
参照しつつ説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0032】図1は本発明を実施する形態の一例を示す
もので、図3と同一の符号を付した部分は同一物を表わ
している。
FIG. 1 shows an example of an embodiment of the present invention, and portions denoted by the same reference numerals as those in FIG. 3 represent the same components.

【0033】本形態例においては、前述した図3の設備
と略同様に構成したハイドレート生成設備に関し、生成
反応器9の鉛直方向複数箇所に汎用の圧力検出器24を
夫々取り付け、該各圧力検出器24からの検出信号24
aを入力し且つその圧力分布の変化を予備実験から得ら
れている生成量と圧力分布との関係データに照らし合わ
せてハイドレートHの生成量を算出する演算装置25を
運転制御室26等に装備し、該演算装置25にて算出さ
れたハイドレートHの生成量を例えばモニター27等に
出力して表示し得るようにしてある。
In the present embodiment, a general-purpose pressure detector 24 is attached to each of a plurality of locations in the vertical direction of the production reactor 9 with respect to the hydrate production facility constructed substantially in the same manner as the facility shown in FIG. Detection signal 24 from detector 24
a calculation device 25 for inputting a and comparing the change of the pressure distribution with the relational data between the generation amount and the pressure distribution obtained from the preliminary experiment to calculate the generation amount of the hydrate H in the operation control room 26 and the like. It is provided so that the amount of hydrate H calculated by the arithmetic unit 25 can be output to, for example, the monitor 27 and displayed.

【0034】尚、図示では、説明の便宜上から加熱管1
9及び熱媒源21を省略しているが、これらは図3と同
様に備えられており、熱媒源21を運転して加熱管19
へ熱媒を連続的に供給することにより生成反応器9内を
昇温し得るようになっている(図3参照)。
It should be noted that in the drawing, the heating tube 1 is provided for convenience of explanation.
9 and the heat medium source 21 are omitted, but they are provided in the same way as in FIG.
The inside of the production reactor 9 can be heated by continuously supplying the heat medium to the heating reactor (see FIG. 3).

【0035】ただし、ハイドレートHを天然ガスGと媒
質Wとに分離して天然ガスGの払い出しを行うに際して
は、生成反応器9内を減圧させることによりハイドレー
トHのガス化を図るようにしても良く、そのような減圧
手段を備える場合には、加熱手段を省略し得る。
However, when the hydrate H is separated into the natural gas G and the medium W and the natural gas G is discharged, the hydrate H is gasified by reducing the pressure in the production reactor 9. When such a decompression unit is provided, the heating unit may be omitted.

【0036】而して、このようなハイドレートHの生成
量把握装置によれば、取入弁10及び中間弁15を開き
且つ送出弁22を閉じて、圧縮機11(ガス送給手段)
及び冷媒源20(冷却手段)を運転し、媒質Wを貯留し
た生成反応器9内底部の散気管17へ圧縮機11から天
然ガスGを送給し、該天然ガスGを媒質W中に通気させ
て生成反応器9内を昇圧すると共に、冷媒源20による
冷却管18への冷媒の連続的な供給で生成反応器9内を
冷却すると、該生成反応器9内に天然ガスGと媒質Wと
によりハイドレートHが徐々に生成されて貯蔵される。
According to the apparatus for grasping the amount of hydrate H generated, the intake valve 10 and the intermediate valve 15 are opened and the delivery valve 22 is closed, and the compressor 11 (gas supply means) is opened.
And the refrigerant source 20 (cooling means) is operated to feed the natural gas G from the compressor 11 to the air diffuser 17 at the bottom of the production reactor 9 storing the medium W, and the natural gas G is passed through the medium W. When the inside of the production reactor 9 is pressurized and the inside of the production reactor 9 is cooled by continuous supply of the refrigerant to the cooling pipe 18 by the refrigerant source 20, the natural gas G and the medium W Thus, hydrate H is gradually generated and stored.

【0037】このとき、生成反応器9の鉛直方向複数箇
所で圧力検出器24により圧力が検出され、その検出信
号24aが演算装置25に入力されて生成反応器9内に
おける鉛直方向の圧力分布が監視されているので、その
圧力分布の変化が運転制御室26の演算装置25にて予
備実験から得られている生成量と圧力分布との関係デー
タに照らし合わされてハイドレートHの生成量が算出さ
れ、モニター27に表示される。
At this time, pressure is detected by the pressure detector 24 at a plurality of points in the vertical direction of the production reactor 9, and a detection signal 24 a thereof is inputted to the arithmetic unit 25, and the pressure distribution in the vertical direction in the production reactor 9 is obtained. Since the pressure distribution is monitored, the change in the pressure distribution is compared with the relational data between the generation amount and the pressure distribution obtained from the preliminary experiment by the arithmetic unit 25 in the operation control room 26 to calculate the generation amount of the hydrate H. Is displayed on the monitor 27.

【0038】即ち、生成反応器9内にハイドレートHが
生成されていない初期状態にあっては、生成反応器9内
が天然ガスGと媒質Wとから成る気液の二相状態となっ
ているので、生成反応器9の鉛直方向複数箇所で圧力検
出器24により圧力を検出すると、夫々の検出箇所にお
ける液ヘッドと生成反応器9内の気相圧力との合算圧力
が検出され、生成反応器9内の液面レベルから下方への
距離が深くなるに従い圧力は高く検出されることにな
る。
That is, in the initial state where hydrate H is not generated in the production reactor 9, the interior of the production reactor 9 becomes a gas-liquid two-phase state composed of the natural gas G and the medium W. Therefore, when pressure is detected by the pressure detector 24 at a plurality of points in the vertical direction of the production reactor 9, the total pressure of the liquid head and the gas phase pressure in the production reactor 9 at each detection point is detected, and the production reaction is performed. As the distance from the liquid level in the vessel 9 to the lower side becomes deeper, the pressure is detected higher.

【0039】ところが、反応が進行して天然ガスGと媒
質WとのハイドレートHが生成されてくると、生成反応
器9内は気固液の三相状態に遷移して流動抵抗が大きく
変化し、ハイドレート化(固体化)が進んだ部位同士の
検出圧力が近づく傾向となり、液ヘッドの影響が少なく
なって圧力分布が均等化してくる。
However, when the reaction proceeds and the hydrate H of the natural gas G and the medium W is produced, the inside of the production reactor 9 changes to a gas-solid liquid three-phase state, and the flow resistance changes greatly. However, the detected pressures of the hydrated (solidified) parts tend to be close to each other, and the influence of the liquid head is reduced, and the pressure distribution becomes uniform.

【0040】そして、遂には生成反応器9内が気固の二
相状態となって反応が完結し、生成反応器9の鉛直方向
における各検出位置間で圧力に大きな差異がなくなり、
略均等な圧力分布が得られることになる。
Finally, the inside of the production reactor 9 becomes a gas-solid two-phase state and the reaction is completed, and there is no large difference in pressure between the detection positions in the vertical direction of the production reactor 9.
A substantially uniform pressure distribution is obtained.

【0041】ここで、生成反応器9内が気固液の三相状
態に遷移してハイドレートHの生成が進行している途中
の圧力分布の変化は、圧力や温度等といった生成反応条
件と、生成反応器9の規模や形状等といった設備ごとの
独自な条件に応じて異なる為、一概に圧力分布の変化量
とハイドレートHの生成量とを定量的に一般化すること
はできないが、各設備ごとに本運転での生成反応条件で
予備実験を行って生成量と圧力分布との関係データを事
前に求めておけば、この関係データには当該設備につい
ての反復性があるので、本運転で実測した圧力分布を関
係データと照らし合わせることにより現在のハイドレー
トHの生成量を判断することが可能となる。
Here, the change in the pressure distribution during the generation of hydrate H due to the transition of the inside of the production reactor 9 to the gas-solid three-phase state depends on the production reaction conditions such as pressure and temperature. However, since it varies according to unique conditions for each equipment such as the scale and shape of the production reactor 9, the amount of change in pressure distribution and the amount of hydrate H cannot be generalized quantitatively, If a preliminary experiment is performed for each facility under the production reaction conditions in the main operation to determine in advance the relationship data between the production amount and the pressure distribution, this relationship data has repeatability for the facility. By comparing the pressure distribution actually measured in the operation with the related data, the current generation amount of the hydrate H can be determined.

【0042】従って、上記形態例によれば、例えば放射
線透過装置等といった大掛かりな特殊装置を用いなくて
も、汎用の圧力検出器24を利用して生成反応器9内に
おける鉛直方向の圧力分布を監視するだけで簡易に且つ
安価にハイドレートHの生成量を把握することができる
ので、新たな天然ガス貯蔵設備等として提案されている
ハイドレート生成設備にかかる設備コストの高騰を回避
することができる。
Therefore, according to the above embodiment, the pressure distribution in the vertical direction in the production reactor 9 can be obtained by using the general-purpose pressure detector 24 without using a large-scale special device such as a radiation transmission device. The amount of hydrate H generated can be easily and inexpensively grasped simply by monitoring, so that it is possible to avoid an increase in equipment cost of a hydrate generation facility proposed as a new natural gas storage facility or the like. it can.

【0043】尚、本発明のハイドレート生成設備の生成
量把握方法及び装置は上述した実施の形態のみに限定さ
れるものではなく、ガス送給手段及び冷却手段には、例
示した以外の様々な方式を採用することが可能であるこ
と、その他、本発明の要旨を逸脱しない範囲において変
更を加え得ることは勿論である。
The method and apparatus for determining the amount of hydrate generation equipment of the present invention are not limited to the above-described embodiment. It is needless to say that the system can be adopted and other changes can be made without departing from the gist of the present invention.

【0044】[0044]

【発明の効果】以上述べたように本発明のハイドレート
生成設備の生成量把握方法及び装置によれば、大掛かり
な特殊装置を用いることなく、汎用の圧力検出器を利用
して生成反応器内における鉛直方向の圧力分布を監視す
るだけで簡易に且つ安価にハイドレートの生成量を把握
することができるので、ハイドレート生成設備にかかる
設備コストの高騰を回避することができるという優れた
効果を奏し得る。
As described above, according to the method and apparatus for ascertaining the amount of hydrate generation equipment of the present invention, a general-purpose pressure detector can be used without using a large-scale special device. Since the amount of hydrate generation can be easily and inexpensively grasped only by monitoring the vertical pressure distribution in the above, an excellent effect that it is possible to avoid an increase in the equipment cost of the hydrate generation equipment. I can play.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施する形態の一例を示す概念図であ
る。
FIG. 1 is a conceptual diagram showing an example of an embodiment for implementing the present invention.

【図2】従来のガス貯蔵設備の一例を示す概念図であ
る。
FIG. 2 is a conceptual diagram showing an example of a conventional gas storage facility.

【図3】新たな天然ガス貯蔵設備として提案されている
ハイドレート生成設備の一例を示す概念図である。
FIG. 3 is a conceptual diagram showing an example of a hydrate generation facility proposed as a new natural gas storage facility.

【図4】天然ガスと水とから生成されるハイドレートの
温度圧力平衡線図の一例である。
FIG. 4 is an example of a temperature-pressure equilibrium diagram of a hydrate generated from natural gas and water.

【符号の説明】 9 生成反応器 11 圧縮機(ガス送給手段) 20 冷媒源(冷却手段) 24 圧力検出器 24a 検出信号 25 演算装置 G 天然ガス(ガス) H ハイドレート W 媒質[Description of Signs] 9 Production reactor 11 Compressor (gas supply means) 20 Refrigerant source (cooling means) 24 Pressure detector 24a Detection signal 25 Arithmetic unit G Natural gas (gas) H Hydrate W Medium

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 生成反応器内に貯留した媒質に貯蔵すべ
きガスを通気させて生成反応器内を昇圧すると共に、生
成反応器内を冷却してガスと媒質とのハイドレートを生
成するハイドレート生成設備の生成量把握方法であっ
て、生成反応器の鉛直方向複数箇所における圧力を検出
し、その圧力分布の変化を予備実験から得られている生
成量と圧力分布との関係データに照らし合わせてハイド
レートの生成量を判断することを特徴とするハイドレー
ト生成設備の生成量把握方法。
1. A hydrate for producing a hydrate of a gas and a medium by cooling the inside of the production reactor by pressurizing the inside of the production reactor by passing a gas to be stored in a medium stored in the production reactor. This is a method for grasping the production amount of the rate production equipment, which detects the pressure at multiple points in the vertical direction of the production reactor and compares the change in the pressure distribution with the data on the relationship between the production amount and the pressure distribution obtained from preliminary experiments. A method for ascertaining the amount of hydrate generation equipment, comprising determining the amount of hydrate generation together.
【請求項2】 貯蔵すべきガスと反応してハイドレート
を生成し得る媒質を貯留する生成反応器と、生成反応器
の底部へガスを送給するガス送給手段と、生成反応器内
を冷却する冷却手段とを備えたハイドレート生成設備の
生成量把握装置であって、生成反応器の鉛直方向複数箇
所に圧力検出器を夫々取り付け、該各圧力検出器からの
検出信号を入力し且つその圧力分布の変化を予備実験か
ら得られている生成量と圧力分布との関係データに照ら
し合わせてハイドレートの生成量を算出する演算装置を
装備したことを特徴とするハイドレート生成設備の生成
量把握装置。
2. A production reactor for storing a medium capable of producing a hydrate by reacting with a gas to be stored, gas supply means for supplying gas to the bottom of the production reactor, A production amount grasping device of a hydrate production facility provided with cooling means for cooling, wherein pressure detectors are respectively attached to a plurality of positions in the vertical direction of the production reactor, and a detection signal from each of the pressure detectors is input; A hydrate generation facility characterized by having a calculation device for calculating the hydrate generation amount by comparing the change in the pressure distribution with the relation data between the generation amount and the pressure distribution obtained from preliminary experiments. Quantity grasping device.
JP35166199A 1999-12-10 1999-12-10 Method and apparatus for grasping generation amount of hydrate generation facility Expired - Fee Related JP4016554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35166199A JP4016554B2 (en) 1999-12-10 1999-12-10 Method and apparatus for grasping generation amount of hydrate generation facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35166199A JP4016554B2 (en) 1999-12-10 1999-12-10 Method and apparatus for grasping generation amount of hydrate generation facility

Publications (2)

Publication Number Publication Date
JP2001164275A true JP2001164275A (en) 2001-06-19
JP4016554B2 JP4016554B2 (en) 2007-12-05

Family

ID=18418774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35166199A Expired - Fee Related JP4016554B2 (en) 1999-12-10 1999-12-10 Method and apparatus for grasping generation amount of hydrate generation facility

Country Status (1)

Country Link
JP (1) JP4016554B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064385A (en) * 2001-08-24 2003-03-05 Mitsubishi Heavy Ind Ltd System and method for producing gas hydrate
JP2003082371A (en) * 2001-09-07 2003-03-19 Mitsubishi Heavy Ind Ltd Gas hydrate-forming container, apparatus and method for producing gas hydrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064385A (en) * 2001-08-24 2003-03-05 Mitsubishi Heavy Ind Ltd System and method for producing gas hydrate
JP2003082371A (en) * 2001-09-07 2003-03-19 Mitsubishi Heavy Ind Ltd Gas hydrate-forming container, apparatus and method for producing gas hydrate

Also Published As

Publication number Publication date
JP4016554B2 (en) 2007-12-05

Similar Documents

Publication Publication Date Title
CN110865153B (en) Hydrate multiphase flow loop experiment device and experiment method
CN102027236B (en) Device and method for pumping a cryogenic fluid
JP2007239956A (en) Method and device for filling hydrogen gas
JP2003301999A (en) System and method for dispensing pressurized gas
JP6863903B2 (en) Cooling of fluid with refrigerant at triple points
JP4859714B2 (en) Gas hydrate concentration measuring device
CN207404852U (en) A kind of liquefied ammonia prepares ammonium hydroxide device
Sun et al. Experimental and numerical simulation study on the offshore adaptability of spiral wound heat exchanger in LNG-FPSO DMR natural gas liquefaction process
CN113030367A (en) Device for testing catalytic performance of catalyst for reaction of para-hydrogen
CN212157863U (en) Portable low-temperature equipment for polarizing hydrogen
CN113030151B (en) Device and method for testing liquefaction rate of low-temperature gas liquefaction device
JP2001164275A (en) Method for estimating production amount of hydrate producing facility and apparatus therefor
WO1996018859A1 (en) Heat exchanger
CN114017004A (en) Deepwater oil and gas production shaft simulation test device and test method
JP2010105837A (en) Apparatus and method for producing dry ice
JP2622021B2 (en) Air separation method using external cold heat source
CN106883127A (en) A kind of device for continuously generating methyl nitrite
JP2001165398A (en) Method of preventing blocking-up of piping in hydrate generation plant and device thereof
CN110410665A (en) A kind of liquefied gas at low temp tank car unloading system
EP2569569A1 (en) Method for regulating a closed intermediate medium circuit when heat exchanging a primary medium
JP3628309B2 (en) Carbon dioxide liquefaction equipment using LNG cold energy
JP2007024198A (en) Method and device for treating boil-off gas
JP2717297B2 (en) How to measure the amount of stored hydrogen in the hydrogen storage tank
JP2758977B2 (en) Low temperature liquefied gas flow measurement method and flow meter using the method
KR101623095B1 (en) Coolant Cycle System Having Advanced Thermal Conductivity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees