JPH01244303A - Three-dimensional shape measuring device of non-contact method - Google Patents

Three-dimensional shape measuring device of non-contact method

Info

Publication number
JPH01244303A
JPH01244303A JP7163488A JP7163488A JPH01244303A JP H01244303 A JPH01244303 A JP H01244303A JP 7163488 A JP7163488 A JP 7163488A JP 7163488 A JP7163488 A JP 7163488A JP H01244303 A JPH01244303 A JP H01244303A
Authority
JP
Japan
Prior art keywords
light
image
knife edge
measured
dimensional shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7163488A
Other languages
Japanese (ja)
Inventor
Naotake Otsuka
尚武 大塚
Masaaki Nakano
正章 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp, Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Corp
Priority to JP7163488A priority Critical patent/JPH01244303A/en
Publication of JPH01244303A publication Critical patent/JPH01244303A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure the three-dimensional shape and coordinates of the surface of an object with high accuracy, by projecting light beams partially interrupted by a knife edge to said object, thereby obtaining the height of a part of said object based on the positional deviation of an image of said knife edge by the reflected light beams. CONSTITUTION:Parallel light beams coming from a light source 15 are partially interrupted by a knife edge 17a and projected to the surface of an object 11 to be measured. The reflected light from the object 11 forms an image on an image sensor 19 through a lens 18. A signal processor 20 obtains the height of a part of the object corresponding to the projecting position of the knife edge on the surface of the object 11 on the basis of the deviation from a predetermined reference line of the image of the knife edge which is formed on the sensor and given as a boundary of light and dark parts of the light. While a table 12 is moved a little by a little to a movable rail 13 and a fixed rail 14, the above measuring operation is carried out. As a result, the three- dimensional data of coordinates of the surface shape of the object 11 can be obtained.

Description

【発明の詳細な説明】 [発明の目的] 〈産業上の利用分野〉 本発明は物体表面の3次元形状及び3次元座標を非接触
式に測定するための装置に関する。本発明はあらゆる用
途に適用可能であるが、特に金属の破面などを立体的に
計測したり直視するための3次元走査顕微鏡として用い
ることができる。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] <Industrial Application Field> The present invention relates to an apparatus for measuring the three-dimensional shape and three-dimensional coordinates of the surface of an object in a non-contact manner. Although the present invention is applicable to all kinds of uses, it can particularly be used as a three-dimensional scanning microscope for three-dimensionally measuring or directly viewing fractured surfaces of metals.

〈従来の技術〉 金属の破面の形状などを立体的に計測するための3次元
走査顕微鏡や、ロボットによる自動加工及び組立、製品
の形状或いは寸法の検査、高温又は低温環境下にある物
体の形状測定を行なう等の目的のために物体表面の3次
元形状及び寸法を非接触式に高速測定するための装置等
に対する需要が増している。このような目的のためには
、従来レーザなどのスポットビームを被測定対象物表面
に投射し、光干渉法や光変調法、三角側聞法等の種々の
手法により゛投射点までの距離を測定し、同時にスポッ
トビームを2次元的に走査する方法が用いられている。
<Prior art> Three-dimensional scanning microscopes for three-dimensionally measuring the shape of metal fracture surfaces, automatic processing and assembly using robots, inspection of the shape or dimensions of products, and inspection of objects in high- or low-temperature environments. 2. Description of the Related Art There is an increasing demand for devices for high-speed, non-contact measurement of the three-dimensional shape and dimensions of the surface of an object for purposes such as shape measurement. For this purpose, conventionally, a spot beam such as a laser beam is projected onto the surface of the object to be measured, and the distance to the projected point is measured using various methods such as optical interferometry, optical modulation method, and trigonometric method. However, at the same time, a method is used in which the spot beam is scanned two-dimensionally.

この方法によれば、距離の測定方法を適当に選ぶことに
より距離測定精度を上げたり、測定範囲を広く取ること
ができるなど利点を有するが、ビーム径に制限があるた
めに2次元走査の分解能に限界があることや、2次元走
査と膨大なデータ処理のために測定に多大な時間を要す
るなどの欠点がある。また、光干渉法や光変調法を用い
た場合には、測定対象物表面の垂直方向がビームの投射
方向から著しく傾斜する場合には、距離の測定が困難に
なるなどの問題がある。
This method has the advantage of increasing the distance measurement accuracy and widening the measurement range by appropriately selecting the distance measurement method, but because the beam diameter is limited, the resolution of two-dimensional scanning is limited. There are drawbacks such as there are limits to the amount of data available, and measurement requires a large amount of time due to two-dimensional scanning and processing of a huge amount of data. Further, when using the optical interference method or the optical modulation method, there are problems such as difficulty in measuring distance if the vertical direction of the surface of the object to be measured is significantly inclined from the beam projection direction.

そこで、スリットを通過したフラットレーザビーム(線
状光源)を測定対象物に投射し、測定対象物をビームに
対して直角方向に走査し3角測量方式を用いて測定対象
物表面の形状を3次元的に測定することが提案されてい
る。これによると、走査が1次元的で済むため、高速で
安定な3次元座標の測定が可能となる利点を有するが、
前記同様にスリット幅に制限がおるため、2次元走査の
分解能に限界があり、現状では横送り方向の分解能を3
0μmより高めることができない。
Therefore, a flat laser beam (linear light source) that has passed through a slit is projected onto the object to be measured, the object is scanned in a direction perpendicular to the beam, and the shape of the surface of the object is determined by triangulation. It has been proposed to measure it dimensionally. According to this method, scanning is only one-dimensional, so it has the advantage of being able to measure three-dimensional coordinates at high speed and stably.
As mentioned above, there is a limit to the slit width, so there is a limit to the resolution of two-dimensional scanning, and currently the resolution in the transverse direction is 3
It cannot be made higher than 0 μm.

〈発明が解決しようとする課題〉 このような従来技術の問題点に鑑み、本発明の主な目的
は、物体表面の3次元形状及び座標を高速かつ高い分解
能をもって測定するための装置を提供することにある。
<Problems to be Solved by the Invention> In view of the problems of the prior art, the main purpose of the present invention is to provide an apparatus for measuring the three-dimensional shape and coordinates of the surface of an object at high speed and with high resolution. There is a particular thing.

[発明の構成] 〈課題を解決するための手段〉 このような目的は、本発明によれば、測定対象物表面の
3次元形状及び座標を測定するための装置であって、前
記測定対象物に対して或る投射方向から平行光線を投射
するための手段と、前記平行光線の一部を遮光するナイ
フェツジ手段と、前記測定対象物表面からの反射光を前
記投射方向とは異なる方向から受光し、画像センサ上に
結像するための受光手段と、前記画像センサ上に結像さ
れた光の明暗部の境界として与えられる前記ナイフェツ
ジの像の、所定の基準線に対する偏差に基づき、前記測
定対象物表面の前記ナイフェツジの投射位置に対応する
部分の高さを求める信号処理手段と、前記光投射手段及
び受光手段と前記測定対象物とを横方向に相対的に走査
するための手段とを有することを特徴とする非接触式3
次元形状測定装置を提供することにより達成される。
[Structure of the Invention] <Means for Solving the Problems> According to the present invention, an apparatus for measuring the three-dimensional shape and coordinates of the surface of a measurement object, comprising: means for projecting parallel light rays from a certain projection direction onto the object; knife means for blocking a portion of the parallel light rays; and means for receiving reflected light from the surface of the object to be measured from a direction different from the projection direction. and a light receiving means for forming an image on the image sensor, and the measurement based on the deviation from a predetermined reference line of the naifetsu image given as the boundary between bright and dark areas of the light imaged on the image sensor. a signal processing means for determining the height of a portion of the surface of the object corresponding to the projection position of the knife; and means for relatively scanning the light projection means, the light receiving means, and the measurement object in the lateral direction. Non-contact type 3 characterized by having
This is accomplished by providing a dimensional shape measuring device.

〈作用〉 このようにして信号処理装置により得られた距離に関す
る情報と走査手段から得られる位置情報とを組合せるの
みで、3次元的形状を簡単にしかも高速で数値化するこ
とができる。しかも画像センサから得られる2次元座標
データの分解能は、スリット幅等の物理的寸法に依存し
ていないことから、画像センサの分解能に応じて任意に
向上させることができる。更に、受光したエツジ境界線
像をレンズ系を用いて拡大して結像させる場合には、画
像センサの分解能にも依存することなく測定分解能を一
層任意に向上させることができ、本発明に基づく装置を
走査顕微鏡として利用することができる。
<Operation> By simply combining the distance information obtained by the signal processing device and the position information obtained from the scanning means in this way, a three-dimensional shape can be digitized simply and at high speed. Moreover, since the resolution of the two-dimensional coordinate data obtained from the image sensor does not depend on physical dimensions such as slit width, it can be arbitrarily improved according to the resolution of the image sensor. Furthermore, when the received edge boundary image is enlarged and formed using a lens system, the measurement resolution can be further improved arbitrarily without depending on the resolution of the image sensor, and the present invention The device can be used as a scanning microscope.

〈実施例〉 以下、本発明の好適実施例を添付の図面について詳しく
説明する。
<Embodiments> Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

第1図は本発明に基づく3次元形状測定装置の原理を示
す。レーザダイオード等からなる光源1から、測定対象
物2の表面上の基準点P1となるべき点に光ビームを投
射すると、光ビームは同部分で乱反射し、散乱光を生じ
る。この散乱光をレンズ3により受光し、画像センサ4
上に基準結像点Q1として結像きせる。この時、測定対
象物2の主面の法線5に対する入射光及び反射光の角度
A、Bは任意であってよいが、測定対象物表面の凹凸に
応じて影となるような測定不可能領域ができないように
、或いは測定感度を高めるように適宜選択する。
FIG. 1 shows the principle of a three-dimensional shape measuring device based on the present invention. When a light beam is projected from a light source 1, such as a laser diode, onto a point on the surface of the object to be measured 2 that is to be a reference point P1, the light beam is diffusely reflected at the same portion, producing scattered light. This scattered light is received by the lens 3, and the image sensor 4
An image is formed above as a reference imaging point Q1. At this time, the angles A and B of the incident light and the reflected light with respect to the normal 5 of the main surface of the object to be measured 2 may be arbitrary, but the angles A and B of the incident light and the reflected light with respect to the normal 5 of the main surface of the object to be measured 2 may be arbitrary, but if the angles A and B of the incident light and the reflected light are It is selected as appropriate to prevent the formation of a region or to increase measurement sensitivity.

いずれにせよ、測定対象物の投影点がP2及びP3に示
されるように、基準投影点P1に対して上下に変位した
場合には、対応する画像センサ4上の結像点は、Q2及
びQ3に示されるように基準結像点Q1に対して左右に
変位する。この時、基準結像点Q1に対する結像点Q2
、Q3の左右方向の変位ihl 、h2は基準投影点P
1に対する投影点P2 、P3の上下方向の変位lzl
 、z2に対して概ね比例している。特に画像センサ4
の受光面を、光源1から測定対象物2の表面へ向う投影
方向に対して平行に設置する場合には、hl、h2は各
々z1、z2に正確に比例する。従って、結像点Q2 
、Q3の変位量を計測することにより、投影点P2 、
P3の上下位置を検出できることとなる。
In any case, when the projection points of the measurement object are vertically displaced with respect to the reference projection point P1, as shown in P2 and P3, the image forming points on the corresponding image sensor 4 are Q2 and Q3. As shown in FIG. At this time, the imaging point Q2 with respect to the reference imaging point Q1
, Q3's left-right displacement ihl, h2 is the reference projection point P
Vertical displacement lzl of projection points P2 and P3 relative to 1
, z2. Especially image sensor 4
When the light-receiving surface of is installed parallel to the projection direction from the light source 1 toward the surface of the object to be measured 2, hl and h2 are exactly proportional to z1 and z2, respectively. Therefore, the imaging point Q2
, Q3, the projection point P2,
This means that the vertical position of P3 can be detected.

第2図は本発明に基づく非接触式3次元形状測定装置の
好適実施例を示す。
FIG. 2 shows a preferred embodiment of a non-contact three-dimensional shape measuring device based on the present invention.

測定対象物11はテーブル12上に載置され、テーブル
12は可動レール13上をX方向に変位可能であり、可
動レール13は固定レール14に対してX方向に変位可
能にされている。レーザダイオード等からなる光源15
から発光される光ビームは、レンズ16により平行ビー
ム束に変換され、ナイフェツジ17aを有する遮光板1
7によりその一部が遮光される。このようにして部分的
に遮光された平行ビーム束は測定対象物11の表面に投
射され、その散乱反射光はレンズ1Bによ−り受光され
必要に応じて拡大されて画像センサ(フォトディテクタ
)19上に結像される。
The measurement object 11 is placed on a table 12, the table 12 is movable on a movable rail 13 in the X direction, and the movable rail 13 is movable on a fixed rail 14 in the X direction. Light source 15 consisting of a laser diode etc.
The light beam emitted from the lens 16 is converted into a parallel beam bundle by the light shielding plate 1 having a knife 17a.
Part of the light is blocked by 7. The parallel beam bundle partially blocked in this way is projected onto the surface of the object to be measured 11, and its scattered reflected light is received by the lens 1B and magnified as necessary to form an image sensor (photodetector) 19. imaged on top.

遮光板17により平行ビーム束の一部が遮光されている
ことから、測定対象物11の表面にはナイフェツジ17
aに対応する境界線25により区分される明るい領域2
6及び暗い領域27が形成される。従って、この明暗領
域の境界線25の像が画像センサ19上に結像される。
Since a part of the parallel beam bundle is blocked by the light shielding plate 17, there is a knife 17 on the surface of the measurement object 11.
Bright area 2 divided by border line 25 corresponding to a
6 and a dark area 27 are formed. Therefore, an image of the boundary line 25 between the bright and dark areas is formed on the image sensor 19.

この境界線25の像は、測定対象物の表面が水平である
場合には直線(基準線)として得られるが、第1図につ
いて前記した理由により、測定対象物表面上の境界線2
5に対応する部分の(2方向の)凹凸に応じて、基準線
に対して変位した曲線として画像センサ19上に結像さ
れ、しかもこの変位は一義的に測定対象物11の表面の
凹凸の度合を与えることとなる。
The image of this boundary line 25 is obtained as a straight line (reference line) when the surface of the object to be measured is horizontal, but for the reason described above in connection with FIG.
An image is formed on the image sensor 19 as a curved line displaced with respect to the reference line according to the unevenness (in two directions) of the portion corresponding to 5, and this displacement is uniquely caused by the unevenness of the surface of the measurement object 11. It will give a degree.

従って、可動レール13及び固定レール14に対してテ
ーブル12を適宜微小量をもって移動させることにより
測定対象物の全表面を走査し、その表面形状に関する3
次元的座標情報を得ることができる。
Therefore, by moving the table 12 by an appropriate minute amount with respect to the movable rail 13 and the fixed rail 14, the entire surface of the object to be measured is scanned, and three
Dimensional coordinate information can be obtained.

即ち、画像センサ19により得られた信号を信号処理装
置20により数値化し、この処理結果を、制御装置21
により走査情報とを組合わせることにより、所望に応じ
て3次元情報を表示装置22に直接表示したり、出力装
置23を介して記録装置24によりハードコピーやデジ
タル信号などとして記録することが可能となる。
That is, the signal obtained by the image sensor 19 is digitized by the signal processing device 20, and the processing result is sent to the control device 21.
By combining the 3D information with scanning information, it is possible to display the 3D information directly on the display device 22 as desired, or to record it as a hard copy or digital signal by the recording device 24 via the output device 23. Become.

上記実施例に於ては距離測定ユニットと測定対象物との
間に於てxyX方向走査が行なわれるようにしたが、場
合によってはく例えば、測定されるべき表面領域の幅よ
りも同表面に投射された境界線25の長さの方が大ぎい
場合等)、ナイフェツジ17aに直交する方向のみ、例
えばX方向にのみ走査が行われるようにしても好い。ま
た、本実施例の場合には測定対象物11が走査されたが
、距離測定ユニット15〜19の側を走査するようにし
ても好く、或いは両者を互いに直交する方向に走査して
も好い。
In the above embodiment, scanning is performed in the xyx directions between the distance measuring unit and the object to be measured, but in some cases, for example, the width of the surface area to be measured is (e.g., when the length of the projected boundary line 25 is longer), scanning may be performed only in the direction perpendicular to the knife edge 17a, for example, in the X direction. Further, in the case of this embodiment, the object to be measured 11 was scanned, but it is also possible to scan the distance measuring units 15 to 19 side, or both may be scanned in directions perpendicular to each other. .

[発明の効果] 本発明によれば、金属の破面やその他の検査対象の3次
元形状および寸法が、画像センサ上の2次元情報及び走
査装置により与えられる座標上に於ける距離情報とを組
合わせることにより非接触で直接的に杷握されることか
ら、得られた3次元形状に関する情報が、容易にしかも
高速で、直視可能にしたり、直接数値解析に用い得るよ
うなデータとして得られるため、その効果は極めて大で
ある。
[Effects of the Invention] According to the present invention, the three-dimensional shape and dimensions of a metal fracture surface or other inspection target can be determined using two-dimensional information on an image sensor and distance information on coordinates provided by a scanning device. By combining them, they can be directly clamped without contact, so information about the obtained three-dimensional shape can be easily and quickly obtained as data that can be viewed directly or used for direct numerical analysis. Therefore, the effect is extremely large.

更に、本発明は測定対象物表面からの散乱光を受光する
ものであるため、測定対象物表面の傾斜の度合や色彩、
表面性状の影響を受けにくいという利点を有する。また
、従来の非接触式距離計測手段に比して分解能を向上さ
せしかもその計測時間を短縮さることが可能である。特
に本発明に基づく装置を走査顕微鏡として用いた場合に
は測定対象物の設定場所を特定する必要がなく、従って
真空容器等を必要とすることなく通常の雰囲気中で測定
を行なうことができるという利点がjqられる。
Furthermore, since the present invention receives scattered light from the surface of the object to be measured, the degree of inclination and color of the surface of the object to be measured,
It has the advantage of being less affected by surface properties. Furthermore, it is possible to improve the resolution and shorten the measurement time compared to conventional non-contact distance measuring means. In particular, when the device based on the present invention is used as a scanning microscope, there is no need to specify the location of the object to be measured, and therefore measurements can be carried out in a normal atmosphere without the need for a vacuum container or the like. Benefits are given.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に基づく装置の動作原理を説明するた
めの説明図でおる。 第2図は本発明に基づく装置の構成を示す模式的ブロッ
ク図である。 1・・・光源      2・・・測定対象物3・・・
レンズ     4・・・画像センサ5・・・法線  
    11・・・測定対象物12・・・テーブル  
 13・・・可動レール14・・・固定レール  15
・・・光源16・・・レンズ    17・・・遮光板
17a・・・ナイフェツジ18・・・レンズ19・・・
画像センサ  20・・・信号処理装置21・・・制御
装置   22・・・表示装置23・・・出力装置  
 24・・・記録装置25・・・境界線    26・
・・明るい領域27・・・暗い領域 特 許 出 願 人  千代田化工建設株式会社代  
 理   人  弁理士 大 島 陽 −第1図
FIG. 1 is an explanatory diagram for explaining the operating principle of the apparatus based on the present invention. FIG. 2 is a schematic block diagram showing the configuration of an apparatus based on the present invention. 1...Light source 2...Measurement object 3...
Lens 4... Image sensor 5... Normal line
11...Measurement object 12...Table
13...Movable rail 14...Fixed rail 15
...Light source 16...Lens 17...Light shielding plate 17a...Nifty lens 18...Lens 19...
Image sensor 20...Signal processing device 21...Control device 22...Display device 23...Output device
24... Recording device 25... Boundary line 26.
...Bright area 27...Dark area Patent applicant: Chiyoda Corporation
Attorney Patent Attorney Yo Oshima - Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1)測定対象物表面の3次元形状及び座標を測定する
ための装置であつて、 前記測定対象物に対して或る投射方向から平行光線を投
射するための手段と、 前記平行光線の一部を遮光するナイフエッジ手段と、 前記測定対象物表面からの反射光を前記投射方向とは異
なる方向から受光し、画像センサ上に結像するための受
光手段と、 前記画像センサ上に結像された光の明暗部の境界として
与えられる前記ナイフエッジの像の、所定の基準線に対
する偏差に基づき、前記測定対象物表面の前記ナイフエ
ッジの投射位置に対応する部分の高さを求める信号処理
手段と、 前記光投射手段及び受光手段と前記測定対象物とを横方
向に相対的に走査するための手段とを有することを特徴
とする非接触式3次元形状測定装置。
(1) A device for measuring the three-dimensional shape and coordinates of the surface of a measurement object, comprising: means for projecting parallel light rays onto the measurement object from a certain projection direction; and one of the parallel light rays. light receiving means for receiving reflected light from the surface of the object to be measured from a direction different from the projection direction, and forming an image on the image sensor; and forming the image on the image sensor. signal processing for determining the height of a portion of the surface of the measurement object corresponding to the projection position of the knife edge, based on the deviation of the image of the knife edge, which is given as a boundary between bright and dark areas of the light, from a predetermined reference line; A non-contact three-dimensional shape measuring device, comprising: means for relatively scanning the light projecting means, the light receiving means, and the object to be measured in a lateral direction.
JP7163488A 1988-03-25 1988-03-25 Three-dimensional shape measuring device of non-contact method Pending JPH01244303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7163488A JPH01244303A (en) 1988-03-25 1988-03-25 Three-dimensional shape measuring device of non-contact method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7163488A JPH01244303A (en) 1988-03-25 1988-03-25 Three-dimensional shape measuring device of non-contact method

Publications (1)

Publication Number Publication Date
JPH01244303A true JPH01244303A (en) 1989-09-28

Family

ID=13466276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7163488A Pending JPH01244303A (en) 1988-03-25 1988-03-25 Three-dimensional shape measuring device of non-contact method

Country Status (1)

Country Link
JP (1) JPH01244303A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05105198A (en) * 1991-10-14 1993-04-27 Mitsubishi Electric Corp Optical sensor device for rendezvous docking
JP2005241621A (en) * 2003-08-20 2005-09-08 Sunx Ltd Optical measuring device, and distance calculation method for optical measuring device
CN108469231A (en) * 2017-02-23 2018-08-31 香港商台本机械有限公司 Detecting system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05105198A (en) * 1991-10-14 1993-04-27 Mitsubishi Electric Corp Optical sensor device for rendezvous docking
JP2005241621A (en) * 2003-08-20 2005-09-08 Sunx Ltd Optical measuring device, and distance calculation method for optical measuring device
CN108469231A (en) * 2017-02-23 2018-08-31 香港商台本机械有限公司 Detecting system

Similar Documents

Publication Publication Date Title
EP3115742B1 (en) 3d measuring machine
US6094269A (en) Apparatus and method for optically measuring an object surface contour
US4627734A (en) Three dimensional imaging method and device
US20040174537A1 (en) Method for measuring surface properties and co-ordinate measuring device
JPS63501526A (en) High speed 3D surface digitizer
CN102538679B (en) Image correlation displacement sensor
WO1993008448A1 (en) High-speed 3-d surface measurement surface inspection and reverse-cad system
US5090811A (en) Optical radius gauge
JP6937482B2 (en) Surface shape measuring device and its stitching measuring method
US6927864B2 (en) Method and system for determining dimensions of optically recognizable features
JPH01244303A (en) Three-dimensional shape measuring device of non-contact method
JPH06207812A (en) Measurement point indicator for three-dimensional measurement
JP3157001B2 (en) 3D shape measuring device
CN219245763U (en) High-speed laser displacement sensor based on monochromatic laser line scanning and triangulation
JP3798212B2 (en) 3D shape measuring device
JP2504944B2 (en) Three-dimensional information processing method
JPH02268207A (en) Shape recognizing apparatus
JPH10185515A (en) Coil position detector
JPS62291512A (en) Distance measuring apparatus
JP2725207B2 (en) Position measuring device
JPH0789058B2 (en) Distance measuring device
JPS5826325Y2 (en) position detection device
JPH0285704A (en) Gap measuring instrument
JP2022059662A (en) Measurement device, measurement method, control method, and control program
JP3042693B2 (en) Method and apparatus for measuring perspective distortion and method and apparatus for measuring surface three-dimensional shape