JP2756364B2 - Optical surface treatment method and treatment device - Google Patents

Optical surface treatment method and treatment device

Info

Publication number
JP2756364B2
JP2756364B2 JP2314954A JP31495490A JP2756364B2 JP 2756364 B2 JP2756364 B2 JP 2756364B2 JP 2314954 A JP2314954 A JP 2314954A JP 31495490 A JP31495490 A JP 31495490A JP 2756364 B2 JP2756364 B2 JP 2756364B2
Authority
JP
Japan
Prior art keywords
processed
light
film
modified layer
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2314954A
Other languages
Japanese (ja)
Other versions
JPH04188621A (en
Inventor
信一 河手
安栄 佐藤
利行 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2314954A priority Critical patent/JP2756364B2/en
Application filed by Canon Inc filed Critical Canon Inc
Priority to EP98124754A priority patent/EP0908782A1/en
Priority to EP98124755A priority patent/EP0909989A1/en
Priority to EP98124753A priority patent/EP0909988A1/en
Priority to EP98124749A priority patent/EP0909987A1/en
Priority to EP98124750A priority patent/EP0909985A1/en
Priority to AT91116309T priority patent/ATE200829T1/en
Priority to EP98124751A priority patent/EP0908781A3/en
Priority to EP91116309A priority patent/EP0477890B1/en
Priority to DE69132587T priority patent/DE69132587T2/en
Priority to EP98124748A priority patent/EP0909986A1/en
Publication of JPH04188621A publication Critical patent/JPH04188621A/en
Priority to US08/251,666 priority patent/US5962194A/en
Priority to US08/429,288 priority patent/US6025115A/en
Priority to US08/429,287 priority patent/US5863706A/en
Priority to US08/428,431 priority patent/US5714306A/en
Priority to US08/428,518 priority patent/US5824455A/en
Priority to US08/429,289 priority patent/US5981001A/en
Application granted granted Critical
Publication of JP2756364B2 publication Critical patent/JP2756364B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光表面改質を用いて被加工面の所望領域にパ
ターン形成を行う光表面処理方法及び該方法の実施に用
いられる処理装置に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical surface treatment method for forming a pattern on a desired region of a surface to be processed by using optical surface modification, and a treatment apparatus used for carrying out the method. .

〔従来の技術〕[Conventional technology]

薄膜デバイスの主な製造工程は主として基板上の薄膜
を所望のパターンに微細加工する工程である。近年、半
導体記憶素子に代表される様に、素子の大容量化、機能
の高性能化が急速に進み、それに伴って、回路パターン
がより微細化し、また回路構造もより複雑化してきてい
る。一方、液晶デイスプレイ、プラズマデイスプレイ等
の表示素子は、ますます大型化し、素子機能も複雑化し
つつある。そのために、成膜工程や微細加工を行うエツ
チング工程は、溶液を用いたものから真空中又は減圧ガ
ス中でプラズマや励起ガスを用いるといったいわゆるド
ライプロセスが主になっている。しかし所望の微細加工
を行うために一般に用いられるフオトリソグラフイープ
ロセスでは、レジスト塗布、パターン露光、現像、エツ
チング、レジスト剥離等の複雑で煩雑なプロセスが用い
られる。
The main manufacturing process of a thin film device is mainly a process of finely processing a thin film on a substrate into a desired pattern. In recent years, as typified by semiconductor storage elements, the capacity of the elements and the performance of the functions have been rapidly advanced, and accordingly, circuit patterns have become finer and the circuit structures have become more complicated. On the other hand, display devices such as a liquid crystal display and a plasma display are becoming larger and larger, and the device functions are becoming more complicated. For this reason, a so-called dry process in which a film or an etching process for performing fine processing mainly uses a solution or a plasma or an excitation gas in a vacuum or a reduced pressure gas is used. However, in the photolithography process generally used for performing desired fine processing, complicated and complicated processes such as resist coating, pattern exposure, development, etching, and resist peeling are used.

このプロセス中でレジスト塗布、現像、レジスト剥離
工程では溶液を使うため完全にドライなプロセスにする
ことはできない。またレジストを用いるため、このレジ
ストが剥離し、ごみの発生源となり歩留りを低下させ
る。従って、前述のデバイスをフオトリソグラフイープ
ロセスで製造する場合、プロセスが複雑化して、コスト
が上昇するばかりでなく、ごみの発生、増加等によって
歩留りが低下して全体のコストも上昇してしまうという
問題があった。
In this process, a completely dry process cannot be performed because a solution is used in the resist coating, developing and resist removing steps. In addition, since a resist is used, the resist peels off and becomes a source of dust, thereby lowering the yield. Therefore, when the above-described device is manufactured by a photolithographic process, not only the process becomes complicated and the cost increases, but also the yield decreases due to generation and increase of dust, and the overall cost increases. There was a problem.

この様な問題を解決するために、改質ガス中での選択
照射光により、披処理膜表面にパターン構造を有する表
面改質層を形成する工程と、前記表面改質層を保護膜
(エツチングマスク)として、表面非改質層をドライエ
ツチングする行程を行う微細加工プロセスの方法が提案
されている。この方法によればフオトリソグラフイープ
ロセスを用いることなく、微細加工が可能となり、低コ
ストで歩留まりの向上を図ることができる。しかしなが
ら上記方法では表面改質時に長時間を要したり、強い光
パワーを必要とする場合があり、短時間の処理または光
パワーの弱い場合には、表面改質によって形成される保
護膜が化学的に強く結合していない場合や膜厚が不足す
る場合が生じ、保護膜の耐性が不充分で所望のエツチン
グ深さが得られないことがあった。
In order to solve such a problem, a step of forming a surface-modified layer having a pattern structure on the surface of the treated film by selective irradiation light in a modified gas, and a step of forming the surface-modified layer on a protective film (etching). As a mask, a method of a fine processing process for performing a process of dry-etching a surface non-modified layer has been proposed. According to this method, fine processing can be performed without using a photolithography process, and the yield can be improved at low cost. However, in the above method, a long time may be required for surface modification or a high optical power may be required. In the case of short-time processing or low optical power, the protective film formed by the surface modification may be chemically modified. In some cases, the film is not strongly bonded or the film thickness is insufficient, and the resistance of the protective film is insufficient, so that a desired etching depth may not be obtained.

また上記選択照射光による表面改質による表面改質層
そ非改質層との電子供与性等の性質の違いを利用して、
表面改質層もしくは非改質層上に膜ろ選択堆積する際に
も、表面改質層が化学的に強く結合していない場合や膜
厚が不足する場合には前記電子供与性等の性質の違いが
充分でなく、その後の堆積の選択性が十分でないことが
あった。
In addition, utilizing the difference in properties such as electron-donating properties between the surface-modified layer and the non-modified layer by surface modification by the selective irradiation light,
When selectively depositing a film on a surface-modified layer or a non-modified layer, when the surface-modified layer is not chemically bonded strongly or the film thickness is insufficient, the properties such as the electron donating property are used. In some cases, the selectivity of the subsequent deposition was not sufficient.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者らは、上記の如き従来技術の問題点に鑑み鋭
意研究の結果、従来技術と比較して、化学的に充分強い
結合や膜厚の充分厚いエツチング耐性の強い保護膜を形
成できる方法を見いだし、本発明を完成した。
The present inventors have conducted intensive studies in view of the problems of the prior art as described above, and as a result, compared with the prior art, a method capable of forming a protective film having a chemically strong bond and a sufficiently thick etching resistant film. And completed the present invention.

すなわち、本発明の光表面処理方法は、所望のガス雰
囲気中で被加工面に選択的に光を照射することによって
所望領域に前記被加工面と前記ガスとの光化学反応を生
ぜしめ前記被加工面を構成する元素を含有する表面改質
層を形成し、該表面改質層もしくは非改質層に選択的処
理を施す光表面処理方法であって、前記被加工面を前記
光の照射とは別に加熱しながら、前記光を照射すること
を特徴とする。
In other words, the optical surface treatment method of the present invention selectively irradiates light to a surface to be processed in a desired gas atmosphere, thereby causing a photochemical reaction between the surface to be processed and the gas in a desired region, and An optical surface treatment method for forming a surface-modified layer containing an element constituting a surface, and selectively treating the surface-modified layer or the non-modified layer, wherein the surface to be processed is irradiated with the light. Irradiating the light while heating separately.

また、本発明の光表面処理装置は、反応容器と、該反
応容器内に反応ガスを導入するガス導入手段と、該反応
容器内に処理光を導入する光導入手段と、を備え、前記
処理光の照射により前記反応容器内に配された基体の被
加工面と前記ガスとの光化学反応を生ぜしめることによ
って該被加工面に前記被加工面を構成する元素を含有す
る表面改質層を形成する光表面処理装置において、前記
処理光の照射時に前記被加工面を選択的に加熱する手段
を前記処理光の照射手段とは別に備えたことを特徴とす
る。
Further, the optical surface treatment apparatus of the present invention includes a reaction vessel, gas introduction means for introducing a reaction gas into the reaction vessel, and light introduction means for introducing processing light into the reaction vessel. By generating a photochemical reaction between the processing surface of the substrate disposed in the reaction vessel and the gas by irradiating light, a surface modification layer containing an element constituting the processing surface is formed on the processing surface. In the optical surface treatment apparatus to be formed, means for selectively heating the surface to be processed at the time of irradiation with the processing light is provided separately from the means for irradiating the processing light.

〔作用〕[Action]

本発明によれば表面改質層を形成する工程において表
面改質を施す膜を加熱することによって、光が照射され
た表面における光化学反応が促進されるため、表面改質
層が化学的により強い結合を持ち、膜厚も厚くなる。こ
れにより表面改質膜のエツチング耐性が向上する、
非改質層との電子供与性等の差を大きくできる。又、表
面改質層を形成後更に加熱を行うことで表面改質層を安
定な耐性のある領域とすることもできる、ためパターン
形成を容易に行うことができる。
According to the present invention, by heating the film to be surface-modified in the step of forming the surface-modified layer, a photochemical reaction on the surface irradiated with light is promoted, so that the surface-modified layer is chemically stronger. It has bonding and the film thickness is also thick. This improves the etching resistance of the surface-modified film,
The difference in the electron donating property from the unmodified layer can be increased. Further, by further heating after forming the surface-modified layer, the surface-modified layer can be made into a stable and durable region, so that the pattern can be easily formed.

〔好ましい実施様態〕[Preferred embodiment]

次に好ましい実施様態を模式的に示す添付図面を参照
して、本発明を具体的に説明する。第1図は本発明によ
る光処理方法の工程の好適な一例を示す模式図である。
Next, the present invention will be specifically described with reference to the accompanying drawings schematically showing preferred embodiments. FIG. 1 is a schematic view showing a preferred example of the steps of the light treatment method according to the present invention.

第1図(a)は基板1上の表面改質を施す膜2の加熱
を示している。3はヒーター等を用いた基板加熱による
前記膜2の加熱、4はレーザーランプ等を用いた照射に
よる前記膜2の加熱を模式的に示しており、4の加熱は
表面改質領域のみに選択的に行うことも可能である。
FIG. 1A shows heating of a film 2 on a substrate 1 on which a surface modification is to be performed. Reference numeral 3 denotes heating of the film 2 by heating the substrate using a heater or the like, reference numeral 4 denotes heating of the film 2 by irradiation using a laser lamp or the like, and heating 4 is selected only for the surface modified region. It is also possible to perform it.

以下に本発明の光処理方法の一例としてエツチングに
よるパターニングプロセスを示す。第1図(b)は、予
め(a)に示した加熱状態にある被加工膜2上への改質
ガス中での選択光5の照射を表す、(c)は(a)、
(b)の結果、加熱により促進された光化学反応によっ
て、表面改質層6が形成されたことを示す。この表面改
質層6は第11図(a)に示した被加工膜2を加熱しない
で光化学反応のみで形成した表面改質層7よりも化学的
な結合が強く、また膜厚も厚い。従ってこの表面改質層
6を保護層(マスク)として被加工膜2をエツチングす
る場合には、加熱を行わない第11図(a)の表面改質層
7を保護膜とした場合と比較して、より深いエツチング
量を得ることができる。
Hereinafter, a patterning process by etching will be described as an example of the light processing method of the present invention. FIG. 1B shows the irradiation of the selective light 5 in the reformed gas on the film 2 to be processed in the heating state shown in FIG. 1A in advance, and FIG.
(B) shows that the surface modified layer 6 was formed by the photochemical reaction accelerated by heating. The surface modified layer 6 has a stronger chemical bond and a larger thickness than the surface modified layer 7 formed only by photochemical reaction without heating the film 2 to be processed shown in FIG. 11 (a). Therefore, when the film to be processed 2 is etched using the surface modified layer 6 as a protective layer (mask), it is compared with the case where the surface modified layer 7 shown in FIG. Thus, a deeper etching amount can be obtained.

第1図(d)に第1図(c)の保護膜6が消失するま
でエツチングを行った状態を示す。又、第11図(e)
に、第11図(a)の保護7が消失するまでエツチングを
行った状態を示す。第1図(d)及び第11図(e)の比
較からわかるように被加工膜を加熱することによってそ
れだけ深いエツチング量を得ることができる。
FIG. 1D shows a state in which etching is performed until the protective film 6 in FIG. 1C disappears. FIG. 11 (e)
FIG. 11A shows a state in which etching is performed until the protection 7 in FIG. 11A disappears. As can be seen from a comparison between FIG. 1 (d) and FIG. 11 (e), a deeper etching amount can be obtained by heating the film to be processed.

次に実施例を挙げて本発明を更に具体的に説明する。 Next, the present invention will be described more specifically with reference to examples.

〔実施例1〕 透明電極ITO付石英基板上に絶縁層a−SiNx:H膜のパ
ターンをエツチングにより形成した。
Example 1 A pattern of an insulating layer a-SiN x : H film was formed on a quartz substrate with a transparent electrode ITO by etching.

第2図及び第3図を用いて説明する。 This will be described with reference to FIG. 2 and FIG.

まず第2図(a)に示すようにITO21′付基板21上に
プラズマCVD法によりa−SiNx:H膜22を5,000Åの膜厚で
形成した。これを試料として続いて図3に示す表面改質
装置の基板ホルダー32にこの試料31を設置し、ヒーター
33を用いた基板加熱により400℃に加熱した。この状態
で、ガス導入口34よりO2ガスを導入し、内部の圧力が1t
orrとなる様に、真空排気装置30を制御した。低圧水銀
ランプ36からのUV光を照明光学系37によってマスク38に
照射し、投影光学系39によって、a−SiNx:H膜表面にマ
スク38のパターン像を窓35を通して結像させた。
First, as shown in FIG. 2 (a), an a-SiN x : H film 22 was formed on the substrate 21 with ITO 21 'by a plasma CVD method to a thickness of 5,000. Using this as a sample, the sample 31 was placed on the substrate holder 32 of the surface reforming apparatus shown in FIG.
The substrate was heated to 400 ° C. by using the substrate 33. In this state, O 2 gas was introduced from the gas inlet 34, and the internal pressure was 1 t.
The evacuation device 30 was controlled so as to be orr. The UV light from the low-pressure mercury lamp 36 was irradiated on the mask 38 by the illumination optical system 37, and the pattern image of the mask 38 was formed on the surface of the a-SiN x : H film through the window 35 by the projection optical system 39.

UV光が照射された表面では、O2とa−SiNx:Hが熱によ
り促進された光化学反応を起こし20分間の露光で厚さ20
ÅのS:Oy膜(第2図(b)図26)が形成された。
On the surface irradiated with UV light, O 2 and a-SiN x : H cause a photochemical reaction promoted by heat, and a thickness of 20 minutes is obtained by exposure for 20 minutes.
An S: Oy film (FIG. 2 (b), FIG. 26) was formed.

この様にして得られたS:Oy膜26をマスクにして、CF4
+O2ガスを用いたケミカルドライエツチングをマスクが
消失するまで行った結果、第2図(c)に示す様に所望
のパターンが得られた。比較のために、被加工膜の加熱
を行わずに同一条件で行った場合について第11図(b)
及び(f)に示す。第11図(b)及び(f)からわかる
ように、酸化の程度及び膜厚が不充分な保護膜27からは
(f)に示すパターンが得られ第2図(c)に示したよ
うなパターンを得ることはできなかった。
Using the thus obtained S: Oy film 26 as a mask, CF 4
As a result of performing chemical dry etching using + O 2 gas until the mask disappeared, a desired pattern was obtained as shown in FIG. 2 (c). For comparison, FIG. 11 (b) shows a case where the processing was performed under the same conditions without heating the film to be processed.
And (f). As can be seen from FIGS. 11 (b) and (f), the pattern shown in (f) is obtained from the protective film 27 having an insufficient degree of oxidation and insufficient film thickness, as shown in FIG. 2 (c). I couldn't get the pattern.

本実施例では、加熱温度を400℃としたが、他の温度
でも、それに応じた光化学反応の促進効果が得られるこ
とは言うまでもない。これを示す例として加熱温度を変
えた以外同一の条件でa−SiNx:H膜の表面改質により得
られたSiOy膜のエツチング耐性を表す値として、ケミカ
ルドライエツチング時のデツドタイム(エツチング開始
時からa−SiOy膜が消失するまでの時間)を図4に示し
た。
In the present embodiment, the heating temperature was set to 400 ° C., but it goes without saying that the effect of accelerating the photochemical reaction can be obtained at other temperatures. As an example of this, as a value representing the etching resistance of the SiO y film obtained by the surface modification of the a-SiN x : H film under the same conditions except that the heating temperature was changed, the dead time at the time of chemical dry etching (etching start) FIG. 4 shows the time from when the a-SiO y film disappears.

さらに前記SiOx膜のエツチング耐性を表す他の例とし
て、XPS(X線光電子分光)による表面分折から求めたS
i2Pからのケミカルシフトを図5に示す。同図よりケミ
カルシフトの値がSiO2(4.5ev)に近づくほど、酸化が
進みエツチング耐性が高くなることがわかる。
Further, as another example showing the etching resistance of the SiOx film, S obtained by surface analysis by XPS (X-ray photoelectron spectroscopy) was used.
The chemical shift from i 2P is shown in FIG. It can be seen from the figure that as the value of the chemical shift approaches SiO 2 (4.5 ev), the oxidation proceeds and the etching resistance increases.

〔実施例2〕 石英基板上にAl電極パターンをエツチングにより形成
した。第6図、第7図を用いて説明する。第6図(a)
に示すように石英基板61上にスパツタ法によりAl膜62を
1μm形成した。これを試料71として続いて第7図に示
す表面改質装置の基板ホルダー72にこの試料71を設置し
ハロゲンランプ73a及び反射板73bによるランプ加熱によ
り試料71を500℃に加熱した。この状態で、ガス導入口7
4よりNO2ガスを導入し、内部の圧力が1torrとなる様
に、真空排気装置70を制御した。KrFレーザー76からの
発振光(248nm)を照明光学系77によって、マスク78に
照射し、投影光学系79によってA膜表面にマスク78のパ
ターン像を窓75を通して結像させた。
Example 2 An Al electrode pattern was formed on a quartz substrate by etching. This will be described with reference to FIGS. 6 and 7. FIG. 6 (a)
As shown in FIG. 1, an Al film 62 was formed on a quartz substrate 61 by a sputtering method to a thickness of 1 μm. This was used as a sample 71, and the sample 71 was subsequently placed on a substrate holder 72 of a surface modification apparatus shown in FIG. 7 and heated to 500 ° C. by lamp heating using a halogen lamp 73a and a reflector 73b. In this state, the gas inlet 7
The NO 2 gas was introduced from 4, and the evacuation device 70 was controlled such that the internal pressure became 1 torr. Oscillation light (248 nm) from a KrF laser 76 was irradiated on the mask 78 by the illumination optical system 77, and a pattern image of the mask 78 was formed on the surface of the A film through the window 75 by the projection optical system 79.

光が照射された表面ではNO2とAlが熱により促進され
た光化学反応を起こし、10分間の露光でAl膜の表面に厚
さ30ÅのAlOx膜(第6図(b)図66)が形成された。
On the surface irradiated with light, NO 2 and Al cause a photochemical reaction promoted by heat, and an AlO x film having a thickness of 30 mm (FIG. 6B, FIG. 66) is formed on the surface of the Al film by exposure for 10 minutes. Been formed.

この様にして得られたAlOx膜66をマスクにして、Cl2
ガスを用いたエツチングをマスクが消失するまで行った
結果、第6図(c)に示す様に所望のパターンが得られ
た。
Using the AlO x film 66 thus obtained as a mask, Cl 2
As a result of performing etching using gas until the mask disappeared, a desired pattern was obtained as shown in FIG. 6 (c).

比較のために被加工膜の加熱を行わずに同一条件で行
った場合について第11図(c)及び(g)に示す。第11
図(c)、(g)からわかるように酸化の程度、膜厚と
もに不充分な保護膜67からは(g)に示すパターンが得
られ第6図(c)に示したような所望のパターンを得る
ことができなかった。
For comparison, FIGS. 11 (c) and 11 (g) show a case where heating is performed under the same conditions without heating the film to be processed. Eleventh
As can be seen from FIGS. 6 (c) and 6 (g), the pattern shown in FIG. 6 (g) is obtained from the protective film 67 which is insufficient in both the degree of oxidation and the film thickness, and the desired pattern as shown in FIG. 6 (c). Could not get.

〔実施例3〕 透明電極ITO付石英基板上にa−Si膜半導体層を形成
した後Alパターンを形成した。本実施例では加熱を選択
的に行った。第8図、第9図及び第10図を用いて説明す
る。
Example 3 After an a-Si film semiconductor layer was formed on a quartz substrate with a transparent electrode ITO, an Al pattern was formed. In this embodiment, heating was selectively performed. This will be described with reference to FIGS. 8, 9, and 10.

まず第8図(a)に示したようにITO81′付基板81上
にプラズマCVD法によりa−Si膜82を6,000Åの膜厚で形
成した。これを試料91として続いて第9図に示される表
面改質装置の基板ホルダー92に設置した。第9図におい
て基板ホルダー92はコンピーター(不図示)で制御され
2次元的に移動可能なXYステージ93に設置されている。
ガス導入口94よりNO2ガスを導入し、内部の圧力が10tor
rとなる様に真空排気装置90を制御した。
First, as shown in FIG. 8 (a), an a-Si film 82 was formed with a thickness of 6,000 ° on a substrate 81 with ITO 81 'by a plasma CVD method. This was subsequently placed as a sample 91 on a substrate holder 92 of a surface modification apparatus shown in FIG. In FIG. 9, the substrate holder 92 is set on an XY stage 93 which is controlled by a computer (not shown) and can move two-dimensionally.
NO 2 gas is introduced from the gas inlet 94, and the internal pressure is 10 torr
The evacuation device 90 was controlled so as to be r.

不図示のレーザー制御装置によって加熱用のCO2レー
ザー96bと光化学反応のKrFエキシマレーザー96aを制御
し両レーザーのピークパワーとなる時間が一致するよう
に同期させて発振させた。CO2レーザー96bで発振させた
赤外光は、投影光学系96bによって試料91上で所望のス
ポツトサイズ(本実施例では3μm)になるように調整
した。投影光学系を出た赤外光は、透過反射板98によっ
て反射され、窓95を通して試料91に照射される。ここで
透過反射板は厚さ2mm合成石英板でできており、更に遠
赤外反射表面には、波長11.7〜12.5μmを反射させKrF
エキシマレーザー15の発振光(248nm)を透過する高反
射膜をコーティングしてある。
A CO 2 laser 96b for heating and a KrF excimer laser 96a of a photochemical reaction were controlled by a laser controller (not shown), and the lasers were oscillated synchronously so that the peak power times of both lasers coincided. The infrared light oscillated by the CO 2 laser 96b was adjusted to a desired spot size (3 μm in this embodiment) on the sample 91 by the projection optical system 96b. The infrared light that has exited the projection optical system is reflected by the transmission / reflection plate 98 and is applied to the sample 91 through the window 95. Here, the transmission / reflection plate is made of a synthetic quartz plate having a thickness of 2 mm, and the far-infrared reflection surface reflects a wavelength of 11.7 to 12.5 μm and
It is coated with a highly reflective film that transmits the oscillation light (248 nm) of the excimer laser 15.

一方第2の光源であるKrFエキシマレーザー96aの発振
光(248nm)は、投影光学系97aによって、透過反射板98
と窓95を通して試料91上に第一の光源で発振させた赤外
光と同様に所望のスポツトサイズ(本実施例では3μ
m)で照射させた。
On the other hand, the oscillation light (248 nm) of the KrF excimer laser 96a, which is the second light source, is transmitted by the projection optical system 97a to the transmission / reflection plate 98.
And a desired spot size (3 μm in this embodiment) like the infrared light oscillated by the first light source on the sample 91 through the window 95.
m).

光が照射された表面は、前記赤外光によって加熱され
温度が350℃に上昇して、前記遠赤外光による光化学反
応が促進された。
The surface irradiated with light was heated by the infrared light and the temperature was increased to 350 ° C., so that the photochemical reaction by the far infrared light was promoted.

XYステージ93に載せた基板ホルダー92を2次元的に動
かすことによって、第8図(b)の86に示す様な表面改
質層SiOx(70Å)のパターンが形成された。
By moving the substrate holder 92 placed on the XY stage 93 two-dimensionally, a pattern of the surface modified layer SiO x (70 °) as shown at 86 in FIG. 8B was formed.

この表面改質層SiOx86は酸化が充分に進んでおり、膜
厚も70Åあるので、非電子供与体であった。
The surface modified layer SiO x 86 was a non-electron donor because oxidation was sufficiently advanced and the film thickness was 70 °.

続いてこの試料91を第10図に示すAl選択堆積用のSVD
装置の基板ホルダー12に設置し試料11とした。以下の方
法により、電子供与体表面のみにAlが堆積され、非電子
供与体表面にはAlは堆積されず、Alの選択堆積が可能と
なった。
Subsequently, this sample 91 was subjected to SVD for selective deposition of Al shown in FIG.
The sample 11 was set on the substrate holder 12 of the apparatus. By the following method, Al was deposited only on the surface of the electron donor and Al was not deposited on the surface of the non-electron donor, and selective deposition of Al became possible.

まず堆積室17内部を10-7torr以下に真空排気系10によ
って排気した後、ヒーター13によって試料11を300℃に
加熱した。原料気化装置15を通して得られるDMAH(C
H32AlHをガス混合器14の第一のガスラインからキヤリ
アガスとしてH2を用いて供給し、第2のガスラインから
H2を供給する。
First, the inside of the deposition chamber 17 was evacuated to 10 −7 torr or less by the vacuum evacuation system 10, and then the sample 11 was heated to 300 ° C. by the heater 13. DMAH (C obtained through the raw material vaporizer 15
H 3 ) 2 AlH is supplied from the first gas line of the gas mixer 14 using H 2 as a carrier gas, and is supplied from the second gas line.
Supplying the H 2.

カス導入口16よりDMAHとH2を堆積室17内に導入し、堆
積室17内の全圧力が1.5torr、DMAHの分圧が1.5×10-4to
rrとなるようにガス混合器14と真空排気系10を調整し、
10分間堆積を行った。
The DMAH and H 2 than scum inlet 16 is introduced into the deposition chamber 17, the total pressure in the deposition chamber 17 is 1.5 torr, partial pressure 1.5 × 10 -4 to the DMAH
Adjust the gas mixer 14 and the evacuation system 10 so as to be rr,
Deposition was performed for 10 minutes.

その結果、第8図(c)に示す様に、表面改質を施し
た非電子供与体SiOx膜86表面には、Alはまったく堆積し
なかった。又該表面をAuger電子分光を用いて表面分析
したところAlは検出されなかった。一方電子供与体であ
るa−Si膜表面82上には、炭素がまったく含まれず(検
出限界以下)抵抗率2.7μΩcm、平均配線寿命1×103
104時間、ヒロツク密度0〜10コ/cm2、かつスパイクの
発生がない良質のAl膜が選択的に堆積され、良質な電極
を形成できた(第8図(c)の88)。
As a result, as shown in FIG. 8C, no Al was deposited on the surface of the surface-modified non-electron donor SiO x film 86. When the surface was analyzed by Auger electron spectroscopy, Al was not detected. On the other hand, on the surface 82 of the a-Si film as an electron donor, no carbon is contained (below the detection limit), the resistivity is 2.7 μΩcm, and the average wiring life is 1 × 10 3
10 4 hours, Hirotsuku density 0 co / cm @ 2, and Al film of good quality without generation of spike is selectively deposited, (88 FIG. 8 (c)) that could form a high-quality electrode.

比較のためにCO2レーザーによる加熱を行わずに同一
条件で表面改質及びAl堆積を行った例について第11図
(d)及び(h)に示す。第11図(d)の表面改質膜87
は酸化の程度及び膜厚ともに充分であるために、非電子
供与体たり得ず、従って第11図(h)の89に示される様
にAlが全面に堆積し、所望のパターンを得ることができ
なかった。
For comparison, FIGS. 11 (d) and 11 (h) show examples in which surface modification and Al deposition were performed under the same conditions without heating with a CO 2 laser. The surface modified film 87 in FIG.
Since the degree of oxidation and the film thickness are sufficient, a non-electron donor cannot be obtained. Therefore, as shown at 89 in FIG. 11 (h), Al is deposited on the entire surface and a desired pattern can be obtained. could not.

〔発明の効果〕〔The invention's effect〕

上述の通り表面改質層を形成する工程において表面改
質を施す膜を加熱することによって、光が照射された表
面における光化学反応が促進されるため、表面改質層が
化学的により強い結合を持ち、膜厚も厚くなる。これに
より表面改質膜のエツチング耐性が向上する非改質
層との電子供与性等の差を大きくできる、ため薄膜パタ
ーン形成を容易に行うことができる。
By heating the film to be surface-modified in the step of forming the surface-modified layer as described above, the photochemical reaction on the surface irradiated with light is promoted, and the surface-modified layer chemically bonds more strongly. And the film thickness increases. As a result, the difference in the electron-donating property from the non-modified layer in which the etching resistance of the surface-modified film is improved can be increased, so that the thin film pattern can be easily formed.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)及至第1図(d)、第2図(a)及至第2
図(c)、第6図(a)及至第6図(c)、及び第8図
(a)及至第8図(c)は夫々本発明の光表面処理方法
の代表例を説明するための模式図、 第3図、第7図、第9図は夫々本発明の光表面処理装置
の代表例を説明するための模式図、 第4図は表面改質膜形成時の基体温度とデツドタイムの
関係を示す模式図、 第5図は表面改質膜形成時の基体温度とケミカルシフト
の関係を示す模式図、 第10図はAl選択堆積用のCVD装置の模式図、 第11図(a)、(b)、(c)、(d)、(e)、
(f)、(g)、(h)は従来の光表面処理工程を示す
模式図である。 1、21、61、81……基板 2、21、61、81……被エツチング(パターニング)膜 3、4、23、63、83……加熱 5、25、65、85……表面改質に用いる選択照射光 6、7、26、27、66、67、86、87……表面改質層 88、89……Al膜 10、30、70、90……真空排気装置 11、31、71、91……試料 12、32、72、92……基板ホルダー 13、33……ヒーター 73a、73b……ハロゲンランプ、反射板 93……XYステージ 16、34、74、94……ガス導入口 35、75、95……窓 36、76、96a、96b……光源 37、77……照明光学系 39、79、97a、97b……投影光学系 38、78……マスク 98……透過反射板 14……ガス混合器 15……原料ガス気化器 17……堆積室
Fig. 1 (a) to Fig. 1 (d), Fig. 2 (a) to 2
FIGS. 6 (c), 6 (a) to 6 (c), and FIGS. 8 (a) to 8 (c) are views for explaining typical examples of the optical surface treatment method of the present invention. FIG. 3, FIG. 7, FIG. 9, and FIG. 9 are schematic diagrams each illustrating a typical example of the optical surface treatment apparatus of the present invention. FIG. FIG. 5 is a schematic view showing the relationship between the substrate temperature and the chemical shift during the formation of the surface-modified film, FIG. 10 is a schematic view of a CVD apparatus for selective deposition of Al, and FIG. 11 (a). , (B), (c), (d), (e),
(F), (g), (h) is a schematic diagram showing a conventional optical surface treatment step. 1, 21, 61, 81 ... Substrate 2, 21, 61, 81 ... Etching (patterning) film 3, 4, 23, 63, 83 ... Heating 5, 25, 65, 85 ... For surface modification Selective irradiation light used 6, 7, 26, 27, 66, 67, 86, 87 Surface modification layers 88, 89 Al film 10, 30, 70, 90 Vacuum exhaust devices 11, 31, 71, 91… Sample 12, 32, 72, 92… Substrate holder 13, 33… Heater 73a, 73b… Halogen lamp, reflector 93… XY stage 16, 34, 74, 94… Gas inlet 35, 75, 95 ... windows 36, 76, 96a, 96b ... light sources 37, 77 ... illumination optical systems 39, 79, 97a, 97b ... projection optical systems 38, 78 ... masks 98 ... transflectors 14 ... ... gas mixer 15 ... source gas vaporizer 17 ... deposition chamber

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭56−105479(JP,A) 特開 昭57−208142(JP,A) 特開 昭61−54632(JP,A) 特開 昭61−280621(JP,A) 特開 昭59−194439(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01L 21/302 H01L 21/205──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-56-105479 (JP, A) JP-A-57-208142 (JP, A) JP-A-61-54632 (JP, A) JP-A-61-54632 280621 (JP, A) JP-A-59-194439 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01L 21/302 H01L 21/205

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】所望のガス雰囲気中で被加工面に選択的に
光を照射することによって所望領域に前記被加工面と前
記ガスとの光化学反応を生でぜしめ前記被加工面を構成
する元素を含有する表面改質層を形成し、該表面改質層
もしくは非改質層に選択的処理を施す光表面処理方法で
あって、前記被加工面を前記光の照射とは別に加熱しな
がら、該被加工面に前記光を照射することを特徴とする
光表面処理方法。
1. A surface to be processed is selectively irradiated with light in a desired gas atmosphere to generate a photochemical reaction between the surface to be processed and the gas in a desired region to form the surface to be processed. An optical surface treatment method for forming a surface modified layer containing an element and selectively treating the surface modified layer or the non-modified layer, wherein the surface to be processed is heated separately from the irradiation with the light. And irradiating the surface to be processed with the light.
【請求項2】前記選択的処理が、前記表面改質層を保護
膜として、非改質層をエッチングする処理である請求項
1に記載の光表面処理方法。
2. The optical surface treatment method according to claim 1, wherein the selective treatment is a treatment for etching a non-modified layer using the surface modified layer as a protective film.
【請求項3】前記選択的処理が、前記表面改質層もしく
は非改質層上に膜を選択的に堆積させる工程からなる請
求項1に記載の光表面処理方法。
3. The optical surface treatment method according to claim 1, wherein the selective treatment comprises a step of selectively depositing a film on the surface modified layer or the non-modified layer.
【請求項4】前記加熱を光の選択照射によって表面改質
領域のみに行う請求項1に記載の光表面処理方法。
4. The optical surface treatment method according to claim 1, wherein the heating is performed only on the surface modified region by selective irradiation of light.
【請求項5】前記加熱が、ヒーターによる前記被加工面
の加熱である請求項1に記載の光表面処理方法。
5. The optical surface treatment method according to claim 1, wherein the heating is heating of the surface to be processed by a heater.
【請求項6】前記加熱が、レーザー又はランプによる前
記被加工面の光照射により行われる請求項1に記載の光
表面処理方法。
6. The optical surface treatment method according to claim 1, wherein the heating is performed by irradiating the surface to be processed with a laser or a lamp.
【請求項7】反応容器と、該反応容器内に反応ガスを導
入するガス導入手段と、該反応容器内に処理光を導入す
る光導入手段と、を備え、前記処理光の照射により前記
反応容器内に配された基体の被加工面と前記ガスとの光
化学反応を生ぜしめることによって該被加工面に前記被
加工面を構成する元素を含有する表面改質層を形成する
光表面処理装置において、 前記処理光の照射時に前記被加工面を選択的に加熱する
手段を前記処理光の照射手段とは別に備えたことを特徴
とする光表面処理装置。
7. A reaction vessel, gas introducing means for introducing a reaction gas into the reaction vessel, and light introducing means for introducing a processing light into the reaction vessel, wherein the reaction light is irradiated by the processing light. An optical surface treatment apparatus for forming a surface-modified layer containing an element constituting the surface to be processed on the surface to be processed by causing a photochemical reaction between the surface to be processed and the gas disposed in the container. 5. The optical surface treatment apparatus according to claim 1, further comprising means for selectively heating the surface to be processed at the time of irradiation with the processing light, separately from the means for irradiating the processing light.
JP2314954A 1990-09-26 1990-11-19 Optical surface treatment method and treatment device Expired - Fee Related JP2756364B2 (en)

Priority Applications (17)

Application Number Priority Date Filing Date Title
JP2314954A JP2756364B2 (en) 1990-11-19 1990-11-19 Optical surface treatment method and treatment device
EP98124755A EP0909989A1 (en) 1990-09-26 1991-09-25 Photolithographic processing method and apparatus
EP98124753A EP0909988A1 (en) 1990-09-26 1991-09-25 Photolithographic processing method
EP98124749A EP0909987A1 (en) 1990-09-26 1991-09-25 Photolithographic processing method and apparatus
EP98124750A EP0909985A1 (en) 1990-09-26 1991-09-25 Photolithographic processing method and apparatus
AT91116309T ATE200829T1 (en) 1990-09-26 1991-09-25 PHOTOLITHOGRAPHIC PROCESSING METHOD AND APPARATUS
EP98124751A EP0908781A3 (en) 1990-09-26 1991-09-25 Photolithographic processing method and apparatus
EP91116309A EP0477890B1 (en) 1990-09-26 1991-09-25 Processing method and apparatus
EP98124754A EP0908782A1 (en) 1990-09-26 1991-09-25 Photolithographic processing method
DE69132587T DE69132587T2 (en) 1990-09-26 1991-09-25 Photolithographic processing method and device
EP98124748A EP0909986A1 (en) 1990-09-26 1991-09-25 Photolithographic processing method and apparatus
US08/251,666 US5962194A (en) 1990-09-26 1994-05-31 Processing method and apparatus
US08/429,288 US6025115A (en) 1990-09-26 1995-04-25 Processing method for etching a substrate
US08/429,287 US5863706A (en) 1990-09-26 1995-04-25 Processing method for patterning a film
US08/428,431 US5714306A (en) 1990-09-26 1995-04-25 Processing method and apparatus
US08/428,518 US5824455A (en) 1990-09-26 1995-04-25 Processing method and apparatus
US08/429,289 US5981001A (en) 1990-09-26 1995-04-25 Processing method for selectively irradiating a surface in presence of a reactive gas to cause etching

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2314954A JP2756364B2 (en) 1990-11-19 1990-11-19 Optical surface treatment method and treatment device

Publications (2)

Publication Number Publication Date
JPH04188621A JPH04188621A (en) 1992-07-07
JP2756364B2 true JP2756364B2 (en) 1998-05-25

Family

ID=18059663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2314954A Expired - Fee Related JP2756364B2 (en) 1990-09-26 1990-11-19 Optical surface treatment method and treatment device

Country Status (1)

Country Link
JP (1) JP2756364B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56105479A (en) * 1980-01-25 1981-08-21 Mitsubishi Electric Corp Pattern formation method
JPS57208142A (en) * 1981-06-17 1982-12-21 Toshiba Corp Method for forming fine pattern
JPS59194439A (en) * 1983-04-20 1984-11-05 Oki Electric Ind Co Ltd Method for forming pattern of semiconductor device
JPS6154632A (en) * 1984-08-24 1986-03-18 Jeol Ltd Formation of insulating film
US4612085A (en) * 1985-04-10 1986-09-16 Texas Instruments Incorporated Photochemical patterning

Also Published As

Publication number Publication date
JPH04188621A (en) 1992-07-07

Similar Documents

Publication Publication Date Title
US5344522A (en) Pattern forming process and process for preparing semiconductor device utilizing said pattern forming process
EP0909989A1 (en) Photolithographic processing method and apparatus
JPS61280621A (en) Optochemical patterning system
US5024724A (en) Dry-etching method
JP2756364B2 (en) Optical surface treatment method and treatment device
JPS6219051B2 (en)
JPS61228633A (en) Formation of thin film
JPH07254556A (en) Pattern forming method and equipment therefor
JPS6376438A (en) Pattern formation
JP2770578B2 (en) Photo CVD method
JPS62136025A (en) Ultrafine pattern working carbon film and working method for ultrafine pattern
JP2622188B2 (en) Fine processing method of thin film device
JP2966036B2 (en) Method of forming etching pattern
RU2017191C1 (en) Method of forming of mask masking layer
US5316895A (en) Photolithographic method using non-photoactive resins
JP2670465B2 (en) Fine processing method
JPH0156525B2 (en)
JPH10125672A (en) Carbon film having fluorinated insulating surface pattern and production thereof
JPH05190507A (en) Dry etching device and method
JPH06232041A (en) Formation of pattern
JP2890617B2 (en) Thin film formation method
JP3300781B2 (en) Method of forming oxide film
JP3110472B2 (en) Selective metal deposition method
RU2099810C1 (en) Process forming topology of integrated microcircuits
JPH0978245A (en) Formation of thin film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees