JP2725207B2 - Position measuring device - Google Patents

Position measuring device

Info

Publication number
JP2725207B2
JP2725207B2 JP1179437A JP17943789A JP2725207B2 JP 2725207 B2 JP2725207 B2 JP 2725207B2 JP 1179437 A JP1179437 A JP 1179437A JP 17943789 A JP17943789 A JP 17943789A JP 2725207 B2 JP2725207 B2 JP 2725207B2
Authority
JP
Japan
Prior art keywords
bright spot
spot image
light receiving
receiving element
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1179437A
Other languages
Japanese (ja)
Other versions
JPH0342507A (en
Inventor
教禎 堀江
牧 山下
茂 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp filed Critical Omron Corp
Priority to JP1179437A priority Critical patent/JP2725207B2/en
Publication of JPH0342507A publication Critical patent/JPH0342507A/en
Application granted granted Critical
Publication of JP2725207B2 publication Critical patent/JP2725207B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> この発明は、物体表面の凹凸形状などを計測するのに
用いられる位置測定装置に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a position measuring device used for measuring an uneven shape or the like of an object surface.

<従来の技術> 従来この種の装置として、第4図に示す如く、レーザ
光源1より光ビーム2を照射して物体3の表面に輝点4
を生成し、この輝点4の像5を対物レンズ6により受光
素子7上に生成するようにしたものが存在する。この装
置では、受光素子7上の輝点像5の位置と光ビーム2の
投射角度とから三角測量の原理に基づき物体3上の輝点
4の位置を算出するものである。
<Prior Art> Conventionally, as an apparatus of this type, as shown in FIG.
And an image 5 of the luminescent spot 4 is generated on the light receiving element 7 by the objective lens 6. In this apparatus, the position of the bright spot 4 on the object 3 is calculated from the position of the bright spot image 5 on the light receiving element 7 and the projection angle of the light beam 2 based on the principle of triangulation.

ところがこの装置を用いて物体3表面の凹凸形状を観
測するには、光ビーム2を物体3の表面に沿って走査す
る機構が必要となり、しかも走査のための処理時間も長
くなるという欠点がある。
However, in order to observe the uneven shape of the surface of the object 3 using this apparatus, a mechanism for scanning the light beam 2 along the surface of the object 3 is required, and furthermore, there is a drawback that the processing time for scanning becomes long. .

そこでこの単一の光ビーム2に代えて物体表面へマル
チビームを照射することにより、ビーム走査を必要とせ
ずに物体表面の凹凸形状を観測できる位置測定装置が提
案された。
Therefore, there has been proposed a position measuring device capable of observing the uneven shape of the object surface by irradiating the object surface with a multi-beam instead of the single light beam 2, without requiring beam scanning.

第5図は、その具体例であって、投光部8と受光部9
とで観測系が構成されている。
FIG. 5 shows a specific example thereof, in which the light projecting unit 8 and the light receiving unit 9 are arranged.
The observation system consists of and.

投光部8は、レーザ光源10とマイクロレンズアレイ11
とから成り、レーザ光源10からのレーザ光をマイクロレ
ンズアレイ11へ照射することにより、並行な光ビームの
束、すなわちマルチビームを発生させている。
The light projecting unit 8 includes a laser light source 10 and a micro lens array 11.
By irradiating the laser light from the laser light source 10 to the microlens array 11, a bundle of parallel light beams, that is, a multi-beam is generated.

第5図中、12はマルチビームを構成する一本の光ビー
ムを示すもので、この光ビーム12は回折次数に応じた方
向へ進んで観測物体13に当たり、物体表面に輝点14を生
成する。この輝点14は各光ビーム毎に形成されるから、
全体として縦横等間隔の格子配列となる。
In FIG. 5, reference numeral 12 denotes one light beam constituting a multi-beam, and this light beam 12 travels in a direction corresponding to the diffraction order and hits an observation object 13 to generate a luminescent spot 14 on the object surface. . Since the bright spots 14 are formed for each light beam,
As a whole, a lattice array is arranged at equal intervals in the vertical and horizontal directions.

受光部9は、対物レンズ15と受光素子16とから成り、
この受光素子16上に各輝点14の像17を結像させる。この
輝点像17も縦横等間隔に並び、全体として格子配列とな
る。
The light receiving unit 9 includes an objective lens 15 and a light receiving element 16,
An image 17 of each bright spot 14 is formed on the light receiving element 16. The bright spot images 17 are also arranged at equal intervals in the vertical and horizontal directions, and have a lattice arrangement as a whole.

同図中、XYZの各軸はこの観測系に設定された3次元
座標軸であって、Z軸上に受光部9の対物レンズ15と受
光素子16とを位置させ、またY軸上に対物レンズ15と投
光部8のマイクロレンズアレイ11とが位置させてある。
In the figure, XYZ axes are three-dimensional coordinate axes set for this observation system. The objective lens 15 and the light receiving element 16 of the light receiving section 9 are located on the Z axis, and the objective lens is located on the Y axis. 15 and the micro lens array 11 of the light projecting section 8 are located.

いま受光素子16と対物レンズ15との距離をl、対物レ
ンズ15とマイクロレンズアレイ11との距離をd、光ビー
ム12がZ軸方向となす角度をθ、物体13での反射光が
Z軸方向となす角度をθとした場合、受光素子16上の
輝点像17の位置(x1,y1)を測定すれば、前記の角度θ
を求めることができる。
Now, the distance between the light receiving element 16 and the objective lens 15 is l, the distance between the objective lens 15 and the microlens array 11 is d, the angle between the light beam 12 and the Z-axis direction is θ 1 , and the reflected light from the object 13 is Z Assuming that the angle formed with the axial direction is θ 2 , if the position (x 1 , y 1 ) of the bright spot image 17 on the light receiving element 16 is measured, the angle θ
2 can be obtained.

そして前記の角度θは光ビーム12の回折次数より既
知であるから、つぎの〜式の演算を順次実行すれ
ば、物体13上の輝点14の3次元座標(x,y,z)を算出で
きる。
Since the angle θ 1 is known from the diffraction order of the light beam 12, the three-dimensional coordinates (x, y, z) of the luminescent spot 14 on the object 13 can be obtained by sequentially executing the following calculations. Can be calculated.

ところで受光素子16上には格子配列をなす多数の輝点
像17が一斉に結像するため、物体上の各輝点14の位置を
測定するためには、各輝点像17がマルチビームのいずれ
の光ビーム12と対応しているかを知る必要がある。
By the way, since a large number of bright spot images 17 forming a lattice array are simultaneously formed on the light receiving element 16, in order to measure the position of each bright spot 14 on the object, each bright spot image 17 It is necessary to know which light beam 12 it corresponds to.

そこで受光素子16上に、第6図に示すような格子配列
のマルチウィンドウW′を設定し、各輝点像17が正方矩
形状の各ウィンドウ領域18に個別に含まれるようにし
て、各ウィンドウ領域18内で各輝点像17の位置を計測し
ている。このマルチウィンドウW′の縦横の配列方向は
輝点像17の配列方向と一致し、かつ各ウィンドウ領域18
の縦横の各幅aは輝点像17の縦横の各間隔bと一致(a
=b)する。
Therefore, a multi-window W 'having a lattice arrangement as shown in FIG. 6 is set on the light receiving element 16 so that each bright spot image 17 is individually included in each window area 18 of a square rectangle. The position of each bright spot image 17 is measured in the area 18. The vertical and horizontal arrangement directions of the multi-window W 'coincide with the arrangement direction of the bright spot image 17 and each window area 18
And the width a in the vertical and horizontal directions correspond to the vertical and horizontal intervals b in the bright spot image 17 (a
= B).

<発明が解決しようとする問題点> 上記の観測系において、受光素子16上の各輝点像17は
物体表面の凹凸に応じてマルチウィンドウW′の各ウィ
ンドウ領域18内で変位することになるが、表面凹凸の大
きい物体については、輝点像17がウィンドウ領域18外へ
はみ出る虞れがあり、これがため計測可能な物体がマル
チビームの格子定数により制限されるという問題があ
る。
<Problems to be Solved by the Invention> In the above observation system, each bright spot image 17 on the light receiving element 16 is displaced in each window region 18 of the multi-window W 'according to the unevenness of the object surface. However, with respect to an object having a large surface unevenness, the bright spot image 17 may protrude out of the window region 18, which causes a problem that the measurable object is limited by the lattice constant of the multi-beam.

第7図は、縦軸にZ軸方向の測定距離を、また横軸に
受光素子16上のY座標を、それぞれとったものである。
FIG. 7 shows the measured distance in the Z-axis direction on the vertical axis and the Y coordinate on the light receiving element 16 on the horizontal axis.

同図は、レンズアレイ11より照射された光ビーム12が
Z1,Z2,Z3の各距離の位置に輝点を生成するとき、対物レ
ンズ15により受光素子16上に生成される輝点像17がY1,Y
2,Y3の各座標位置に結像することを示している。従って
物体の奥行き方向の測定距離はマルチウィンドウW′の
Y方向の長さによる制限を受けることが理解される。
The figure shows that the light beam 12 emitted from the lens array 11 is
When generating bright spots at respective distances of Z 1 , Z 2 , Z 3 , bright spot images 17 generated on the light receiving element 16 by the objective lens 15 are Y 1 , Y
Indicates that imaged on each coordinate position of the 2, Y 3. Therefore, it is understood that the measurement distance in the depth direction of the object is limited by the length of the multi-window W 'in the Y direction.

この発明は、上記問題に着目してなされたもので、受
光素子上で各輝点像が十分に変位できるよう工夫すると
共に、マルチウィンドウを輝点像の変位する方向へ長い
形状に設定することにより、計測可能範囲を大幅に拡大
した新規な位置計測装置を提供することを目的とする。
The present invention has been made in view of the above-described problem, and is designed so that each bright spot image can be sufficiently displaced on the light receiving element, and sets the multi-window to a shape long in a direction in which the bright spot image is displaced. Accordingly, an object of the present invention is to provide a novel position measuring device in which the measurable range is greatly expanded.

<問題点を解決するための手段> この発明にかかる位置測定装置は、観測物体に向けて
マルチビームを照射して物体表面に複数個の輝点を格子
状に生成する投光部と、受光素子上に格子配列の輝点像
を生成する受光部とで観測光学系が形成してある。そし
て前記投光部は、受光素子上における各輝点像の縦横の
配列方向に対して各輝点像の変位する方向が斜めとなる
よう傾き角度をもたせて配置すると共に、前記受光素子
上には、各輝点像を個別に囲みかつ輝点像の変位する方
向に長い形状のマルチウィンドウを設定するようにして
いる。
<Means for Solving the Problems> A position measuring device according to the present invention includes: a light projecting unit that irradiates an observation object with a multi-beam to generate a plurality of bright spots in a grid on the surface of the object; An observation optical system is formed on the element by a light receiving unit that generates a bright spot image in a lattice arrangement. The light projecting unit is arranged with an inclination angle such that a direction in which each bright spot image is displaced is oblique to a vertical and horizontal arrangement direction of each bright spot image on the light receiving element, and is disposed on the light receiving element. Is to individually surround each bright spot image and set a long multi-window in the direction in which the bright spot images are displaced.

<作用> 観測物体の凹凸に応じて受光素子上の各輝点像は縦横
の配列方向に対して斜め方向へ変位するので、十分に大
きな変位が許容され、しかもマルチウィンドウの形状も
輝点像の変位する方向に長く設定してあるから、輝点像
がウィンドウの領域外へはみ出る虞れがなく、計測可能
範囲が大幅に拡大する。
<Effect> Since each bright spot image on the light receiving element is displaced in the oblique direction with respect to the vertical and horizontal arrangement directions according to the unevenness of the observation object, a sufficiently large displacement is allowed, and the shape of the multi-window is also a bright spot image. Is set to be long in the direction of the displacement, there is no possibility that the bright spot image protrudes out of the window area, and the measurable range is greatly expanded.

<実施例> 第1図は、この発明の一実施例にかかる位置測定装置
の構成を示しており、第5図の従来例と同様、レーザ光
源10とマイクロレンズアレイ11とから成る投光部8と、
対物レンズ15と受光素子16とから成る受光部9とで観測
系が構成されている。
<Embodiment> FIG. 1 shows a configuration of a position measuring apparatus according to an embodiment of the present invention. As in the conventional example shown in FIG. 5, a light projecting unit including a laser light source 10 and a microlens array 11 is shown. 8 and
An observation system is configured by the light receiving unit 9 including the objective lens 15 and the light receiving element 16.

なお投光部8のレーザ光源10とマイクロレンズアレイ
11、また受光部9の対物レンズ15と受光素子16は、第5
図の従来例と同様の機能を果たすものであり、ここでは
その説明を省略する。
The laser light source 10 of the light emitting section 8 and the micro lens array
11, the objective lens 15 and the light receiving element 16 of the light receiving section 9
It performs the same function as the conventional example shown in the figure, and the description thereof is omitted here.

図示例の装置にあっては、前記マイクロレンズアレイ
11は所定の角度θだけ傾けて配置してあり、これにより
受光素子16上における各輝点像17が、第3図に示す如
く、縦横の配列方向(同図中、破線e,fで示す)に対し
て斜め方向(同図中、矢印Sで示す)へ変位するように
してある。加えてこの装置においては、受光素子16上
に、各輝点像17を個別に囲みかつ輝点像17の変位する方
向に長い形状のマルチウィンドウWを設定するようにし
てある。
In the illustrated example of the apparatus, the microlens array
11 are arranged at a predetermined angle θ, so that each bright spot image 17 on the light receiving element 16 is arranged vertically and horizontally as shown in FIG. 3 (indicated by broken lines e, f in FIG. 3). ) Is displaced in an oblique direction (indicated by an arrow S in the figure). In addition, in this device, on the light receiving element 16, a multi-window W which individually surrounds each bright spot image 17 and is long in the direction in which the bright spot image 17 is displaced is set.

第3図は、受光素子16上で輝点像17が変位する方向
(図中、矢印gで示す)が観測物体の形状によらず常に
Y軸と平行な方向であることを示すものである。
FIG. 3 shows that the direction in which the bright spot image 17 is displaced on the light receiving element 16 (indicated by an arrow g in the figure) is always parallel to the Y axis regardless of the shape of the observation object. .

第3図(1)において、20はY軸とマイクロレンズア
レイ11より照射される光ビーム12とを含む0次回折光面
であり、また22,23は物***置を示す物体線である。こ
の0次回折光面内における光ビーム12は物体の形状(物
体線22,23の位置)に応じて矢印hのように移動し、そ
の輝点像17は受光素子16上でY軸に沿う矢印gの方向に
移動する。
In FIG. 3A, reference numeral 20 denotes a zero-order diffracted light plane including the Y axis and the light beam 12 emitted from the microlens array 11, and reference numerals 22 and 23 denote object lines indicating the object position. The light beam 12 in the 0th-order diffracted light plane moves as indicated by an arrow h according to the shape of the object (the positions of the object lines 22 and 23). Move in the direction of g.

また第3図(2)に示すように、0次回折光面20に対
してつぎに高次の回折光面(1次回折光面)21について
も上記と同様であり、受光素子17上の輝点像gはY軸に
沿う矢印gの方向に移動する。
Further, as shown in FIG. 3 (2), the same applies to a higher order diffracted light surface (first order diffracted light surface) 21 next to the 0th order diffracted light surface 20. Image g moves in the direction of arrow g along the Y axis.

第2図に戻って、前記マルチウィンドウWの長さw
1は、その方向が輝点像17の変位する方向と一致し、し
かもその大きさが輝点像17の配列間隔bに対して十分に
大きく設定してあるから、物体の奥行き方向に対する測
定範囲が拡大することになる。
Returning to FIG. 2, the length w of the multi-window W
1 is a measurement range in the depth direction of the object, since the direction thereof coincides with the direction in which the bright spot image 17 is displaced, and the size thereof is set sufficiently large with respect to the arrangement interval b of the bright spot images 17. Will expand.

なおこの実施例では、各輝点像17の変位方向が輝点像
17の格子配列に対してA方向となるようマイクロレンズ
アレイ11の傾き角度θが設定してあるが、これに限ら
ず、各輝点像17の変位方向が格子配列に対してB〜Dの
各方向となるよう傾き角度θを設定してもよい。
In this embodiment, the displacement direction of each bright spot image 17 is
Although the inclination angle θ of the microlens array 11 is set so as to be in the A direction with respect to the lattice array of 17, the displacement direction of each bright spot image 17 is in the range of B to D with respect to the lattice array. The tilt angle θ may be set to be in each direction.

下表は輝点像17の変位方向をA〜Dの各方向に設定し
た場合におけるマルチウィンドウWの長さw1および幅w2
を示している。
The length of the multi-window W when following table set in each direction of A~D the displacement direction of the luminescent spot image 17 w 1 and a width w 2
Is shown.

<発明の効果> この発明は上記の如く、マルチビームにより物体表面
に生成した格子配列の輝点につきその輝点像を受光素子
上に生成するものにおいて、各輝点像の縦横の配列方向
に対して各輝点像の変位する方向が斜めとなるよう投光
部に傾きを設定すると共に、受光素子上には、各輝点像
を個別に囲みかつ輝点像の変位する方向に長い形状のマ
ルチウィンドウを設定するようにしたから、受光素子上
の各輝点像は観測物体の凹凸に応じた十分に大きな変位
が許容され、しかも輝点像がウィンドウの領域外へはみ
出ることもなく、計測可能範囲が大幅に拡大するという
顕著な効果を奏する。
<Effect of the Invention> As described above, the present invention is to generate a bright spot image on a light receiving element for a bright spot of a grid array generated on an object surface by a multi-beam, in the vertical and horizontal arrangement direction of each bright spot image. On the other hand, the light emitting unit is inclined so that the direction in which each bright spot image is displaced is oblique, and the light receiving element has a shape that individually surrounds each bright spot image and is long in the displacement direction of the bright spot image. Since the multi-window is set, each bright spot image on the light receiving element is allowed to have a sufficiently large displacement according to the unevenness of the observation object, and the bright spot image does not protrude out of the window area, This has a remarkable effect that the measurable range is greatly expanded.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の一実施例にかかる位置測定装置の構
成を示す説明図、第2図は輝点像の変位方向とマルチウ
ィンドウの形状との関係を示す説明図、第3図は物体の
形状と輝点像の変位方向との関係を示す説明図、第4図
および第5図は従来の位置測定装置の構成を示す説明
図、第6図は第5図の従来例で用いられるマルチウィン
ドウを示す説明図、第7図は測定距離と受光素子上の輝
点像の位置との関係を示す説明図である。 8……投光部、9……受光部 11……マイクロレンズアレイ 16……受光素子
FIG. 1 is an explanatory diagram showing a configuration of a position measuring apparatus according to an embodiment of the present invention, FIG. 2 is an explanatory diagram showing a relationship between a displacement direction of a bright spot image and a shape of a multi-window, and FIG. 4 and 5 are explanatory diagrams showing the configuration of a conventional position measuring device, and FIG. 6 is used in the conventional example of FIG. FIG. 7 is an explanatory diagram showing a multi-window, and FIG. 7 is an explanatory diagram showing a relationship between a measurement distance and a position of a bright spot image on a light receiving element. 8 Projector, 9 Receiver 11 Microlens array 16 Receiver

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】観測物体に向けてマルチビームを照射して
物体表面に複数個の輝点を格子状に生成する投光部と、
受光素子上に格子配列の輝点像を生成する受光部とで観
測光学系が形成され、 前記投光部は、受光素子上における各輝点像の縦横の配
列方向に対して各輝点像の変位する方向が斜めとなるよ
う傾き角度をもたせて配置されると共に、前記受光素子
上には、各輝点像を個別に囲みかつ輝点像の変位する方
向に長い形状のマルチウィンドウが設定されて成る位置
測定装置。
1. A light projecting unit for irradiating an observation object with a multi-beam to generate a plurality of luminescent spots in a grid on the surface of the object.
An observation optical system is formed by a light receiving unit that generates a bright spot image having a lattice array on the light receiving element, and the light projecting unit is configured to have each bright spot image in a vertical and horizontal arrangement direction of each bright spot image on the light receiving element. Are arranged with an inclination angle so that the direction of displacement of the bright spot image is oblique, and a multi-window that individually surrounds each bright spot image and is long in the direction in which the bright spot image is displaced is set on the light receiving element. Positioning device consisting of:
JP1179437A 1989-07-11 1989-07-11 Position measuring device Expired - Lifetime JP2725207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1179437A JP2725207B2 (en) 1989-07-11 1989-07-11 Position measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1179437A JP2725207B2 (en) 1989-07-11 1989-07-11 Position measuring device

Publications (2)

Publication Number Publication Date
JPH0342507A JPH0342507A (en) 1991-02-22
JP2725207B2 true JP2725207B2 (en) 1998-03-11

Family

ID=16065850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1179437A Expired - Lifetime JP2725207B2 (en) 1989-07-11 1989-07-11 Position measuring device

Country Status (1)

Country Link
JP (1) JP2725207B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6337677B2 (en) * 2014-07-31 2018-06-06 アルプス電気株式会社 3D measuring device

Also Published As

Publication number Publication date
JPH0342507A (en) 1991-02-22

Similar Documents

Publication Publication Date Title
EP2183544B1 (en) Non-contact measurement apparatus and method
US8243286B2 (en) Device and method for the contactless detection of a three-dimensional contour
JP4913597B2 (en) High-speed multiple line 3D digitization method
JP2009053209A (en) Three-dimensional shape measuring apparatus
US4744664A (en) Method and apparatus for determining the position of a feature of an object
JPH06137826A (en) Shape detecting method and its device
JP6937482B2 (en) Surface shape measuring device and its stitching measuring method
JPH06147863A (en) Bending angle detector for bending machine
US4760269A (en) Method and apparatus for measuring distance to an object
JPH0514217B2 (en)
EP0290237A2 (en) Synchronous optical scanning apparatus
JP2623367B2 (en) Calibration method of three-dimensional shape measuring device
JP2725207B2 (en) Position measuring device
JP2007163429A (en) Three-dimensional distance measuring method, and instrument therefor
JP3324809B2 (en) Measurement point indicator for 3D measurement
KR20040071531A (en) Three-dimensional image measuring apparatus and method thereof
US7212294B2 (en) Method for determination of the level of two or more measurement points, and an arrangement for this purpose
JP2006105942A (en) Method and apparatus for measuring three-dimensional shape
JP2673196B2 (en) 3D shape sensor
JP2737271B2 (en) Surface three-dimensional shape measuring method and device
JPS6189504A (en) Measuring device of body shape of 3-dimensional body
JP6847012B2 (en) Multi-chamber analyzer and analytical method
JP2000329531A (en) Apparatus and method for measurement of three- dimensional shape
JPH01244303A (en) Three-dimensional shape measuring device of non-contact method
JPS62291512A (en) Distance measuring apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091205

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091205

Year of fee payment: 12