JPH05275106A - Solid electrolyte fuel cell - Google Patents

Solid electrolyte fuel cell

Info

Publication number
JPH05275106A
JPH05275106A JP4071625A JP7162592A JPH05275106A JP H05275106 A JPH05275106 A JP H05275106A JP 4071625 A JP4071625 A JP 4071625A JP 7162592 A JP7162592 A JP 7162592A JP H05275106 A JPH05275106 A JP H05275106A
Authority
JP
Japan
Prior art keywords
separator
fuel cell
thermal expansion
gas
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4071625A
Other languages
Japanese (ja)
Inventor
Shuzo Hirata
修三 平田
Kiyoyuki Morimoto
清幸 森本
Teruo Kuwajima
輝雄 桑島
Masateru Shimozu
正輝 下津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP4071625A priority Critical patent/JPH05275106A/en
Priority to IT93MI000577A priority patent/IT1287883B1/en
Publication of JPH05275106A publication Critical patent/JPH05275106A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0215Glass; Ceramic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • H01M8/1226Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material characterised by the supporting layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To prevent distortion and deformation by setting a solid electrolytic film and materials for the separator, gas passage, and base pipe of a cell under specified conditions. CONSTITUTION:A gas separator 1 is a member which is arranged between single cells to form a SOFC. The gas separator 1 has an integrated part 3 and a gas inlet and outlet frame 4, and is constituted to have electronic passages 6 arranged to extend through a separator part 2 and a collector support part 5 arranged between them. The separator 1 is mainly formed from a composite ceramic having a magnesia/spinel weight ratio of 45/55 In this case, the thermal expansion coefficient can be approximated to a solid electrolytic film material (yttrium stabilized zirconia). Thus, the difference in thermal expansion coefficient between the respective constitutive members is minimized, and the distortion and deformation at high temperature of the SOFC can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体電解質型燃料電池
に係り、特に歪みをなくし、軽量化およびガスシール性
を向上させた固体電解質型燃料電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid oxide fuel cell, and more particularly to a solid oxide fuel cell which has no distortion, is lighter in weight and has improved gas sealability.

【0002】[0002]

【従来の技術】固体電解質型燃料電池は、平板積層型と
円筒型とに大別され、例えば平板積層型の燃料電池スタ
ックは、平板状固体電解質膜の両面に酸素側電極および
燃料側電極がそれぞれ積層された単セルの前記両電極面
に集電用多孔板を当接し、これをインターコネクタ、セ
パレータまたはガス流路部材を介して多数積層し、前記
単セルを電気的に接続したものである。一方、円筒型の
燃料電池スタックは、円筒状の基体管の表面に、例えば
燃料側電極、固体電解質膜および酸素側電極の順に積層
した、それぞれ直径の異なる単セルをガス流路を確保し
て同心状に積層し、これを電気的に接続したものであ
る。
2. Description of the Related Art Solid oxide fuel cells are roughly classified into a flat plate type and a cylindrical type. For example, a flat plate type fuel cell stack has an oxygen side electrode and a fuel side electrode on both sides of a flat solid electrolyte membrane. A porous plate for current collection is brought into contact with the electrode surfaces of each of the laminated single cells, and a large number of these are laminated via an interconnector, a separator or a gas flow path member, and the single cells are electrically connected. is there. On the other hand, in the cylindrical fuel cell stack, on the surface of a cylindrical base tube, for example, a fuel-side electrode, a solid electrolyte membrane, and an oxygen-side electrode are laminated in this order, and a single cell having a different diameter is secured in a gas flow path. Concentric layers are stacked and electrically connected.

【0003】このような固体電解質型燃料電池(以下、
単にSOFCということがある)において、セパレー
タ、ガス流路部材、基体管等を構成する構成材料とし
て、例えばカルシア安定化ジルコニア(CSZ)、アル
ミナ、LaCrO3 系のペロブスカイト等が使用されて
いた。すなわち、例えば円筒形スタックの基体管にはC
SZやアルミナ、平板型セルスタックのガス流路部材に
は燃料極材料であるNiO−YSZまたはLaCrO3
系のペロブスカイト、さらに燃料電池スタックを収納す
るガスマニホルドにはアルミナが用いられていた。
Such a solid oxide fuel cell (hereinafter,
(Sometimes referred to as SOFC), calcia-stabilized zirconia (CSZ), alumina, LaCrO 3 -based perovskite, and the like have been used as constituent materials for forming the separator, the gas flow path member, the base pipe, and the like. That is, for example, C is used for a base tube of a cylindrical stack.
NiO-YSZ or LaCrO 3 which is a fuel electrode material is used for the gas flow path member of SZ, alumina, and a flat plate type cell stack.
Alumina was used for the perovskite of the system and for the gas manifold that houses the fuel cell stack.

【0004】[0004]

【発明が解決しようとする課題】SOFCは作動温度が
高いために、構成部材の高温強度や熱膨張係数が問題と
なり、特に各構成部材の熱膨張係数は電解質材料である
イットリウム安定化ジルコニア(YSZ)にできる限り
近いことが要求される。しかしながら、上記従来技術に
おける固体電解質型燃料電池の構成部材は、その熱膨張
係数が前記YSZと必ずしも近似しておらず、作動温度
における熱膨張差によって歪みおよび変形が発生すると
いう不都合があった。また、部材相互間のガスシール性
も満足できるものではなかった。
Since SOFC has a high operating temperature, the high temperature strength and the coefficient of thermal expansion of the constituent members pose a problem. In particular, the coefficient of thermal expansion of each constituent member is yttrium-stabilized zirconia (YSZ) which is an electrolyte material. ) Is required to be as close as possible. However, the coefficient of thermal expansion of the constituent members of the solid oxide fuel cell in the above-mentioned conventional technology is not always close to that of YSZ, and there is a disadvantage that distortion and deformation occur due to the difference in thermal expansion at the operating temperature. Further, the gas sealability between the members was not satisfactory.

【0005】本発明の目的は、上記従来技術の問題点を
解決し、セパレータ、ガス流路部材、基体管等の各構成
部材と、固体電解質膜であるYSZとの熱膨張差をなく
し、歪みおよび変形のない固体電解質型燃料電池を提供
することにある。
The object of the present invention is to solve the above-mentioned problems of the prior art, eliminate the difference in thermal expansion between the respective constituent members such as the separator, the gas flow path member, the substrate tube and the solid electrolyte membrane YSZ, and to prevent distortion. Another object is to provide a solid oxide fuel cell without deformation.

【0006】[0006]

【課題を解決するための手段】本発明者は、各種複合セ
ラミックスの熱膨張係数および高温強度について鋭意研
究した結果、マグネシア(MgO)とスピネル(MgA
2 4 )との複合セラミックスにおいて、MgOとM
gAl2 4 の混合比を変化させると、MgOの割合の
増加に伴って熱膨張係数が増大することに着目し、Mg
OとMgAl24 とを重量比で1/9〜1/1で混合
したセラミックスの熱膨張係数が電解質材料であるYS
Zの熱膨張係数とほぼ同様になることを見出し、本発明
に到達した。
Means for Solving the Problems As a result of earnest studies on the thermal expansion coefficient and high temperature strength of various composite ceramics, the present inventor has found that magnesia (MgO) and spinel (MgA).
l 2 O 4 ), in composite ceramics with MgO and M
Paying attention to the fact that when the mixing ratio of gAl 2 O 4 is changed, the coefficient of thermal expansion increases as the proportion of MgO increases.
YS in which the thermal expansion coefficient of a ceramic obtained by mixing O and MgAl 2 O 4 in a weight ratio of 1/9 to 1/1 is an electrolyte material.
The inventors have found that the coefficient of thermal expansion is substantially the same as that of Z, and have reached the present invention.

【0007】すなわち本発明は、固体電解質膜としてイ
ットリウム安定化ジルコニアまたはその近似物を用いる
固体電解質型燃料電池の構成材料として、マグネシア
(MgO)とスピネル(MgAl2 4 )を主成分と
し、該マグネシアとスピネルとの混合比が重量比で1/
9〜1/1であるセラミックスを用いたことを特徴とす
る。
That is, according to the present invention, as a constituent material of a solid oxide fuel cell using yttrium-stabilized zirconia or its approximation as a solid electrolyte membrane, magnesia (MgO) and spinel (MgAl 2 O 4 ) are contained as main components. The mixing ratio of magnesia and spinel is 1 / by weight
It is characterized by using ceramics of 9 to 1/1.

【0008】図1は、MgOとMgAl2 4 とを主成
分とする複合セラミックスにおけるMgOの混合割合
と、1000℃における熱膨張係数との関係を示す図で
ある。図において、MgOの割合が10〜50wt%の
範囲で、熱膨張係数が9×10 -6〜11×10-6とな
り、YSZの1000℃における熱膨張係数10.6×
10-6と同程度となることがわかる。
FIG. 1 shows MgO and MgAl.2OFourAnd
Mixing ratio of MgO in composite ceramics
And a diagram showing the relationship between the thermal expansion coefficient at 1000 ° C.
is there. In the figure, the proportion of MgO is 10 to 50 wt%.
Coefficient of thermal expansion is 9 × 10 in the range -6~ 11 x 10-6Tona
The thermal expansion coefficient of YSZ at 1000 ° C. is 10.6 ×
10-6It turns out that it is about the same as.

【0009】この複合セラミックスはMgAl2 4
混合するMgO量を加減することによって熱膨張係数を
調整できるので、これを用いてセパレータ、ガス流路部
材、基体管等の構成部材を作製することにより、該構成
部材の熱膨張係数をYSZまたはその近似物と等しくす
ることができる。MgOの混合割合を10〜50wt%
の範囲で変化させても前記セラミックスの化学的安定性
は変化しない。また、このセラミックスは焼結性も良好
で、例えばCaO等の助材を微量添加することにより、
多孔性のものから緻密なものまで任意に調製することが
できる。
Since the coefficient of thermal expansion of this composite ceramics can be adjusted by adjusting the amount of MgO mixed with MgAl 2 O 4 , it is possible to use it to form constituent members such as a separator, a gas flow path member and a base pipe. The coefficient of thermal expansion of the component can be made equal to that of YSZ or its approximation. Mixing ratio of MgO is 10 to 50 wt%
The chemical stability of the ceramics does not change even if it is changed within the range. Further, this ceramic has good sinterability, and by adding a trace amount of an auxiliary material such as CaO,
It can be optionally prepared from porous to dense.

【0010】このセラミックスの1000℃における機
械的強度はそれほど強くないが、固体電解質型燃料電池
の構成部材として十分に耐えられる強度を備えている。
図2は、MgOとMgAl2 4 の重量比が2/3であ
るセラミックスにおける高温強度(弾性係数)を示す図
である。図において、このセラミックスの弾性係数は8
00℃で13.5×103 kg/mm2 、1000℃で
11.3×103 kg/mm2 、1200℃で8.4×
103 kg/mm2 を示しており、SOFCの作動温度
である1000℃における弾性強度は800℃のときよ
りも小さくなっているが、これはSOFCの構成部材と
して十分に使用できる範囲である。高温での機械的強度
が低下するという、本発明で用いるセラミックスの特性
はセラミックス同志を接合させる場合に好適である。す
なわち機械的強度がある程度低下することによって構成
部材相互間、例えば単セルの固体電解質膜とインターコ
ネクタとの接合面のガスシール性が著しく向上する。
The mechanical strength of this ceramic material at 1000 ° C. is not so strong, but it is sufficiently strong as a constituent member of a solid oxide fuel cell.
FIG. 2 is a diagram showing the high temperature strength (elastic coefficient) in a ceramic in which the weight ratio of MgO and MgAl 2 O 4 is 2/3. In the figure, the elastic modulus of this ceramic is 8
13.5 × 10 3 kg / mm 2 at 00 ° C., 11.3 × 10 3 kg / mm 2 at 1000 ° C., 8.4 × at 1200 ° C.
It shows 10 3 kg / mm 2 , and the elastic strength at 1000 ° C., which is the operating temperature of SOFC, is smaller than that at 800 ° C., but this is a range that can be sufficiently used as a constituent member of SOFC. The characteristic of the ceramics used in the present invention that the mechanical strength at high temperature is lowered is suitable when the ceramics are joined together. In other words, the mechanical strength is lowered to some extent, so that the gas sealing property between the constituent members, for example, the joint surface between the solid electrolyte membrane of the single cell and the interconnector is significantly improved.

【0011】[0011]

【実施例】次に、本発明を実施例によりさらに詳細に説
明する。図3は、本発明の一実施例である平板積層固体
電解質型燃料電池のガスセパレータの斜視図である。こ
のガスセパレータは、単セル相互間に配置されてSOF
Cを構成する部材であり、積層部3およびガス流入出枠
4を有するガスセパレータ本体1と、該ガスセパレータ
本体1のセパレータ部2を貫通するように配置された、
電子流路6と該電子流路6の間に配置された集電体支持
部5とから主として構成されており、MgOとMgAl
2 4 との重量比が45/55のセラミックスで構成さ
れている。
EXAMPLES Next, the present invention will be described in more detail by way of examples. FIG. 3 is a perspective view of a gas separator of a flat plate stacked solid oxide fuel cell according to an embodiment of the present invention. This gas separator is placed between single cells and
A member constituting C, which is arranged so as to penetrate the gas separator body 1 having the laminated portion 3 and the gas inflow / outflow frame 4, and the separator portion 2 of the gas separator body 1.
Mainly composed of an electron flow path 6 and a current collector support portion 5 arranged between the electron flow path 6, and MgO and MgAl
It is composed of ceramics having a weight ratio to 2 O 4 of 45/55.

【0012】すなわち、MgOとMgAl2 4 をそれ
ぞれ0.1μm〜50μmに粉砕したのち、重量比で4
5対55になるように混合し、助剤として、例えばCa
Oを0.3wt%添加し、これをドクターブレード法で
成形し、1200〜1800℃で5時間焼成してガスセ
パレータ本体を得た。このガスセパレータの1000℃
における熱膨張係数は、10.7×10-6であり、固体
電解質膜材料であるYSZの1000℃における熱膨張
係数10.6×10-6とほぼ同様であった。また100
0℃における弾性係数は2.0×10 3 kg/mm2
あり、十分な機械的強度を有していた。
That is, MgO and MgAl2OFourThe
After crushing each to 0.1μm-50μm, 4 by weight ratio
Mix so as to be 5 to 55, and use, for example, Ca as an auxiliary agent.
0.3 wt% of O was added, and this was added by the doctor blade method.
Molded and baked at 1200-1800 ° C for 5 hours
I got the pallet body. 1000 ℃ of this gas separator
Coefficient of thermal expansion is 10.7 × 10-6And solid
Thermal expansion of electrolyte membrane material YSZ at 1000 ° C
Coefficient 10.6 × 10-6Was almost the same as. Again 100
Elasticity coefficient at 0 ° C is 2.0 × 10 3kg / mm2so
And had sufficient mechanical strength.

【0013】図4は、このようなガスセパレータ1を用
いて単セル11を積層した燃料電池スタックの構成を示
す図である。図において、上下両面にそれぞれ集電用多
孔板28が当接された単セル11がガスセパレータ1を
介して多数積層されている。この単セル積層体は所定の
箱体に収納されて固体電解質型燃料電池となる。本実施
例によれば、MgOとMgAl2 4 との混合比が重量
比で45/55のセラミックスで作製したガスセパレー
タ1を用いて固体電解質型燃料電池を構成したことによ
り、部材間の熱膨張係数の差をなくすことができるの
で、焼結時の高温による歪みが防止されるとともに、高
温作動時の歪みおよび変形を回避することができる。
FIG. 4 is a diagram showing the structure of a fuel cell stack in which unit cells 11 are stacked using such a gas separator 1. In the figure, a large number of single cells 11 having a current collecting porous plate 28 in contact with the upper and lower surfaces thereof are stacked with the gas separator 1 interposed therebetween. This single cell laminated body is housed in a predetermined box to form a solid oxide fuel cell. According to this example, the solid electrolyte fuel cell was constructed by using the gas separator 1 made of ceramics having a mixing ratio of MgO and MgAl 2 O 4 of 45/55 in weight ratio, so that the heat between members can be reduced. Since the difference in expansion coefficient can be eliminated, distortion due to high temperature during sintering can be prevented, and distortion and deformation during high temperature operation can be avoided.

【0014】本実施例によれば、例えばガスセパレータ
1と、単セル11の固体電解質膜との接合性がよく、ガ
スシール性が向上する。また、SOFC全体として軽量
化およびコストの低減を図ることができる。次に本発明
の他の実施例を説明する。図5〜図8は、MgOとMg
Al2 4とを重量比で1/9〜1/1の割合で混合し
たセラミックスからなる構成部材を組み込んだ固体電解
質型燃料電池を示す図である。
According to the present embodiment, for example, the gas separator 1 and the solid electrolyte membrane of the unit cell 11 have good bondability, and the gas sealability is improved. Further, it is possible to reduce the weight and cost of the SOFC as a whole. Next, another embodiment of the present invention will be described. 5 to 8 show MgO and Mg.
And al 2 O 4 is a diagram showing a solid oxide fuel cell incorporating components comprising a 1 / 9-1 / 1 ceramics in a mixing ratio in weight.

【0015】図5は、MgOとMgAl2 4 との混合
比が重量比で42/58の複合セラミックスを用いて、
前記実施例と同様にして作製したセパレータ17を有す
る平板積層固体電解質型燃料電池の構成を示す図であ
る。また図6は、MgOとMgAl2 4 との比が重量
比で42/58の複合セラミックスでを用いて同様の方
法で作製した支持体22を有する固体電解質型SOFC
である。さらに図7は、MgOとMgAl2 4 との混
合比が重量比で42/58の複合セラミックスを用いて
同様に作製した円筒型高温固体電解質型燃料電池の基体
管27を示す説明図であり、図8は図7の要部拡大断面
図である。
FIG. 5 shows a composite ceramic in which the mixing ratio of MgO and MgAl 2 O 4 is 42/58 by weight.
It is a figure which shows the structure of the flat plate laminated solid oxide fuel cell which has the separator 17 produced similarly to the said Example. Further, FIG. 6 shows a solid electrolyte type SOFC having a support 22 prepared by the same method using a composite ceramic in which the ratio of MgO to MgAl 2 O 4 is 42/58 by weight.
Is. Further, FIG. 7 is an explanatory view showing a base tube 27 of a cylindrical high temperature solid oxide fuel cell, which is similarly produced by using a composite ceramic in which the mixing ratio of MgO and MgAl 2 O 4 is 42/58 by weight. 8 is an enlarged cross-sectional view of the main part of FIG.

【0016】本各実施例によれば、MgOとMgAl2
4 との重量混合比が1/9〜1/1の複合セラミック
スで各構成部材を作製したことにより、構成部材の熱膨
張係数を任意に選択できるので、構成部材相互間の熱膨
張差をなくし、焼結時または作動時の歪みによる変形等
を回避することができる。また、本実施例に用いられた
セラミックスの比重は、従来使用されていた部分安定化
ジルコニア(PSZ)の30〜60%であり、燃料電池
スタックやモジュールの軽量化および信頼性が向上す
る。さらにMgOおよびMgAl2 4 は比較的安価で
あり、固体電解質型燃料電池のコストダウンを図ること
ができる。また、MgOとMgAl2 4を混合したセ
ラミックスからなる構成部材が適度の弾性強度を有して
いるので、他の部材との接合性は良好で、ガスシール性
が向上する。
According to each embodiment, MgO and MgAl 2
Since each constituent member is made of the composite ceramic having a weight mixing ratio with O 4 of 1/9 to 1/1, the coefficient of thermal expansion of the constituent member can be arbitrarily selected. It is possible to avoid deformation due to strain during sintering or during operation. Further, the specific gravity of the ceramics used in this example is 30 to 60% of that of partially stabilized zirconia (PSZ) which has been conventionally used, and the weight reduction and reliability of the fuel cell stack and the module are improved. Further, MgO and MgAl 2 O 4 are relatively inexpensive, and the cost of the solid oxide fuel cell can be reduced. Further, since the constituent member made of ceramics in which MgO and MgAl 2 O 4 are mixed has an appropriate elastic strength, the bondability with other members is good and the gas sealability is improved.

【0017】[0017]

【発明の効果】本発明によれば、固体電解質型燃料電池
の構成部材としてMgOとMgAl24 との混合比が
重量比で1/9〜1/1の複合セラミックスで作製した
ものを用いたことにより、各構成部材相互間の熱膨張係
数の差をなくし、高温における歪みおよび変形を防止す
ることができる。また、燃料電池全体の軽量化およびガ
スシール性の向上を図ることができるうえ、製作コスト
の低減を図ることができる。
EFFECTS OF THE INVENTION According to the present invention, as a constituent member of a solid oxide fuel cell, one made of a composite ceramic having a mixing ratio of MgO and MgAl 2 O 4 of 1/9 to 1/1 by weight is used. By doing so, it is possible to eliminate the difference in the coefficient of thermal expansion between the respective constituent members and prevent distortion and deformation at high temperatures. In addition, it is possible to reduce the weight of the entire fuel cell and improve the gas sealability, and it is possible to reduce the manufacturing cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】複合セラミックスのMgOの割合と1000℃
における熱膨張係数の関係を示す図。
FIG. 1 Ratio of MgO in composite ceramics and 1000 ° C.
FIG. 4 is a diagram showing the relationship of the coefficient of thermal expansion in FIG.

【図2】複合セラミックスの高温強度を示す図。FIG. 2 is a diagram showing high temperature strength of composite ceramics.

【図3】、[Fig. 3]

【図4】本発明の一実施例である固体電解質型燃料電池
のガスセパレータを示す図。
FIG. 4 is a diagram showing a gas separator of a solid oxide fuel cell according to an embodiment of the present invention.

【図5】、[FIG. 5]

【図6】、FIG.

【図7】、[FIG. 7]

【図8】本発明の他の実施例を示す図。FIG. 8 is a diagram showing another embodiment of the present invention.

【符号の簡単な説明】[Simple explanation of symbols]

1…ガスセパレータ、2…セパレータ部、3…積層部、
4…ガス流入枠、5…集電体支持部、6…電子流路、1
2…カレントコレクタ、13…カソード、14…電解質
板、15…アノード、16…カレントコレクタ、17…
セパレータ、18…燃料側電極、19…ZrO2 電解
質、20…酸素側電極、21…インターコネクタ、22
支持体、23…固体電解質、24…正極、25…負極、
26…インターコネクタ、27…基体管、28点集電用
多孔板。
1 ... Gas separator, 2 ... Separator part, 3 ... Laminated part,
4 ... Gas inflow frame, 5 ... Current collector support part, 6 ... Electron flow path, 1
2 ... Current collector, 13 ... Cathode, 14 ... Electrolyte plate, 15 ... Anode, 16 ... Current collector, 17 ...
Separator, 18 ... Fuel side electrode, 19 ... ZrO 2 electrolyte, 20 ... Oxygen side electrode, 21 ... Interconnector, 22
Support, 23 ... Solid electrolyte, 24 ... Positive electrode, 25 ... Negative electrode,
26 ... Interconnector, 27 ... Base tube, 28-point current collecting porous plate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 下津 正輝 岡山県玉野市玉3丁目1番1号 三井造船 株式会社玉野事業所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masateru Shimotsu 3-1-1 Tam, Tamano City, Okayama Prefecture Mitsui Engineering & Shipbuilding Co., Ltd. Tamano Works

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 固体電解質膜としてイットリウム安定化
ジルコニアまたはその近似物を用いる固体電解質型燃料
電池の構成材料として、マグネシア(MgO)とスピネ
ル(MgAl2 4 )を主成分とし、該マグネシアとス
ピネルとの混合比が重量比で1/9〜1/1であるセラ
ミックスを用いたことを特徴とする固体電解質型燃料電
池。
1. A magnesia (MgO) and a spinel (MgAl 2 O 4 ) as a main component as a constituent material of a solid electrolyte type fuel cell using yttrium-stabilized zirconia or its approximation as a solid electrolyte membrane. A solid oxide fuel cell characterized by using ceramics having a mixing ratio of 1/9 to 1/1 by weight.
JP4071625A 1992-03-27 1992-03-27 Solid electrolyte fuel cell Pending JPH05275106A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4071625A JPH05275106A (en) 1992-03-27 1992-03-27 Solid electrolyte fuel cell
IT93MI000577A IT1287883B1 (en) 1992-03-27 1993-03-25 METHOD FOR ASSESSING THE INTERNAL QUALITY OF REFRACTORIES OBTAINED BY MOLTEN CASTING

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4071625A JPH05275106A (en) 1992-03-27 1992-03-27 Solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPH05275106A true JPH05275106A (en) 1993-10-22

Family

ID=13466027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4071625A Pending JPH05275106A (en) 1992-03-27 1992-03-27 Solid electrolyte fuel cell

Country Status (2)

Country Link
JP (1) JPH05275106A (en)
IT (1) IT1287883B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08269760A (en) * 1995-03-29 1996-10-15 Agency Of Ind Science & Technol Cylindrical high-temperature steam electrolytic cell
WO2001095416A1 (en) * 2000-06-05 2001-12-13 Forschungszentrum Jülich GmbH Device for electrically contacting electrodes in high-temperature fuel cells
WO2004030131A3 (en) * 2002-09-24 2004-05-21 Morgan Crucible Co Mgo-mgal2o4 refractory components for fuel cells and/or reformers
JP2010126374A (en) * 2008-11-25 2010-06-10 Ngk Insulators Ltd Method for producing magnesium oxide-spinel composite oxide
KR101306593B1 (en) * 2012-03-30 2013-09-10 (주) 세라컴 Manufacturing method of support for solid oxide fuel cell
JP2013258157A (en) * 2013-08-26 2013-12-26 Mitsubishi Heavy Ind Ltd Solid electrolyte fuel cell
WO2015176965A1 (en) * 2014-05-22 2015-11-26 Robert Bosch Gmbh Fuel cell device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0574470A (en) * 1991-09-13 1993-03-26 Mitsui Eng & Shipbuild Co Ltd Gas separator of solid electrolyte fuel cell
JPH0582146A (en) * 1991-02-07 1993-04-02 Yoshida Kogyo Kk <Ykk> Support member for solid electrolyte fuel cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582146A (en) * 1991-02-07 1993-04-02 Yoshida Kogyo Kk <Ykk> Support member for solid electrolyte fuel cell
JPH0574470A (en) * 1991-09-13 1993-03-26 Mitsui Eng & Shipbuild Co Ltd Gas separator of solid electrolyte fuel cell

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08269760A (en) * 1995-03-29 1996-10-15 Agency Of Ind Science & Technol Cylindrical high-temperature steam electrolytic cell
WO2001095416A1 (en) * 2000-06-05 2001-12-13 Forschungszentrum Jülich GmbH Device for electrically contacting electrodes in high-temperature fuel cells
WO2004030131A3 (en) * 2002-09-24 2004-05-21 Morgan Crucible Co Mgo-mgal2o4 refractory components for fuel cells and/or reformers
JP2010126374A (en) * 2008-11-25 2010-06-10 Ngk Insulators Ltd Method for producing magnesium oxide-spinel composite oxide
KR101306593B1 (en) * 2012-03-30 2013-09-10 (주) 세라컴 Manufacturing method of support for solid oxide fuel cell
JP2013258157A (en) * 2013-08-26 2013-12-26 Mitsubishi Heavy Ind Ltd Solid electrolyte fuel cell
WO2015176965A1 (en) * 2014-05-22 2015-11-26 Robert Bosch Gmbh Fuel cell device

Also Published As

Publication number Publication date
IT1287883B1 (en) 1998-08-26
ITMI930577A1 (en) 1994-09-25
ITMI930577A0 (en) 1993-03-25

Similar Documents

Publication Publication Date Title
US5342705A (en) Monolithic fuel cell having a multilayer interconnect
JP4605885B2 (en) Support membrane type solid oxide fuel cell
EP0670606A1 (en) Solid oxide electrolyte fuel cell
US20070037031A1 (en) Cermet and ceramic interconnects for a solid oxide fuel cell
KR20080033153A (en) Self-supporting ceramic membranes and electrochemical cells and electrochemical cell stacks including the same
WO2006050071A2 (en) Ceramic laminate structures
JP2010080151A (en) Cell stack and fuel battery module as well as fuel cell device equipped with the same
US9666892B2 (en) Cell, cell stack device, module, and module housing device
JP5079991B2 (en) Fuel cell and fuel cell
JP5934446B2 (en) Cell, cell stack device and module, and module housing device
JP5574891B2 (en) Solid oxide fuel cell
JPH05275106A (en) Solid electrolyte fuel cell
JP3166888B2 (en) Solid oxide fuel cell stack
JP2020074263A (en) Cell, cell stack device, module, and module housing device
CN111244520A (en) Fuel cell stack and method for manufacturing the same
JP4984802B2 (en) Solid electrolyte fuel cell separator
JP2004039573A (en) Sealing material for low-temperature operation solid oxide fuel cell
JP6134085B1 (en) Electrochemical cell
JP2006172989A (en) Solid electrolyte fuel battery cell and solid electrolyte fuel battery using it and its manufacturing method
JP2009009738A (en) Solid electrolyte fuel cell and its manufacturing method
JP2005085522A (en) Supporting membrane type solid oxide fuel cell
JP2980921B2 (en) Flat solid electrolyte fuel cell
CN111244498A (en) Fuel cell and fuel cell stack
JP2005216619A (en) Fuel battery cell and fuel battery
JP3707155B2 (en) Solid oxide fuel cell

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980609