JP2736190B2 - Gas separator for solid oxide fuel cell - Google Patents

Gas separator for solid oxide fuel cell

Info

Publication number
JP2736190B2
JP2736190B2 JP3235115A JP23511591A JP2736190B2 JP 2736190 B2 JP2736190 B2 JP 2736190B2 JP 3235115 A JP3235115 A JP 3235115A JP 23511591 A JP23511591 A JP 23511591A JP 2736190 B2 JP2736190 B2 JP 2736190B2
Authority
JP
Japan
Prior art keywords
gas separator
fuel cell
flow path
gas
solid oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3235115A
Other languages
Japanese (ja)
Other versions
JPH0574470A (en
Inventor
修三 平田
清幸 森本
輝雄 桑島
正輝 下津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Zosen KK
Original Assignee
Mitsui Zosen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Zosen KK filed Critical Mitsui Zosen KK
Priority to JP3235115A priority Critical patent/JP2736190B2/en
Publication of JPH0574470A publication Critical patent/JPH0574470A/en
Application granted granted Critical
Publication of JP2736190B2 publication Critical patent/JP2736190B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0215Glass; Ceramic materials
    • H01M8/0217Complex oxides, optionally doped, of the type AMO3, A being an alkaline earth metal or rare earth metal and M being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0215Glass; Ceramic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0226Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0256Vias, i.e. connectors passing through the separator material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、固体電解質型燃料電池
のガスセパレータに係り、特に燃料電池の単位体積あた
り、単位重量あたりの出力を大きくすることができる固
体電解質型燃料電池のガスセパレータに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas separator for a solid oxide fuel cell, and more particularly to a gas separator for a solid oxide fuel cell capable of increasing the output per unit volume and unit weight of the fuel cell. Things.

【0002】[0002]

【従来の技術】固体電解質型燃料電池は、一般に電池の
最少単位である単セルを集電板とガスセパレータまたは
ガス流路部材を介して多数積層し、この単セルを電気的
に直列および/または並列に接続して燃料電池スタック
とし、該燃料電池スタックを箱体に収納したものであ
り、電解液の漏洩がなく、反応速度が大きいので、低公
害のエネルギー源として注目されている。
2. Description of the Related Art In a solid oxide fuel cell, generally, a plurality of single cells, which are the minimum unit of a battery, are laminated via a current collector and a gas separator or a gas flow path member, and the single cells are electrically connected in series and / or. Alternatively, the fuel cell stack is connected in parallel to form a fuel cell stack, and the fuel cell stack is housed in a box. Since the electrolyte solution does not leak and the reaction speed is high, it is attracting attention as a low-pollution energy source.

【0003】図5は、固体電解質型燃料電池に用いられ
る従来のガスセパレータの斜視図である。このガスセパ
レータ26は、燃料流路と酸素含有ガス(以下、単に空
気という)流路を分離して形成する部材であり、矩形の
集電面29と、該矩形集電面29の両端に突出した一対
の2辺からなる土堤面30とを有し、通常、耐熱金属ま
たは単セルの電極材料で構成されている。図6は、この
ガスセパレータ26を用いて単セル21を積層した燃料
電池スタックの一部切欠断面図である。図において、上
下両面に集電用波板25が当接された単セル21がガス
セパレータ26を介して多数積層されている。このガス
セパレータ26は、単セル21の各電極に供給される燃
料および空気の流路を形成し、例えば、ガスセパレータ
26の上側が燃料流路27、下側が空気流路28とな
る。
FIG. 5 is a perspective view of a conventional gas separator used for a solid oxide fuel cell. The gas separator 26 is a member formed by separating a fuel flow path and an oxygen-containing gas (hereinafter, simply referred to as air) flow path, and has a rectangular current collecting surface 29 and protrudes from both ends of the rectangular current collecting surface 29. And a dike surface 30 composed of a pair of two sides, and is usually made of a heat-resistant metal or a single-cell electrode material. FIG. 6 is a partially cutaway sectional view of a fuel cell stack in which the single cells 21 are stacked using the gas separator 26. In the figure, a large number of single cells 21 having current collecting corrugated plates 25 abutting on both upper and lower surfaces are stacked via a gas separator 26. The gas separator 26 forms a flow path for fuel and air supplied to each electrode of the single cell 21. For example, the upper side of the gas separator 26 becomes the fuel flow path 27, and the lower side becomes the air flow path 28.

【0004】このようなガスセパレータ26は、ガス流
路を分岐する役割の他に各単セル21を電気的に接続す
る電流流路としての役割も有し、構成材料として導電性
材料を使用しなければならず、製造工程が煩雑であるう
え、製作コストが高価になるという問題があった。一
方、図7および図8は、本発明者の提案による未公知の
固体電解質型燃料電池のガス流路部材の説明図であり、
図7は斜視図、図8は図7のVIII −VIII線矢視方向
断面図である。
[0004] Such a gas separator 26 also has a role as a current flow path for electrically connecting the individual cells 21 in addition to a function of branching the gas flow path, and uses a conductive material as a constituent material. Therefore, there is a problem that the manufacturing process is complicated and the manufacturing cost is high. On the other hand, FIGS. 7 and 8 are explanatory views of a gas passage member of an unknown solid oxide fuel cell proposed by the present inventors,
7 is a perspective view, and FIG. 8 is a sectional view taken along line VIII-VIII of FIG.

【0005】このガス流路部材31は、燃料電池スタッ
クを構成する際に単セル32相互間に配置されてガス流
路となる部材であるが、それぞれ各ガス流路部材31が
単独のガス流路、すなわち燃料または空気流路となる。
このガス流路部材31は、電気的に絶縁性の材料で構成
された矩形の平板状を呈しており、ガス透過性の多孔部
33と、該多孔部33のガス流れ方向に平行な2辺の枠
体部を構成するガスを透過させない緻密部34とからな
り、前記多孔部33にはガスの流動抵抗を軽減するため
に、例えば半円柱状の切欠部35が多数設けられてお
り、この半円柱状の切欠部35相互間が単セル32の上
下両面に当接される集電体の支持部37となっている。
また、前記緻密部34からなる枠体部には、その一方面
から他方面の隣接する多孔部33に貫通する電子流路3
6が形成されており、この電子流路36は、例えば電極
材料またはLaCrO3 系のセラミックスと金属との混
焼体で構成され、その一端は前記緻密部34に、他方端
は前記多孔部33に露出している。
The gas flow path members 31 are arranged between the single cells 32 when forming a fuel cell stack and serve as gas flow paths. Each of the gas flow path members 31 has a single gas flow path. Path, ie, a fuel or air flow path.
The gas flow path member 31 has a rectangular plate shape made of an electrically insulating material, and has a gas-permeable porous portion 33 and two sides parallel to the gas flow direction of the porous portion 33. The porous portion 33 is provided with a large number of semi-cylindrical cutouts 35, for example, in order to reduce the gas flow resistance. The gap between the semi-cylindrical cutouts 35 constitutes a current collector support 37 that is in contact with the upper and lower surfaces of the single cell 32.
Further, the frame body composed of the dense portion 34 has an electron flow path 3 penetrating from one surface to the adjacent porous portion 33 on the other surface.
The electron flow path 36 is formed of, for example, an electrode material or a mixed body of LaCrO 3 ceramics and metal. One end of the electron flow path 36 is formed in the dense portion 34, and the other end is formed in the porous portion 33. It is exposed.

【0006】図9は、このようなガス流路部材31を用
いて平板状の単セル32を多数積層した燃料電池スタッ
クの部分断面図である。図において、上下両面に集電体
38が当接された単セル32がガス流路部材31を介し
て多数積層されている。図において、単セル32は一つ
置きに上下逆向きに、またガス流路部材31は、一つ置
きに上下逆向きで、しかも平面上で90度回転させた状
態に配置されている。
FIG. 9 is a partial sectional view of a fuel cell stack in which a large number of flat single cells 32 are stacked using such a gas flow path member 31. In the figure, a large number of single cells 32 having current collectors 38 abutting on both upper and lower surfaces are stacked via a gas flow path member 31. In the figure, every other single cell 32 is arranged upside down, and every other gas flow path member 31 is arranged upside down and rotated by 90 degrees on a plane.

【0007】このような固体電解質型燃料電池の出力を
増大させるために、例えば単セル32およびガス流路部
材31を大型化する場合、前記単セル32相互を接続す
る電子流路36の電気抵抗を十分に低く抑えるために、
該電子流路36の断面積を広くする必要があるが、上記
したように電子流路36をガス流路部材31の枠体部に
設けられたガス流路部材を用いると、電子流路36を設
けるための枠体部を広くしなければならず、単セル32
の有効発電面積に対するガス流路部材31の枠体部の面
積の割合が非常に大きくなり、結果として燃料電池スタ
ックの有効発電面積が小さくなってしまうという問題が
生じる。
In order to increase the output of such a solid oxide fuel cell, for example, when the size of the single cell 32 and the gas flow path member 31 is increased, the electric resistance of the electronic flow path 36 connecting the single cells 32 to each other is increased. To keep it low enough
Although it is necessary to increase the cross-sectional area of the electron flow path 36, if the gas flow path member provided in the frame portion of the gas flow path member 31 is used as described above, The size of the frame portion for providing the
The ratio of the area of the frame portion of the gas flow path member 31 to the effective power generation area of the fuel cell stack becomes extremely large, resulting in a problem that the effective power generation area of the fuel cell stack is reduced.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、上記
先行技術の問題点を解決し、単セルの有効発電面積を相
対的に広くして燃料電池の単位体積当りの出力を向上さ
せることができるとともに、加工が容易で製作コストも
安価な固体電解質型燃料電池のガスセパレータを提供す
ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art and to improve the output per unit volume of a fuel cell by relatively increasing the effective power generation area of a single cell. Another object of the present invention is to provide a gas separator for a solid oxide fuel cell, which can be processed easily and has a low production cost.

【0009】上記目的を達成するため本願の第1の発明
は、単セルを多数積層した固体電解質型燃料電池の前記
単セル相互間に配置されてガス流路を形成するととも
に、前記単セルを電気的に接続する固体電解質型燃料電
池のガスセパレータにおいて、該ガスセパレータにおけ
る前記単セルの発電部の投影面積内に、前記単セルの電
極材料もしくはLaCrO 3 系のセラミックスまたはこ
れらと金属との混焼体からなり、前記ガスセパレータを
貫通して前記単セルを電気的に接続する電子流路を設け
たことを特徴とする固体電解質型燃料電池のガスセパレ
ータに関する。本願の第2の発明は、上記第1の発明に
おいて、前記電子流路を設けたガスセパレータが、Mg
Al2 4 とMgOとを主成分とする複合材料からなる
ことを特徴とする。
In order to achieve the above object, a first aspect of the present invention is to provide a solid oxide fuel cell having a large number of single cells stacked therein, wherein the single cells are arranged between the single cells to form a gas flow path, and the single cells are formed. in the gas separator of the solid oxide fuel cell is electrically connected, it said in the projection area of the power generation unit of the single cell in the gas separator, electrostatic of the single cell
Electrode material or LaCrO 3 ceramics or
The present invention relates to a gas separator for a solid oxide fuel cell , wherein the gas separator is made of a mixed body of these and a metal, and is provided with an electron flow path penetrating the gas separator and electrically connecting the single cells. The second invention of the present application is directed to the first invention.
Wherein the gas separator provided with the electron flow path is Mg
A composite material composed primarily of the MgO Al 2 O 4
It is characterized by the following.

【0010】[0010]

【作用】単セルを積層した燃料電池スタックにおいて、
ガスセパレータの上段および下段に配置された単セルを
集電体を介して電気的に接続するための電子流路を、ガ
スセパレータにおける前記単セルの有効発電部の投影面
積内に設けたことにより、ガスセパレータの大きさを単
セルの有効発電部の投影面積+必要最少限のガスシール
部(枠体部)のみとすることができ、ガスセパレータに
おける枠体部の面積を相対的に小さくすることができる
ので、燃料電池スタック全体としての単セルの有効発電
面積の割合が増大し、燃料電池の単位体積当りの出力が
向上する。
In a fuel cell stack in which single cells are stacked,
By providing an electron flow path for electrically connecting the single cells arranged in the upper and lower stages of the gas separator via a current collector within the projected area of the effective power generation unit of the single cell in the gas separator. The size of the gas separator can be made to be only the projected area of the effective power generation unit of the single cell + the minimum necessary gas seal part (frame part), and the area of the frame part in the gas separator is relatively reduced. Therefore, the ratio of the effective power generation area of the single cell as the whole fuel cell stack increases, and the output per unit volume of the fuel cell improves.

【0011】本発明において、ガスセパレータにおける
単セルの発電部の投影面積とは、単セルをガスセパレー
タを介して積層した場合の前記単セルの電極面をそのま
まガスセパレータに投影した際の面積をいい、通常ガス
セパレータの枠体部を除いた部分をいう。ガスセパレー
タ本体を比重の小さい、スピネル(MgAl2 4 )と
マグネシア(MgO)とを主成分とする複合材料で構成
したことにより、燃料電池スタックが軽量化し、製作コ
ストが低減する。
In the present invention, the projected area of the power generation unit of a single cell in the gas separator is defined as the area of the unit cell when the single cell is laminated via the gas separator and the electrode surface of the single cell is projected onto the gas separator as it is. Good, usually refers to the portion of the gas separator excluding the frame. The gas separator body has small specific gravity, by constructing spinel and (MgAl 2 O 4) and magnesia (MgO) in a composite material mainly, the fuel cell stack is lightweight, the manufacturing cost can be reduced.

【0012】[0012]

【実施例】次に、本発明を実施例によりさらに詳細に説
明する。図1は、本発明の一実施例である固体電解質型
燃料電池のガスセパレータの斜視図、図2は、図1のII
−II線矢視方向断面図である。図において、このガスセ
パレータ1は、該ガスセパレータ1の外形を形成する積
層部3およびガス流入出枠4と、燃料流路と空気流路を
分離するセパレータ部2と、該セパレータ部2に、セパ
レータ部2を貫通するように配置された、電子流路6お
よび該電子流路6相互間に配置された突起部からなる集
電体支持部5とから主として構成されている。このガス
セパレータは、その本体が軽量で安価な、MgAl 2
4 (スピネル)とMgO(マグネシア)を主成分とする
緻密構造の複合材料で構成されており、これに、電子伝
導性の、例えば電極材料、LaCrO3 系のセラミック
ス、またはそれと金属との混焼体からなる前記電子流路
6を接合して一体化したものである。
Next, the present invention will be described in more detail with reference to examples. FIG. 1 is a perspective view of a gas separator of a solid oxide fuel cell according to one embodiment of the present invention, and FIG.
FIG. 2 is a sectional view taken along line II. In the figure, a gas separator 1 has a laminated portion 3 and a gas inflow / outlet frame 4 that form the outer shape of the gas separator 1, a separator portion 2 that separates a fuel flow path and an air flow path, It mainly includes an electron flow path 6 and a current collector support 5 composed of a projection disposed between the electron flow paths 6 and penetrating through the separator section 2. This gas
The separator is made of MgAl 2 O , whose body is lightweight and inexpensive.
4 Mainly composed of (spinel) and MgO (magnesia)
It consists of a composite material of dense structure, to which the electron conductivity, for example, an electrode material, the electron passage ing from co-combustion of a LaCrO 3 system ceramics or metal,
6 are joined and integrated.

【0013】図3は、このようなガスセパレータ1を用
いて単セル8を積層した燃料電池スタックの構成を示す
図、図4は、その部分断面図である。図において、上下
両電極面にそれぞれ集電体7が当接された単セル8がガ
スセパレータ1を介して多数積層されている。本実施例
において単セル8は全て同一面を上方に向けており、例
えば上方が燃料側電極膜9、下方が酸素側電極膜10と
なる。また、ガス流路部材1も全て同一の向きに積層さ
れている。さらに、集電体7はガス透過性の多孔板で構
成されており、燃料によっては、その改質触媒ともなる
ものである。このようにして形成された単セル積層体
は、任意の方法、例えばガスセパレータ本体材料の熱分
解スラリを塗布した後、例えば1500℃で処理されて
各構成部材の接合面が接着される。接合面が接着された
燃料電池スタックは所定の箱体に収納されて固体電解質
型燃料電池となる。
FIG. 3 is a diagram showing a configuration of a fuel cell stack in which single cells 8 are stacked using such a gas separator 1, and FIG. 4 is a partial sectional view thereof. In the figure, a large number of single cells 8 having current collectors 7 in contact with both upper and lower electrode surfaces are stacked via a gas separator 1. In the present embodiment, all the single cells 8 have the same surface facing upward. For example, the upper side is the fuel-side electrode film 9 and the lower side is the oxygen-side electrode film 10. Further, all the gas flow path members 1 are also stacked in the same direction. Further, the current collector 7 is formed of a gas-permeable porous plate, and also serves as a reforming catalyst for some fuels. The thus-formed single cell laminate is applied at an arbitrary method, for example, by applying a thermal decomposition slurry of a gas separator body material, and then treated at, for example, 1500 ° C., so that the joining surfaces of the components are bonded. The fuel cell stack to which the bonding surfaces are bonded is housed in a predetermined box to form a solid oxide fuel cell.

【0014】このような構成において、前記単セル8の
燃料側電極膜9とガスセパレータ1とで囲まれた燃料流
路に燃料として、例えば水素ガスが、酸素側電極膜10
とガスセパレータ1とで囲まれた空気流路に、例えば空
気がそれぞれ供給される。供給された水素は、燃料流路
を流通する間に前記単セル8の燃料側電極膜9に入り、
余剰の水素はガスセパレータ1のガス流入出枠4を経て
系外に排出される。一方、空気流路に供給された空気
は、単セル8の酸素側電極膜10と接触して該空気中の
酸素が前記単セル8の酸素側電極膜10に入る。単セル
8の酸素側電極膜10に入った酸素はここで外部回路か
らの電子を受け取って酸素イオンとなり、その後、単セ
ル8の固体電解質膜11に入って荷電単位となる。一
方、燃料側電極膜9に入った、水素はここで前記固体電
解質膜11の酸素イオンと反応して水を生成し、電子を
外部に放出する。同様の電極反応が全ての単セル8で起
こり電気エネルギーが発生する。発生した電気エネルギ
ーは、集電されてより強力な電気エネルギーとして外部
に取り出される。
In such a configuration, as a fuel, for example, hydrogen gas is supplied as a fuel to the oxygen-side electrode film 10 in the fuel passage surrounded by the fuel-side electrode film 9 and the gas separator 1 of the single cell 8.
For example, air is supplied to an air flow path surrounded by the gas separator 1 and the gas separator 1. The supplied hydrogen enters the fuel-side electrode film 9 of the single cell 8 while flowing through the fuel flow path,
Excess hydrogen is discharged out of the system via the gas inlet / outlet frame 4 of the gas separator 1. On the other hand, the air supplied to the air flow path contacts the oxygen-side electrode film 10 of the single cell 8 and oxygen in the air enters the oxygen-side electrode film 10 of the single cell 8. The oxygen that has entered the oxygen-side electrode film 10 of the single cell 8 receives electrons from an external circuit and becomes oxygen ions, and then enters the solid electrolyte membrane 11 of the single cell 8 to become a charged unit. On the other hand, the hydrogen that has entered the fuel-side electrode membrane 9 reacts with oxygen ions of the solid electrolyte membrane 11 to generate water, and emits electrons to the outside. A similar electrode reaction occurs in all the single cells 8 to generate electric energy. The generated electric energy is collected and taken out as stronger electric energy.

【0015】本実施例によれば、ガスセパレータ1に設
けられる電子流路6を、該ガスセパレータ1における単
セル8の有効発電部の投影面積内に設けたので、ガスセ
パレータ1の枠体部を必要以上に大きくしなくても十分
な電子流路断面積を確保することができ、燃料電池全体
に対する有効発電面積の割合が大きくなり、単位体積当
りの出力が向上する。したがって、同一出力を有する従
来の燃料電池に較べ、約4割程度体積を小さくすること
ができる。
According to the present embodiment, since the electron flow path 6 provided in the gas separator 1 is provided within the projected area of the effective power generation section of the single cell 8 in the gas separator 1, the frame portion of the gas separator 1 is provided. It is possible to secure a sufficient electron flow path cross-sectional area without increasing the size more than necessary, increase the ratio of the effective power generation area to the entire fuel cell, and improve the output per unit volume. Therefore, the volume can be reduced by about 40% as compared with a conventional fuel cell having the same output.

【0016】本実施例によれば、比重の小さいMgAl
2 4 (スピネル)またはこれを含む複合材料によって
ガスセパレータを構成したことにより、燃料電池全体の
重量を軽量化することができ、製作コストを低減するこ
とができるとともに、比較的容易に単セルの積層段数を
増やすことができる。また、前記MgAl2 4 (スピ
ネル)と例えばMgOの混合材料を用いる場合に、スピ
ネルとMgOとの混合割合を適当に選択することによ
り、単セルとガスセパレータの熱膨張率を同程度に調整
することができるので、温度上昇に対する歪みがない、
耐久性に優れた固体電解質型燃料電池を得ることができ
る。
According to this embodiment, MgAl having a small specific gravity is used.
Since the gas separator is made of 2 O 4 (spinel) or a composite material containing the same, the weight of the entire fuel cell can be reduced, the manufacturing cost can be reduced, and the unit cell can be relatively easily manufactured. Can be increased. When a mixed material of MgAl 2 O 4 (spinel) and, for example, MgO is used, by appropriately selecting the mixing ratio of spinel and MgO, the thermal expansion coefficients of the single cell and the gas separator are adjusted to the same degree. So there is no distortion due to temperature rise,
A solid oxide fuel cell having excellent durability can be obtained.

【0017】本実施例において、集電体支持部5および
電子流路6の断面形状は、それぞれ正方形および円形に
限定されるものでなく、正方形、円形をはじめ、三角
形、ひし形、だ円形等、同様の作用効果が得られるもの
であればよい。
In the present embodiment, the cross-sectional shapes of the current collector support 5 and the electron flow path 6 are not limited to squares and circles, respectively, but include squares, circles, triangles, rhombuses, ellipses, and the like. What is necessary is just to obtain the same effect.

【0018】[0018]

【発明の効果】本願の請求項1記載の発明によれば、ガ
スセパレータの枠体部でなく、セパレータ部、すなわち
ガスセパレータにおける単セルの有効発電部の投影面積
内に電子流路を設けたことにより、単セルの有効発電面
積に対するガスセパレータの枠体部を必要最限の大き
さに抑えることができるので、燃料電池全体としての有
効発電面積が広くなり、単位体積当たりの出力が向上す
る。請求項2記載の発明によれば、比重の小さなスピネ
ル(MgAl 2 4 )とマグネシア(MgO)との複合
セラミックスでガスセパレータを構成したことにより、
燃料電池全体を軽量化し、製作コストを低減することが
できる。
According to the first aspect of the present invention, the electron flow path is provided not within the frame of the gas separator, but within the projected area of the separator, that is, the effective power generation section of a single cell in the gas separator. by, it is possible to suppress the size of the required minimal a frame portion of the gas separator to the effective power generation area of the unit cell, the effective power generation area of the fuel cell as a whole is broadened, improving output per unit volume I do. According to the second aspect of the present invention, the spine having a small specific gravity is provided.
(MgAl 2 O 4 ) and magnesia (MgO) composite
By constituting the gas separator with ceramics,
It is possible to reduce the weight of the entire fuel cell and reduce the production cost
it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明の一実施例であるガスセパレー
タの斜視図である。
FIG. 1 is a perspective view of a gas separator according to one embodiment of the present invention.

【図2】図2は、図1のII−II線矢視方向断面図であ
る。
FIG. 2 is a sectional view taken along line II-II of FIG. 1;

【図3】図3は、本発明のガスセパレータを用いた燃料
電池スタックの構成を示す図である。
FIG. 3 is a diagram showing a configuration of a fuel cell stack using the gas separator of the present invention.

【図4】図4は、本発明のガスセパレータを用いて構成
した燃料電池スタックの部分断面図である。
FIG. 4 is a partial cross-sectional view of a fuel cell stack configured using the gas separator of the present invention.

【図5】図5は、従来技術におけるガスセパレータを示
す斜視図である。
FIG. 5 is a perspective view showing a conventional gas separator.

【図6】図6は、従来技術における燃料電池スタックの
一部切欠断面図である。
FIG. 6 is a partially cutaway sectional view of a fuel cell stack according to a conventional technique.

【図7】図7は、従来技術におけるガス流路部材の斜視
図である。
FIG. 7 is a perspective view of a gas flow member according to the related art.

【図8】図8は、図7のVIII−VIII線矢視方向断面図で
ある。
FIG. 8 is a sectional view taken along line VIII-VIII in FIG. 7;

【図9】図9は、従来技術における燃料電池スタックの
部分断面図である。
FIG. 9 is a partial cross-sectional view of a conventional fuel cell stack.

【符号の説明】[Explanation of symbols]

1…ガスセパレータ、2…セパレータ部、3…積層部、
4…ガス流入出枠、5…集電体支持部、6…電子流路、
7…集電体、8…単セル、9…燃料側電極膜、10…酸
素側電極膜、11…固体電解質膜。
DESCRIPTION OF SYMBOLS 1 ... gas separator, 2 ... separator part, 3 ... laminated part,
4 gas inlet / outlet frame, 5 current collector support, 6 electron flow path,
7: current collector, 8: single cell, 9: fuel-side electrode film, 10: oxygen-side electrode film, 11: solid electrolyte membrane.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 下津 正輝 岡山県玉野市玉3丁目1番1号 三井造 船株式会社 玉野事業所内 (56)参考文献 特開 平2−94365(JP,A) 特開 平5−82146(JP,A) ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masateru Shimotsu 3-1-1, Tamano, Tamano-shi, Okayama Mitsui Engineering & Shipbuilding Co., Ltd. Tamano Works (56) References JP-A-2-94365 (JP, A) Kaihei 5-82146 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】単セルを多数積層した固体電解質型燃料電
池の前記単セル相互間に配置されてガス流路を形成する
とともに、前記単セルを電気的に接続する固体電解質型
燃料電池のガスセパレータにおいて、該ガスセパレータ
における前記単セルの発電部の投影面積内に、前記単セ
ルの電極材料もしくはLaCrO 3 系のセラミックスま
たはこれらと金属との混焼体からなり、前記ガスセパレ
ータを貫通して前記単セルを電気的に接続する電子流路
を設けたことを特徴とする固体電解質型燃料電池のガス
セパレータ。
1. A gas for a solid oxide fuel cell, wherein a plurality of single cells are stacked and arranged between the single cells to form a gas flow path and electrically connect the single cells. in the separator, the in the projection area of the power generation unit of the single cell in the gas separator, the single cell
Electrode material or LaCrO 3 ceramics
A gas separator for a solid oxide fuel cell , wherein the gas separator is made of a mixed body of these materials and a metal, and is provided with an electronic flow path penetrating the gas separator and electrically connecting the single cells.
【請求項2】前記電子流路を設けたガスセパレータが、
MgAl2 4 とMgOとを主成分とする複合材料から
なることを特徴とする請求項1記載の固体電解質型燃料
電池のガスセパレータ。
2. A gas separator provided with said electron flow path ,
From a composite material composed primarily of the MgO MgAl 2 O 4
The gas separator for a solid oxide fuel cell according to claim 1, wherein:
JP3235115A 1991-09-13 1991-09-13 Gas separator for solid oxide fuel cell Expired - Lifetime JP2736190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3235115A JP2736190B2 (en) 1991-09-13 1991-09-13 Gas separator for solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3235115A JP2736190B2 (en) 1991-09-13 1991-09-13 Gas separator for solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JPH0574470A JPH0574470A (en) 1993-03-26
JP2736190B2 true JP2736190B2 (en) 1998-04-02

Family

ID=16981281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3235115A Expired - Lifetime JP2736190B2 (en) 1991-09-13 1991-09-13 Gas separator for solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP2736190B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05275106A (en) * 1992-03-27 1993-10-22 Mitsui Eng & Shipbuild Co Ltd Solid electrolyte fuel cell
JP2013258157A (en) * 2013-08-26 2013-12-26 Mitsubishi Heavy Ind Ltd Solid electrolyte fuel cell

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0294365A (en) * 1988-09-30 1990-04-05 Tonen Corp Solid electrolyte fuel cell

Also Published As

Publication number Publication date
JPH0574470A (en) 1993-03-26

Similar Documents

Publication Publication Date Title
US4476196A (en) Solid oxide fuel cell having monolithic cross flow core and manifolding
JP5383051B2 (en) Fuel cell and fuel cell stack
US20060269822A1 (en) Solid oxide electrolyte fuel cell plate structure, stack and electrical power generation unit
KR20040018971A (en) Fuel cell stack and fuel cell module
JP4200088B2 (en) Fuel cell and fuel cell stack
US20020004155A1 (en) Etched interconnect for fuel cell elements
JPH0541221A (en) Solid polyelectrolyte film fuel cell
JP2000048831A (en) Solid electrolyte fuel cell
US20070077477A1 (en) Fuel cell unit
JP2736190B2 (en) Gas separator for solid oxide fuel cell
JPH06338342A (en) Cell stack structure for solid high polymer electrolytic fuel cell
JPH08180885A (en) Solid electrolytic fuel cell improved in current collecting efficiency of air electrode
JPH04298964A (en) Solid electrolyte type fuel cell and manufacture thereof
JP2002270200A (en) Gas separator for solid electrolyte type fuel cell, members thereof, and stack unit using the same, and solid electrolyte type fuel cell stack
JP2002270198A (en) Fuel cell
JP2004119189A (en) Fuel cell
JP6917193B2 (en) Electrochemical reaction unit and electrochemical reaction cell stack
JPH09320616A (en) High output type solid oxide fuel cell having roughened interface between electrolytic film and electrode closely attached to the electrolytic film
JPH1125999A (en) Solid electrolyte fuel cell
JPH0462757A (en) Solid electrolyte type fuel cell
JPH07245107A (en) Solid electrolyte fuel cell
JP2018181405A (en) Fuel cell power generation module
JP6885786B2 (en) Electrochemical reaction unit and electrochemical reaction cell stack
JP7159126B2 (en) Electrochemical reaction cell stack
JPH09147884A (en) Flat solid electrolyte fuel cell

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19971209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 14